
 
 

 

  

Abstract—The continue-time unscented Kalman filter (UKF) 
is developed to estimate the state of a jet transport aircraft. The 
UKF is based on the nonlinear longitudinal aircraft equations of 
motion, and it is designed to provide estimates of horizontal and 
vertical atmospheric wind inputs. The optimal state and 
disturbance estimates are incorporated in feedback control laws 
based on the slow- and fast-time-scale subsystems of the aircraft 
nonlinear inverse dynamics. The UKF produces accurate 
estimates, and the resultant flight trajectories are very similar to 
those obtained with perfect state feedback. The UKF is sensitive 
to uncertainty in the dynamic model, but much of the lost 
performance can be restored by treating the uncertainty as a 
random disturbance input. 

I. INTRODUCTION 
EVERE low-altitude wind variability represents an 
infrequent but significant hazard to aircraft taking off or 

landing. A microburst is a strong localized downdraft that 
strikes the ground, creating winds that diverge radially from 
the impact point. The effects of microburst wind shear on 
airplane dynamics have recently been understood in detail, 
and it has been found that effective recovery from inadvertent 
encounters may require counterintuitive piloting techniques.  

Optimal trajectory analysis (OTA) has been used to identify 
the limits of aircraft performance in wind shear and to 
determine the control strategies required to achieve such 
performance [1]-[5]. Computation of these trajectories 
requires global knowledge of the flow field. Since this is not 
possible in practice, OTA results are not immediately useful 
for real-time aircraft control. Consequently, feedback control 
laws employing local wind-field knowledge have been 
developed for near-optimal flight control [1], [6], [7]. 

The goal of this research is to bridge the gap between the 
performance achieved using OTA and that attainable using 
feedback control based on local wind field knowledge. The 
design of a feedback control law is presented in [8] based on 
the aircraft nonlinear inverse dynamics (NID) [9], [10]. The 
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NID controller demonstrated safe flight through severe 
microbursts encountered on the final approach. It was 
assumed that the aircraft states were known exactly. The 
estimation of the aircraft state and disturbance inputs from 
available sensor outputs was presented in [11], in which the 
extended Kalman filter (EKF) is postulated as a suitable 
estimator structure in concert with the NID control laws.  

This paper proposes an estimator structure based on the 
continue-time unscented Kalman filtering, which is evaluated 
in concert with the NID control laws. Section II is dedicated to 
a statement of aircraft model and equations of motion while 
Section III considers its nonlinear feedback control law. The 
estimation of the aircraft state and disturbance components for 
noisy sensor outputs is then considered in Section IV. In 
Section V, the simulation results are organized to facilitate a 
comparison of the UKF/NID flight trajectory with that 
obtained using perfect state feedback and the EKF/NID flight 
trajectory, as well as to illustrate the estimation performance 
of the UKF. Finally, the conclusion is reported in Section VI. 

II. EFFECT OF WIND SHARE ON AIRPLANE DYNAMICS 
A three degree-of-freedom model of a twin-jet transport 

aircraft is used for this study. The aircraft has a gross weight of 
38500kg and maximum takeoff thrust of 107 kN. Its aero- 
dynamic coefficients are complex nonlinear functions of 
altitude, Mach number, incidence angles, rotation rates, 
control deflections, configuration changes, and ground 
proximity. Effects of wind shear on aircraft motion and 
aerodynamics are modeled using the techniques described in 
[12]. The relevant reference frames used to describe the 
aircraft's position, orientation and velocity are presented in 
Fig. 1. Flight is assumed to take place in a vertical plane over a 
flat Earth, and a coordinate system fixed to the ground is 
defined as the inertial reference frame. On the basis of these 
assumptions, the equations of motion are obtained as follows. 

cosa aV wχχ γ= +                                (1) 
sina a hh V wγ= +                                (2) 

cos sin cos sina a a a h a
T DV g w w
m m χα γ γ γ= − − − −          (3) 

1 ( sin cos cos sin )a a a h a a
T LV g w w

V m m χα γ γ γ= + − − +       (4) 

a aqα γ= −                                    (5) 
yyI q M=                                      (6) 

The effect of wind shear on airplane energy state can be 
described compactly. First define the specific energy (energy 
per unit weight) as the sum of air-mass relative kinetic energy 
and inertial potential energy. Substituting from (1)-(3) yields 
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Fig. 1 Coordinate systems and reference frames for flight in wind shear. 

The three wind terms, described wind shear impact on 
airplane energy state, may be combined into a single scalar 
quantity called the “F factor” as follow. 

cos sinh h
a a

a

w w wF
g g V

χ γ γ= + −                       (8) 

The effect of wind shear on airplane performance is thus 
expressed as an effective reduction in available specific 
excess power due to horizontal and vertical shears and 
downdrafts. Regions where F is negative are considered to be 
performance-increasing shears, while regions where F is 
positive are performance-decreasing. The aircraft's lift, drag, 
pitching moment and thrust are expressed as follows. 

ref LL qS C=                                     (9) 
ref DD qS C=                                   (10) 

max ( )a TT T V δ= , 0 1Tδ≤ ≤                         (11) 
ref MM qS cC=                                (12) 

The wind components and spatial gradients are obtained 
from the Oseguera-Bowles downburst model. This analytic 
time-invariant model represents an axisymmetric stagnation 
point flow, and it permits simulation of microbursts of varying 
size and strength through specification of the radius of the 
downdraft column, the maximum outflow and the altitude of 
maximum outflow. 

III. NONLINEAR FLIGHT CONTROL 
This description of nonlinear control methods is necessarily 

brief. More complete treatments can be found in [13], [14]. 
Given a system of the form 

( ) ( )x f x G x u= +                             (13) 
where x is 1n ×  and u is 1m × , we define an m-dimensional 
output vector 

( )y H x=                                     (14) 
It is possible to construct a nonlinear feedback control law 

that provides output decoupling of the elements of y or their 
derivatives such that ( )dy v= . The new control input v can be 
chosen to place the system poles in desired locations. The 
vector ( )dy  is expressed as 

( ) *( ) ( )dy f x G x u v∗= + =                         (15) 
and d is the relative degree of differentiation required to 
identify a direct control effect on each element of the output 
vector. The inverse control law then is 

* 1[ ( )] [ ( )]u G x v f x− ∗= −                         (16) 

and the closed-loop dynamics of the system take the form 
* 1( ) ( )[ ( )] [ ( )]x f x G x G x v f x− ∗= + −                (17) 

While the expression of the inverse control law appears 
simple, its implementation can be quite complex. Evaluation 
of the functions ( )f x∗  and *( )G x  requires that a full, 
d-differentiable model of the aircraft dynamics be included in 
the control system.  

The controller can be simplified if the system can be 
partitioned into slow- and fast-time-scale subsystems [15]. 
The partition is a natural consequence of the underlying 
physics. For the aircraft problem, it is assumed that the pitch 
rate evolves q faster than the flight path aγ  and velocity aV . 

Therefore, we can partition the system (13) into slow- and 
fast-time-scale subsystems as follows. 

( , ) ( , )f f f s f f sx F x x G x x uε = +                     (18) 
( , ) ( , )s s f s s f sx F x x G x x u= +                      (19) 

where, [     ]T
f ax q Tα= , [       ]T

s a ax x h V γ= ; the elements of ( )fF x  
and ( )sF x  are constructed using (1)-(6); ε  is a positive 
number for the fast-time-scale subsystem. 

In the slow time scale t, multiplying (18) by ε  and 
considering the limit 0ε → , since the matrix ( , )f f sF x x  has full 
column rank, the quasi steady state constraints ( , )f f sF x x +  

( , ) 0f f sG x x u =  are obtained. Defining  

0

( , ) ( , )
lim f f s f f sF x x G x x u
ε

ϕ
ε→

+
=  

The slow dynamics of the network take the form as follow. 
0 ( , ) ( , )f f s f f sF x x G x x u= +                       (20) 

( ) ( )s s s s sx F x G x u= +                           (21) 
Equation (21) is order-reduced model and the slow-time-scale 
subsystems of the system (13). 

In the fast time scale ( /tτ ε= ), in the limit 0ε → , the 
dynamics of (18) take the form 

( , ) ( , )f f s f f s
dx F x x G x x u
dτ

= +                      (22) 

Equation (22) is called as boundary layer model and it is the 
fast-time-scale subsystems of the system (13). 

The slow dynamics are thus modeled by a high index DAE, 
since the solution for the algebraic variables ϕ  cannot be 
obtained directly from the algebraic equations. 

By means of applying the dynamic inversion method to the 
slow- and fast-time-scale subsystems respectively, the related 
control quantity can be obtained. And in the slow- and 
fast-time-scale subsystems, the evaluation of the functions 

( )f x∗  and *( )G x  requires a 4-differentiable model instead of 
a 7-differentiable model. Therefore, the computation progress 
is simpler obviously.  

The controller demonstrates good recovery performance in 
a variety of microburst encounters when perfect state feedback 
is used as the basis of the control. Such state feedback would 
not be available in practice, it would be necessary to estimate 
the aircraft state and disturbance components for noisy sensor 
outputs. The unscented Kalman filter has been developed to 
accomplish this task. 
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IV. OPTIMAL STATE ESTIMATION 
Although the extended Kalman filtering (EKF) is the most 

widely used filtering strategy within communication and 
aerospace applications, it has two well known drawbacks: (1) 
the first-order linearization can introduce large errors in mean 
and covariance of the state vector, and (2) the derivation of 
Jacobian matrices is nontrivial in many applications.  

The unscented Kalman filter (UKF) [16] was proposed in 
1990s as an improvement to EKF. The UKF is widely used in 
practice, ranging from multi-sensor fusion [17], target 
tracking [16], position determination [18], to training of 
neural networks [19]. And the problem of the continue-time 
filtering based on UKF has been recently solved in [20]. The 
continue-time unscented Kalman filter derives optimal aircraft 
state and wind component estimates for use with the NID 
control laws. The UKF is an optimal filter in the sense that it 
minimizes the variance in the estimation error associated with 
a nonlinear system. 

A. Filter Equations for the Jet Transport 
The continue-time UKF estimates the state of the jet 

transport aircraft using available inertial and air-data 
measurements. A key feature of the UKF in this application is 
its ability to estimate the horizontal and vertical wind 
components xw  and hw . Estimates of these quantities are used 
as the basis of feedback control using the NID control laws.  

The wind-axis equations of motion (1)-(6) are used to 
define the plant model for the estimator equations. There is a 
first-order lag in power-plant dynamics. 

ˆ cT TT
τ
−=                                    (23) 

where cT  is the commanded thrust, T is the actual thrust and 
2sτ = . The aircraft state vector is defined nominally as 

[             ]T
a a a ax h V q Tχ γ α=                      (24) 

The control input to the system is 
[   ]T

c Eu T δ=                                 (25) 
The NID control laws also require feedback of wχ , hw , wχ , 

hw  wχ  and hw . It is necessary to make these six variables part 
of the system state vector. The wind state vector is defined as 

[           ]T
d h h hx w w w w w wχ χ χ=                     (26) 

In order to construct the system model, it is necessary to 
define the dynamics associated with the wind inputs. The 
equation to represent the wind components and their time 
derivatives is 

d d dx F x w= +                                  (27) 
where 

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

dF

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1

2

0
0
0
0w
w
w

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                    (28) 

and w is a white, zero-mean Gaussian random variable. 
[ ( )] 0E w t = , [ ( ) ( )] ( )T

cE w t w t Q t=                    (29) 
where [ ]E i  denotes the expected value of the function. 

The aircraft dynamics may thus be expressed as 
( , , )a a dx f x u x=                                (30) 

where the elements of ( )f i  are constructed using (1)-(6). The 
complete state vector for the estimator model is defined as 

[    ]T
a dx x x                                  (31) 

The combined dynamics are then written as 
( ) ( ( ), ( ), ) ( )

( ) ( ( ), ( ), ( )) 0
( ) ( ) ( ) ( )

a a d

d d d

x t f x t u t t w t
x t f x t u t x t
x t F t x t w t

= +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

           (32) 

Equation (32) describes the assumed system model used to 
the UKF. The disturbance input to this system is the vector w. 
Thus, xw  and hw  are modeled as zero-mean Gaussian 
random variables. There is a question of how to choose the 
elements of the matrix cQ  in (29). It has been necessary to rely 
on trial-and-error methods to identify suitable elements of cQ . 
In effect, its components become design parameters that are 
adjusted to tune the filter response. The numerical values used 
are presented along with the simulation results. 

Considered here is the form of the measurements. 
( ) ( ( ), ) ( )z t h x t t n t= +                           (33) 

The measurement noise ( )n t  also is assumed to be a white, 
zero-mean Gaussian random process that is uncorrelated with 
the disturbance input. 

[ ( )] 0E n t = , [ ( ) ( )] ( )TE n t n t R t=                (34) 
[ ( ) ( )] 0TE w t n t = , for all t                  (35) 

The measurement vector z is defined as  
[                 ]T

g a az h V V q h hα θ χ=                 (36) 
The measurement noise covariance matrix is defined as 

2 2 2 2 2 2 2 2 2diag(5 ,3.6 ,1.7 ,0.5 ,0.05 ,0.05 ,0.5 ,0.322 ,0.322 )R =    (37) 
These values are representative of state of the art inertial 

and air-data systems. 

B. Optimal Estimator 
The continue-time UKF computes minimum-variance 

estimates for nonlinear systems described in (32), where the 
vector ( ( ), ( ), )f x t u t t  is a nonlinear function of the state x, the 
deterministic control input u and time. The disturbance input 
w is a white, zero-mean Gaussian random process with mean 
and covariance in (29). The disturbance is thus characterized 
by its spectral density matrix ( )cQ t . The measurement 
equation is also described in (33). 

The expected values of the initial state and its covariance 
are assumed known. 

0ˆ[ (0)]E x x= , 0 0 0 0 0ˆ ˆ[( )( ) ]TE x x x x P− − =               (38) 
According to the procedure of the UKF, the n-dimensional 

random variable ( )x t  with mean ˆ( )x t  and covariance ( )P t  is 
approximated by the matrix of sigma points ( )X t  selected 
using the following equations firstly. 

(0) ˆ( ) ( )X t x t=  
( ) ˆ( ) ( )iX t x t cP= + , 1, ,i L= …  

( ) ˆ( ) ( )iX t x t cP= − , 1, ,2i L L= + …  
where 2 ( )c n lα= +  is a tuning parameter. The opposite weight 

mω  is as follow. 
(0) (2 ) T[ ]n

m m mW Wω =  
where  

(0)

( )mW
n

λ
λ

=
+

, ( ) 1
2( )

i
mW

n λ
=

+
( 1, , 2i n= ). 

We define the matrix W as follow 
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(0) (2 ) T( [ ]) ( ) ( [ ])n
m m c c m mW I diag W W Iω ω ω ω= − × × −  

where  
(0)

2( ) (1 )cW
n

λ
λ α β

=
+ + − +

, ( ) 1
2( )

i
cW

n λ
=

+
( 1, , 2i n= ). 

The parameter λ  is a scaling parameter defined as 
2 ( )n l nλ α= + − . The positive constants α , β  and l  are 

used as parameters of the method. 
In the previous formulation, ( )z t  plays the role of measured 

output so that the corresponding Kalman filter equations can 
be defined as follows. 

( ) ( ( ), ) ( ) ( ) ( ) ( )m
dx t f X t t B t u t K t t

dt
ω ε= + +                 (39) 

T 1( ) [ ( ) ( ( ), ) ( )] ( )K t X t Wh X t t S t Q tε
−= +                    (40) 

T T

1 T

( ) ( ) ( ( ), ) ( ( ), ) ( ) ( )
                           ( ) ( ) ( )

dP t X t Wf X t t f X t t WX t Q t
dt

K t Q t K tε
−

= + +
−

        (41) 

where, ( )tε  and ( )Q tε  denote the innovation of ( )z t  and its 
covariance matrix, given by 

( ) [ ( ) ( ( ), ) ]mt z t h X t tε ω= −                          (42) 
1 T( ) ( ( ), ) ( ( ), ) ( )Q t h X t t Wh X t t R tε

− = +                  (43) 
The UKF is now evaluated in conjunction with the NID 

control laws. The UKF/NID performance is compared with 
the perfect state feedback and the EKF/NID. 

V. SIMULATIONS RESULTS 
Aircraft encounters with microburst wind shear are 

considered on the final approach, during which a decision is 
made to abort the landing and execute a climb-out. The 
simulation results are organized to facilitate a comparison of 
the UKF/NID flight trajectory with that obtained using perfect 
state feedback and the EKF/NID flight trajectory, as well as to 
illustrate the estimation performance of the UKF. 

A. Simulation during a microburst encounter 
The aircraft is initialized on the glide slope at a point well 

outside the microburst core with an initial groundspeed of 
75m/s. The microburst has a core radius of 915m, a maximum 
horizontal wind speed of 21m/s and a maximum outflow 
altitude of 46m. The initial state estimate is set equal to the 
actual state, so that 0 0ˆ( ) ( )x t x t= . The covariance matrix is 
initialized as an identity matrix of appropriate dimension.  

The disturbance input spectral density matrix cQ  is set to 
diag(0,  0,  0,  0,  0.01,  0.01)cQ =  

The selected numbers of cQ  provide a good balance 
between attenuating measurement noise and minimizing 
estimator lag. 

State estimation errors are shown together with the 2σ  
error estimate, which is computed from the covariance matrix 

( )P t . The ˆ2 ( )i tσ±  curves provide the estimated 95% 
confidence interval on the error associated with the state 
estimate ˆ ( )ix t . 

Figure 2 presents airspeed and angle of attack versus range 
from microburst core in the NID-only, the EKF/NID 
trajectories and the UKF/NID trajectories. Figure 4 shows the 
horizontal and vertical wind components experienced by the 
aircraft in the UKF/NID trajectory. It is evident from Fig 2 

that the UKF/NID trajectory is qualitatively similar to the one 
obtained using perfect state feedback. 

The ability to estimate the wind components is illustrated in 
Fig 4, which present the wχ  and hw , estimation errors, along 
with the 2σ  error bounds. The actual and estimated F factors 
in the UKF/NID trajectory are shown together in Fig. 5. The 
peak F experienced by the aircraft is approximately 0.4, 
indicating that this is a very severe microburst. 
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during a microburst encounter 

-2500 -1250 0 1250 2500
-20

-10

0

10

20

 

 

 wh

 wx

H
or

iz
on

ta
l a

nd
 V

er
tic

al
 

w
in

ds
 (m

/s
)

Range (m)  
Fig.3. wχ  and hw  versus range 

 during a microburst encounter with UKF/NID control. 

It is apparent that the UKF estimates the wind components 
accurately. The predicted 2σ  error bounds are good 
indicators of the accuracy of UKF, implying that the actual 
filter performance is consistent with the expected performance. 
The F-factor estimate derived from the optimal state and 
disturbance estimates also is quite accurate. 
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The results show that NID control laws can perform quite 
well using optimal state estimates derived from a realistic set 
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of measurements. However, uncertainty in the aerodynamic 
model poses a serious problem. The effect of uncertainty in 
the aerodynamic model is examined by intentionally adding 
an error to the lift and drag estimates used by the UKF/NID 
pair. The simulation is repeated using the same microburst 
parameters as in Figs 2-5, but now a 10% error is added to the 
lift and drag estimates used by both the UKF and the NID 
control laws. Figure 6 presents altitude and angle of attack 
versus range in the resultant trajectory. Wind component 
estimation errors in the UKF/NID trajectory are shown in Fig 
7. 
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It is apparent that the modeling errors produce a dramatic 
departure from the nominal flight path. The aircraft does not 
track the desired approach path properly in the descent portion 
of the trajectory. Figure 7 shows that the predicted 2σ  error 
bounds are not good indicators for the performance of UKF. 
The wχ  estimation error appears to grow without bound. 
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Fig.7. wχ and hw estimation error in the EKFINID trajectory  

during a microburst encounter with EKF/NID control  
and 10% error in lift and drag estimates. 

Uncertainty in the aerodynamic model appears to be a key 
difficulty in the implementation of the UKF/NID 
estimator-controller pair. Since it is unlikely that an aircraft's 
aerodynamic model will ever be known exactly, it is necessary 
to devise a means of accommodating this uncertainty into the 
design. One such method is now discussed. 

B. Effect of adding fictitious process noise 
A simple solution for accommodating uncertainty into the 

design of the UKF is to add fictitious process noise ( )fw t  to 
the system model, which is treated as a Gaussian random input. 
The resultant model is expressed as 

( ) ( ( ), ( ), ) ( )
( ) ( ( ), ( ), ( )) ( )
( ) ( ) ( ) ( )

a a d f

d d d

x t f x t u t t w t
x t f x t u t x t w t
x t F t x t w t

= +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

           (44) 

where the fictitious input ( )fw t  is a Gaussian, zero-mean 
random variable. 

[ ( )] 0fE w t = , [ ( ) ( )] ( )T
f f fE w t w t Q t=                (45) 

The elements of ( )fQ t  are chosen to reflect the uncertainty in 
the time rates of change of the components of ax  that depend 
on L or D. For the simulation results that follow, ( )fQ t  is set to 

diag(0,  0,  0.2,  0.05,  0.05,  0.2,  0.05,  0.05,  0,   0)fQ =       (46) 
The UKF/NID trajectory is now recomputed using fictitious 

process noise in the UKF plant model. As in the previous 
simulation, 10% errors are added to the lift and drag estimates 
used by the UKF/NID pair. Figure 8 shows the resultant 
altitude and angle of attack response respectively. Once again, 
the profiles obtained using the NID control law with perfect 
state feedback and the EKF/NID, as well as an exact model are 
shown for comparison purposes. Horizontal and vertical wind 
estimation errors in the UKF/NID flight path are shown in Fig 
9. Figure 8 shows that the UKF/NID altitude and angle of 
attack profiles with fictitious process noise are much more 
similar to the NID baseline than those in Fig 6. Figure 9 
demonstrate that adding the fictitious process noise restores 
the performance of UKF. The predicted 2σ  error bounds are 
once again good indicators of the accuracy of the wind 
component estimates. The steady-state error bounds are larger 
in Fig 9 than in Fig 7. This may be expected, since the UKF 
plant model now contains uncertainty in the model itself as 
well as in the measurements. 
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Fig.8. Altitude versus range and angle of attack versus  
during a microburst encounter with UKF/NID control that incorporates 

fictitious process noise to account for 10% error in lift and drag estimates. 
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Fig.9. wχ and hw estimation error during a microburst encounter  
with UKF/NID control that incorporates fictitious process noise  

to account for 10% error in lift and drag estimates. 

The simulation results indicate that it is possible to 
effectively compensate for plant model uncertainty by adding 
fictitious process noise to the UKF equations. The resultant 
flight path is similar to the one obtained using perfect state 
feedback with an exact aerodynamic model. The UKF/NID 
pair functions effectively using a realistic set of measurements 
and an uncertain aerodynamic model. 
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VI. CONCLUSION 
The continue-time Unscented Kalman Filter is developed to 

estimate the state vector and wind disturbance inputs of a jet 
transport aircraft. The UKF was evaluated in concert with 
nonlinear control laws developed previously. Simulated flight 
trajectories produced using the UKF/NID pair is almost 
identical to those obtained using the NID control laws with 
perfect state feedback. The UKF produced accurate estimates 
of both horizontal and vertical wind inputs using a simple 
integral-state-model representation of the wind system. This 
representation makes no assumptions about the structure of 
the atmospheric disturbance, and it should be able to provide 
accurate disturbance estimates in a variety of atmospheric 
conditions. The introduction of fictitious process noise in the 
UKF equations, which treated the uncertainty as a random 
disturbance input, restored most of the lost performance.  

Consequently, the UKF/NID control law is a good 
candidate for operational implementation. 
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