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Abstract— A polynomial transformation technique is used
to obtain a model for a dual-rate nonlinear system in which
the output sampling interval is an integer multiple of the
control interval. Based on this model, a self-tuning control
algorithm is presented by minimizing output tracking error
criteria from directly the dual-rate measurement data. The self-
tuning algorithm proposed can achieve virtually asymptotically
optimal control and ensure the closed-loop system to be stable
and globally convergent. The proposed algorithm is illustrated
by examples.

I. PROBLEM DESCRIPTION

HAMMERSTEIN nonlinear systems are a class of input

nonlinear ones which are characterized by static non-

linearities f(·) followed by linear dynamic blocks G(z) [1]–

[3], as depicted in Figure 1, where u(k) and y(k) denote the

system input and output, respectively, ŷ(iq+j) the estimated

intersample output, yr(k) a deterministic reference input or

desired output signal, yf (k) the feedback signal and θ̂ the

estimate of the parameters of G(z). In general, the static
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Fig. 1. The self-tuning control scheme (j = 1, 2, · · · , q − 1)

nonlinear part in the Hammerstein model is assumed to be a

polynomial of a known order m in the input u(k) as follow,

e.g., [4],

ū(k) = f(u(k)) = c1u(k)+ c2u
2(k)+ · · ·+ cmum(k), (1)

the linear block has the following dynamic transfer function

in a unit backward shift operator z−1 [z−1u(k) = u(k− 1)]
with the known order n, G(z) := B(z)/A(z) with

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + anz−n,

B(z) = b1z
−1 + b2z

−2 + · · · + bnz−n.
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The systems with two or more different operation frequen-

cies are called dual-rate or multirate sampled-data systems.

Multirate/dual-rate systems arise in many industry applica-

tions, if the output is sampled at a slower rate than the control

updating rate, then we get a dual-rate system. For such a

dual-rate sampled-data system, the input data {u(k), k =
0, 1, 2, · · ·} are available at each time k, but only scarce

output data {y(kq) : k = 0, 1, 2, · · ·} are available (q being

a positive integer). We refer to the unavailable intersample

outputs, y(kq + j), j = 1, 2, · · · , q−1, as the missing output

samples, and to {u(k), y(kq)} as the dual-rate measurement

data. It is obvious that the conventional adaptive control

method is not suitable for this dual-rate case directly.

In the literature, Albertos et al. discussed various adaptive

control schemes for dual-rate systems [5]; Ishitobi et al.

presented a least squares based adaptive control algorithm

[6]; Ding and Chen presented a self-tuning method for dual-

rate sampled-data systems by using the polynomial transform

technique [7], [8]; and Patete et al considered the self-tuning

control problem of minimum or non-minimum phase auto-

regressive models with constant but unknown parameters [9].

This paper focuses on the self-tuning control problem of

nonlinear dual-rate systems. The control scheme we propose

is shown in Figure 1 and consists of two estimators and

a controller: an estimator generating the estimate θ̂ of the

unknown system parameters online based on the dual-rate

data {u(k), y(kq)}, an estimator computing the intersample

(missing) outputs ŷ(iq + j) using the obtained θ̂ and system

input u(k) in order to provide a feedback signal yf (k) to the

controller. That is, yf (k) connects to y(iq) at times k = iq,

and connects to ŷ(iq+j) at k = iq+j, j = 1, 2, · · · , (q−1).
This operation can be expressed in the following equation:

yf (k) =

{

y(iq), k = iq,
ŷ(iq + j), k = iq + j, j = 1, · · · , (q − 1).

(2)

In a word, the dual-rate self-tuning control scheme here also

produce a fast-rate feedback signal for controller when the

intersample output is unavailable. It is easy to implement in

digital computers, and practical for industry.

The objective of this paper is to design a self-tuning

control algorithm so as the output y(k) tracks the desired

output yr(k) by minimizing the tracking error criterion

function given by

J [u(k)] = E{[yf (k + 1) − yr(k + 1)]2|Fk−1} (3)

and study the properties of the closed-loop system. Here,

{Fk} is the σ algebra sequence generated by the observations

up to and including time k.
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Briefly, the paper is organized as follows. Section II

present self-tuning control algorithms based on the poly-

nomial transform technique. Sections III and IV analyze

the output tracking performance and global stability of the

closed-loop systems of the self-tuning control proposed.

Section V gives two illustrative examples. Finally, Section VI

offers some concluding remarks.

II. CONTROL ALGORITHM DERIVATIONS

From Figure 1, we have

y(k) =
B(z)

A(z)
ū(k), ū(k) = f(u(k)). (4)

The model in (4) is not suitable for dual-rate self-tuning

control because it would involve the unavailable outputs. To

obtain a model that we can use directly on the dual-rate data,

by a polynomial transform technique, G(z) can be converted

into a form so that the denominator is a polynomial in z−q

instead of z−1.

For a general discussion, let the roots of A(z) be zi to get

A(z) =
n

∏

i=1

(1 − ziz
−1).

Define a polynomial

φq(z) :=
n

∏

i=1

(1 + ziz
−1 + z2

i z−2 + · · · + zq−1
i z−q+1).

Multiplying the numerator and denominator of G(z) by

φq(z), we get a new model:

P (z) =
B(z)φq(z)

A(z)φq(z)
=:

β(z)

α(z)
, (5)

with

α(z) = 1 + α1z
−q + α2z

−2q + · · · + αnz−qn,

β(z) = β1z
−1 + β2z

−2 + · · · + βqnz−qn.

So we have

y(k) = −
n

∑

i=1

αiy(k − iq) +

qn
∑

i=1

βif(u(k − i)). (6)

Define the parameter vector θ and information vector ϕ(k)

θ = [α1, · · · , αn, β1, · · · , βqn]T ∈ R
n0 ,

ϕ(k − 1) = [−y(k − q),−y(k − 2q), · · · ,−y(k − nq),

f(u(k − 1)), · · · , f(u(k − nq))]T ∈ R
n0 ,

n0 := (q + 1)n.

Then we have

y(k) = ϕT(k − 1)θ. (7)

Let yr(k) be a desired output signal; define the output track-

ing errorξ(k+1) = y(k+1)−yr(k+1). In the deterministic

case, if the control signal u(k) is chosen according to the

equation yr(k + 1) = ϕT(k)θ obtained by minimizing the

criterion function in (3), then the tracking error ξ(k + 1)
approaches zero asymptotically.

Based on the model in (7), introducing a zero-mean white

noise disturbance term v(k), we have

y(k) = ϕT(k − 1)θ + v(k). (8)

Let θ̂ be the estimate of unknown parameter vector θ,

then ŷ(k + 1) = ϕT(k)θ̂ is the output prediction, which

is computed by the intersample output estimator in Figure 1.

According to the certainty equivalence principle [12] or

minimizing the criterion function in (3), the control law takes

the following form:

yr(k + 1) = ϕT(k)θ̂. (9)

Replacing k in (8) by kq gives

y(kq) = ϕT(kq − 1)θ + v(kq). (10)

Then the recursive least squares algorithm may be used to

produce the estimate θ̂(kq) of θ at current time kq, and the

algorithm is as follows:

θ̂(kq) = θ̂(kq − q) + P (kq)ϕ(kq − 1)

[y(kq) − ϕT(kq − 1)θ̂(kq − q)], (11)

P−1(kq) = P−1(kq − q) + ϕ(kq − 1)ϕT(kq − 1), (12)

θ̂(i) = θ̂(kq), i = kq, kq + 1, · · · , kq + q − 1, (13)

θ̂(kq) = [α̂1(kq), · · · , α̂n(kq), β̂1(kq), · · · , β̂nq(kq)]T.(14)

Based on (9), the control law is given by

ϕT(kq+j)θ̂(kq) = yr(kq+1+j), j = 0, 1, · · · , q−1. (15)

To initialize the control algorithm in (11)-(15), we take

P (0) = p0I with p0 normally a large positive number,

e.g., p0 = 106 and θ̂(0) = θ̂0, some small real vector, e.g.,

θ̂(0) = 1n0
/p0.

The control signal u(k) is computed by the past inputs

u(k − j) for j = 1, 2, · · ·, the current output y(k) (ŷ(k)),
past outputs y(k−j) (ŷ(k−j)) for j = 1, 2, · · ·, and desired

output yr(k + 1) as k increases, and the input u(k) is made

to drive the system output at time k + 1 to the target value

yr(k + 1).

Then, in our self-tuning control algorithm in (11)-(15),

based on the parameter estimation, we can get the control

signal u(kq + j) in (15) from the following equation:

f(u(kq + j)) =
n

∑

i=1

α̂i(kq)y(kq + j + 1 − iq) +

yr(kq + j + 1) −

nq
∑

i=2

β̂i(kq)f(u(kq + j + 1 − i)).(16)

Here, a difficulty arises because over the interval [kq, kq+q),
except for j = q−1, the above expression contains the future

and past missing outputs y(kq + j + 1 − iq). So it looks

impossible to compute the control law by (16) and to realize

the algorithm in (11)-(15). Our solution is based on the self-

tuning control scheme stated in Section II – these unknown
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outputs y(kq + j) in (16) are replaced by their estimates

ŷ(kq + j). So we have

f(u(kq + j)) =

n
∑

i=1

α̂i(kq)ŷ(kq + j + 1 − iq) +

yr(kq + j + 1) −

nq
∑

i=2

β̂i(kq)f(u(kq + j + 1 − i)).(17)

In fact, only when j = q − 1, the control term u(kq + j)
does not involve the missing outputs, and can be generated

by

f(u(kq + q − 1)) =
1

β̂1(kq)

[

n
∑

i=1

α̂i(kq)ŷ(kq + q − iq)+

yr(kq + q) −

nq
∑

i=2

β̂i(kq)f(u(kq + q − i))

]

. (18)

From this equation, we can compute the control signal u(k)
by the inverse function f−1(·).

III. OUTPUT TRACKING PERFORMANCE

Let us first introduce some definitions and assumptions.

The sequence {v(k),Fk} is assumed to be a martingale dif-

ference sequence defined on a probability space {Ω,F , P},

where {Fk} is the σ algebra sequence generated by the

observations up to and including time k [12]. The noise

sequence {v(k)} satisfies the following conditions:

(A1) E[v(k)|Fk−1] = 0, a.s.;

(A2) E[v2(k)|Fk−1] = σ2(k) 6 σ̄2 < ∞, a.s.;

(A3) lim sup
k→∞

1

k

k
∑

i=1

v2(i) 6 σ̄2 < ∞, a.s.

That is, {v(k)} is an independent random noise sequence

with zero mean and bounded time-varying variance.

Define

r(kq) := tr[P−1(kq)], r(0) := n0/p0.

It follows easily that

r(kq) 6 n0λmax[P
−1(kq)], ln |P−1(kq)| = O(ln r(kq)),

|P−1(kq)| 6 λn0

max[P
−1(kq)] 6 rn0(kq). (19)

In order to study the output tracking performance of the

self-tuning control algorithm proposed earlier, the following

lemma is required.

Lemma 1: For the algorithm in (11)-(15), the following

inequality holds:

∞
∑

i=1

ϕT(iq − 1)P (iq)ϕ(iq − 1)

{ln r(iq)}c
< ∞, a.s., for any c > 1.

Proof can be done in a similar way in [11] and is omitted

here.

We shall prove the main results of this paper by formulat-

ing a martingale process and by using stochastic process the-

ory and the martingale convergence theorem (Lemma D.5.3

in [12]).

Theorem 1: For the system in (10), assume that (A1)-(A3)

hold, B(z) is stable, and the reference input yr(k) is bounded

in the sense

(A4) |yr(k)| < ∞.

Then the self-tuning control algorithm in (11)-(16) guar-

antees that the output tracking error at the output sampling

instants has the property of minimum variance, i.e.,

1) lim
k→∞

1

k

k
∑

i=1

[yr(iq) − y(iq) + v(iq)]2 = 0, a.s.;

2) lim sup
k→∞

1

k

k
∑

i=1

E{[yf (iq) − yr(iq)]
2|Fiq−1}

6 σ̄2 < ∞, a.s.

Proof Define the parameter estimation error vector as

θ̃(kq) = θ̂(kq) − θ. Using (10) and (11), we have

θ̃(kq) = θ̃(kq − q) + P (kq)ϕ(kq − 1)[ϕT(kq − 1)θ

+v(kq) − ϕT(kq − 1)θ̂(kq − q)]

:= θ̃(kq − q) + P (kq)ϕ(kq − 1)[−ỹ(kq) + v(kq)],(20)

where

ỹ(kq) := ϕT(kq − 1)θ̃(kq − q)

= ϕT(kq − 1)θ̂(kq − q) − ϕT(kq − 1)θ. (21)

By using (10) and (15), it follows that

ỹ(kq) = yr(kq) − y(kq) + v(kq).

Define a non-negative definite function

V (kq) = θ̃
T

(kq)P−1(kq)θ̃(kq).

Using (10), (20) and (21), we have

V (kq)

= θ̃
T

(kq − q)P−1(kq)θ̃(kq − q)

+2θ̃
T

(kq − q)ϕ(kq − 1)[−ỹ(kq) + v(kq)]

+ϕT(kq − 1)P (kq)ϕ(kq − 1)[−ỹ(kq) + v(kq)]2

= θ̃
T

(kq − q)[ϕT(kq − 1)ϕ(kq − 1) +

P−1(kq − q)]θ̃(kq − q) + 2ỹ(kq)[−ỹ(kq) + v(kq)]

+ϕT(kq − 1)P (kq)ϕ(kq − 1)[−ỹ(kq) + v(kq)]2

= V (kq − q) − [1 − ϕT(kq − 1)P (kq)ϕ(kq − 1)]ỹ2(kq)

+ϕT(kq − 1)P (kq)ϕ(kq − 1)v2(kq)

+2[1 − ϕT(kq − 1)P (kq)ϕ(kq − 1)]ỹ(kq)v(kq).

Noting that ỹ(kq), ϕT(kq − 1)P (kq)ϕ(kq − 1) are uncor-

related with v(kq) and are Fkq−1-measurable, taking the

conditional expectation on both sides of the up equation with

respect to Fkq−1 and using (A1)-(A2) give

E[V (kq)|Fkq−1] 6 2ϕT(kq − 1)P (kq)ϕ(kq − 1)σ̄2

+V (kq − q) − [1 − ϕT(kq − 1)P (kq)ϕ(kq − 1)]ỹ2(kq).

Let

W (kq) :=
V (kq)

[| ln r(kq)|]c
, c > 1.
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Noting that ln r(kq) is non-decreasing, we have

E[W (kq)|Fkq−1]

6
V (kq − q)

[ln r(kq)]c
−

1 − ϕT(kq − 1)P (kq)ϕ(kq − 1)

[ln r(kq)]c
ỹ2(kq)

+
2ϕT(kq − 1)P (kq)ϕ(kq − 1)

[ln r(kq)]c
σ̄2

6 W (kq − q) −
1 − ϕT(kq − 1)P (kq)ϕ(kq − 1)

[ln r(kq)]c
ỹ2(kq)

+
2ϕT(kq − 1)P (kq)ϕ(kq − 1)

[ln r(kq)]c
σ̄2. (22)

In terms of Lemma 1, we can see that the sum of the last

right-hand term of (22) for k from k = 1 to k = ∞ is finite.

Since

1 − ϕT(kq − 1)P (kq)ϕ(kq − 1)

= [1 + ϕT(kq − 1)P (kq − q)ϕ(kq − 1)]−1
> 0,

applying the martingale convergence theorem (Lemma D.5.3

in [12]) to (22), we conclude that W (kq) converges a.s. to

a finite random variable, say, W0; i.e.,

W (kq) =
V (kq)

[ln r(kq)]c
→ W0 < ∞, a.s.,

and also

∞
∑

k=1

1 − ϕT(kq − 1)P (kq)ϕ(kq − 1)

[ln r(kq)]c
ỹ2(kq) < ∞, a.s.

Due to ϕT(kq − 1)P (kq)ϕ(kq − 1) 6 c with c being a

constant less than unity [12], we have

∞
∑

i=1

ỹ2(iq)

[ln r(iq)]c
< ∞, a.s. (23)

As r(kq) → ∞, using the Kronecker lemma (Lemma D.5.5

in [12]) yields

lim
k→∞

1

[ln r(kq)]c

k
∑

i=1

ỹ2(iq) = 0, a.s.

Since [ln r(kq)]c = o(r(kq)), we have

lim
k→∞

k

r(kq)

1

k

k
∑

i=1

ỹ2(iq) = 0, a.s. (24)

Since B(z) is stable, applying Lemma B.3.3 in [12] to (10)

and using (A3) yield

1

k

k
∑

i=1

u2(iq) 6
c1

k

k
∑

i=1

y2(iq) + c2, a.s.,

where ci represent finite positive constants. According to the

definitions of r(kq) and ϕ(kq), it is not difficult to get

r(kq)

k
6

c3

k

k
∑

i=1

y2(iq) + c4

=
c3

k

k
∑

i=1

[yr(iq) − ỹ(iq) + v(iq)]2 + c4

6
c5

k

k
∑

i=1

ỹ2(iq) + c6, a.s.

Thus, from (24)

0 = lim
k→∞

1
k

k
∑

i=1

ỹ2(iq)

r(kq)
k

> lim
k→∞

1
k

k
∑

i=1

ỹ2(iq)

c5

k

k
∑

i=1

ỹ2(iq) + c6

> 0, a.s.,

and hence

lim
k→∞

1

k

k
∑

i=1

[yr(iq) − y(iq) + v(iq)]2 = 0, a.s. (25)

Since

E{[yr(kq) − y(kq) + v(kq)]2|Fkq−1}

= E[(yr(kq) − y(kq))2 + 2yr(kq)v(kq)

−2y(kq)v(kq) + v2(kq)|Fkq−1]

= E[(yr(kq) − y(kq))2|Fkq−1] + 0 − 2σ2(kq) + σ2(kq)

= E[(yr(kq) − y(kq))2|Fkq−1] − σ2(kq), a.s.,

and yf (kq) = y(kq) at the output sampling instants, we have

lim sup
k→∞

1

k

k
∑

i=1

E{[yf (iq) − yr(iq)]
2|Fiq−1}

= lim sup
k→∞

1

k

k
∑

i=1

E{[y(iq) − yr(iq)]
2|Fiq−1}

= lim sup
k→∞

1

k

k
∑

i=1

σ2(iq) 6 σ̄2, a.s.

This proves Theorem 1. ¤

IV. GLOBAL CONVERGENCE

Next, we analyze global stability of the self-tuning closed-

loop system. From (2) and (10), we have

yf (kq) = y(kq) = ϕT(kq − 1)θ + v(kq), (26)

yf (kq + j) = ŷ(kq + j), j = 1, 2, · · · , q − 1. (27)

From Figure 1 and (10), since v(kq) is a “white” noise,

the best estimates of all missing output y(kq + j) are

ŷ(kq + j + 1) = ϕ̂
T(kq + j)θ̂(kq), j = 0, 1, · · · , q − 2.

The missing output estimates ŷ(kq + j) can also be

computed from the recursive equation:

ŷ(kq + j + 1) =

nq
∑

i=1

β̂i(kq)f(u(kq + j + 1 − i)) −

n
∑

i=1

α̂i(kq)ŷ(kq + j + 1 − iq), j = 0, 1, · · · , q − 2. (28)
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Comparing (17) with (28), we find that the missing intersam-

ple output estimates ŷ(kq + j), j = 1, 2, · · · , q − 1, equal

the desired outputs yr(kq + j); so we have

yr(kq + j) = ŷ(kq + j) = ϕ̂
T(kq + j)θ̂(kq). (29)

It is easy to understand that the unknown intersample outputs

y(kq + j) are replaced by the desired outputs yr(kq + j)
because our goal is to make y(k) track yr(k). Hence, com-

bining (18) with (29) generates the control signal sequence

{u(kq + j), j = 0, 1, · · · , q − 1} based on the parameter

estimates θ̂(kq) obtained. Thus, the following theorem is

easily established.

Theorem 2: Assume that the conditions of Theorem 1

hold, A(z) and B(z) both are stable and f(·) is invertible.

Then the self-tuning control algorithm in (11)-(14), (18)

ensures the closed-loop system to be stable and globally

convergent with probability 1; moreover,

• The input and output variables are uniformly bounded,

lim sup
k→∞

1

k

k
∑

i=1

[u2(i) + y2(i) + y2
f (i)] < ∞, a.s.

• The average output tracking error is equal to and less

than σ̄2/q,

lim sup
k→∞

1

k

k
∑

i=1

E{[yf (i) − yr(i)]
2|Fi−1} 6

σ̄2

q
, a.s.

Proof Since yr(k) is bounded, it is easy to get that the

outputs y(kq) at the output sampling instants are uniformly

bounded from Theorem 1 and (A3), i.e.,

lim sup
k→∞

1

k

k
∑

i=1

y2(iq) 6 δy < ∞, a.s.

Also, the intersample output estimates ŷ(kq + j), j =
1, 2, · · · , (q − 1), satisfy

ŷ(kq + j) = yr(kq + j), j = 1, 2, · · · , q − 1.

So yf (kq+j) is bounded. According to (26) and (27), yf (k)
is bounded. Since A(z) and B(z) are stable, so are α(z) and

β(z); and u(k) is bounded in terms of Lemma B.3.3 in [12].

Hence we have

lim sup
k→∞

1

k

k
∑

i=1

u2(i) < ∞, a.s.,

lim sup
k→∞

1

k

k
∑

i=1

y2(i) < ∞, a.s.,

lim sup
k→∞

1

k

k
∑

i=1

y2
f (i) < ∞, a.s.,

which mean that all the input and output variables are

uniformly bounded. Also,

lim sup
k→∞

1

k

k
∑

i=1

E{[yf (i) − yr(i)]
2|Fi−1}

= lim sup
k→∞

1

kq

k
∑

i=1

E{[y(iq) − yr(iq)]
2|Fiq−1} +

lim sup
k→∞

1

kq

q−1
∑

j=1

k
∑

i=1

E{[ŷ(iq + j) − yr(iq + j)]2|Fiq+j−1}.

Since yf (i) = ŷ(i) = yr(i) at the missing output sampling

instants, the last term on the right-hand side is zero, and the

first term is no more than σ̄2/q from Theorem 1. This proves

Theorem 2. ¤

Theorem 2 indicates that the proposed self-tuning control

scheme in the dual-rate setting can achieve the property of

minimum variance at the output sampling instants, just like

the Åström-Wittenmark STR. Between the output sampling

instants, we have ŷf (kq + j) = ŷ(kq + j) = yr(kq + j),
j = 1, 2, · · · , q − 1, which implies zero tracking error for

intersampling instants.

The persistent excitation condition is required for the con-

vergence of the parameter estimation. Like in conventional

discrete-time systems [12], self-tuning control algorithms do

not guarantee the convergence of the parameter estimation

to their true values.

In order to avoid generating u(k) with too large magni-

tudes, for a given small positive ε, if |β̂1(kq)| < ε, we take

β̂1(kq) = sgn[β̂1(kq)]ε, where the sign function is

sgn(x) =

{

1, x > 0,
0, x < 0.

V. EXAMPLE

In this section, we illustrate the results reported with two

simulation examples.

Example 1 Consider a second-order system,

G(z) =
B(z)

A(z)
=

1.0z−1 + 0.50z−2

1 − 1.50z−1 + 0.70z−2
,

and the monotone nonlinear function,

ū(k) = f(u(k)) = c1u(k) + c2u
2(k) + c3u

3(k)

= u(k) + 2u2(k) + 3u3(k).

We take the noise sequence {v(k)} to be a white noise

sequence with zero mean and variance σ2 = 0.202 and the

desired output to be

yr(500i + j) = (−1)i, i = 0, 1, 2, · · · , j = 1, 2, · · · , 500.

The self-tuning control algorithm in Section II is applied to

this system. The output y(k) and the desired output yr(k)
are shown in Figure 2 with q = 2. Figure 3 with q = 1 shows

the simulated results of the Åström-Wittenmark self-tuning

regulator (A-W STR) of conventional discrete-time systems.

5172



0 200 400 600 800 1000 1200 1400 1600 1800 2000

−1.5

−1

−0.5

0

0.5

1

1.5

 k

 y
r(k

),
  

 y
(k

)

 y(k)

Fig. 2. y(k) and yr(k) versus k (q = 2, σ2 = 0.202)
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Fig. 3. y(k) and yr(k) versus k (q = 1, σ2 = 0.202)

Example 2 Consider a third-order system,

G(z) =
B(z)

A(z)
=

0.50z−1 + 0.30z−2 − 0.10z−3

1 + 0.50z−1 − 0.40z−2 − 0.40z−3
.

The non-monotone nonlinear function,

ū(k) = f(u(k)) = 2 − u(k) − 2u2(k) + u3(k).

Simulation conditions are same as before, but σ̄2 = 0.152

and σ̄2 = 0.302. Results are shown in Figures 4 and 5.
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Fig. 4. y(k) and yr(k) versus k (q = 2, σ2 = 0.152)

From Figures 2 to 5, we can see that the control algorithm

proposed in this paper can achieve less and more stationary

average tracking error than the A-W STR algorithm for

different nonlinear systems. Thus, the closed-loop tracking

performance is satisfactory.
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Fig. 5. y(k) and yr(k) versus k (q = 2, σ2 = 0.302)

VI. CONCLUSIONS

In this paper, we propose a self-tuning control algorithm

based on only available dual-rate data for a nonlinear sys-

tem, namely Hammerstein system. The algorithm generates

a relatively fast-rate control signal from an online parameter

identification scheme which estimates fast-rate models for

Hammerstein systems involving dynamic linear blocks and

static nonlinear blocks. It is shown in the the theorems that

the proposed control algorithm can achieve desired tracking

control objective under certain conditions.
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