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Abstract --- A novel modulation/demodulation technique for 
digital chaotic communications using nonlinear filtering is 
proposed. The performance of this technique is compared in 
simulation with the existing nonlinear filtering based chaotic 
communication schemes for three different nonlinear 
estimators. The feasibility of the proposed technique is verified 
by theoretical analysis and computer simulation. The result is 
also compared with the theoretical bit error rate performance 
bound for chaotic communications.  

I. INTRODUCTION 

    In February 2003, the FCC released 3.1 GHz to 10.6 GHz, 
a radio bandwidth of 7.5 GHz (commonly known as Ultra-
Wideband Communications) for public use. The UWB 
signal has the bandwidth of about 20% to 25% of the center 
frequency, which is significantly different from traditional 
communication techniques. To better utilize this bandwidth 
resource, the IEEE 802.15 committee has led to the 
standardization of UWB communications. The IEEE 
802.15.4.a standard focuses on low bit rate Wireless 
Personal Area Network (WPAN) with high precision 
ranging/location capability, low power consumption and low 
cost [1]-[3]. Many chaotic modulation techniques have been 
proposed in recent literature to satisfy the above 
requirement. However, insufficient synchronization, 
interference and time varying channel characteristics are 
among the most significant limitations in those approaches. 
The most popular schemes include DCSK, CSK and COOK. 
The Differential Chaos Shift Keying (DCSK) contains a 
basis function in half of its symbol period which can be used 
as the reference signal; this exact timing requirement may 
not be feasible for applications. The Chaotic Shift Keying 
(CSK) scheme uses coherent reception, which needs precise 
synchronization at every sampling time step and its basis 
function cannot be regenerated at the receiver unless the 
initial condition of the chaotic signal generator used at the 
transmitter is available. This critical timing requirement 
makes CSK impractical in use. The Chaotic On-Off Keying 
(COOK) does not requite precise synchronization. But the 
performance of this scheme degrades rapidly in the 
multipath channel. Also, interference can be a serious 
limitation for COOK, since it uses a bit-energy based 
demodulator and interference can be mistaken as the actual 
message. 

Xin Wang and Edwin E. Yaz are with the Department of Electrical and 
Computer Engineering, Marquette University, Milwaukee, WI 53201, USA. 
Email: {xin.wang, edwin.yaz}@marquette.edu 

    Since chaotic signals are generated by nonlinear systems 
and can be thought of as state variables of such systems, 
nonlinear filtering techniques for state estimation based on 
noisy measurements provide us with important tools for the 
demodulation in chaotic communication systems. Currently 
available nonlinear filtering based chaotic communication 
techniques use Extended Kalman Filter (EKF) in two 
schemes: chaotic communications based on state/parameter 
estimation technique [4][5] and chaotic communications 
using two maps technique [6]. The former technique uses 
two tent maps with different parameters, and by estimating 
the parameter to decide which symbol is transmitted. And 
the latter uses two chaotic maps for transmission 
corresponding to different symbols. By estimating which 
map is used based on a bank of filters and comparing 
estimation errors, the corresponding binary information 
transmitted can be estimated. However, these techniques 
may not provide us satisfactory Bit Error Rate (BER) versus 
Signal to Noise Ratio (SNR) performance either. 

This work aims to propose a novel modulation/ 
demodulation technique using nonlinear filtering. Then three 
nonlinear estimation techniques, namely, EKF, State 
Dependent Riccati Equation (SDRE) estimator [8] and 
Unscented Kalman Filter (UKF) [9] are introduced for 
demodulation. Comparative simulation studies involving 
BER vs. SNR and theoretical analysis are included in this 
paper. Finally, we compare our new results with the 
theoretical BER performance bound for chaotic 
communications.  

II. A NOVEL CHAOTIC COMMUNICATION 
MODULATION/DEMODULATION SCHEME 

    The discrete time chaotic communication system and 
measurement model can be represented by: 
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where  

( )axf k ,  chaotic map with parameter a  

kx  state variable of the chaotic map at the discrete time 
step k 
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ky   received Additive White Gaussian Noise (AWGN) 
corrupted signal  

C   amplifier gain 

kw  AWGN measurement noise with zero mean and 
W covariance 

 

Fig.1. Transmitter design 

    The modulator part of our new chaotic communication 
scheme is given in Fig.1. Notice that only one chaotic map 
generator f is used. During each symbol period, when the 
information symbol “+1” is sent, we modulate the symbol by 
the chaotic signal. When symbol “–1” is sent, the inverted 
version of the chaotic signal is transmitted. Essentially, the 
transmitter uses the binary symbol ±1 multiplied with the 
chaotic signal. If “+1” is transmitted, the following model is 
applicable:  
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In the detector, Filter 1 is designed based on this model.  

    Similarly, if “-1” is transmitted, the following model 
applies: 
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In the detector, Filter 2 is designed based on this model. 

 

Fig.2. Receiver design 

    During each symbol period, either the chaotic signal itself 
or its inverted version is transmitted, i.e., only one of the 
models, either Eqn. (2) or Eqn. (3) applies. The receiver part 
of our new scheme is shown in Fig.2. Two nonlinear filters 
use these different dynamic models are estimating the 
received signal separately. Only one filter, which has the 
matched model for the transmitted signal, converges to the 

correct chaotic signal during each symbol period, while the 
other filter, which has the unmatched model, produces much 
more error. In this case, by comparing the estimation errors 
during each symbol period, we can make a decision about 
which message is being transmitted. We use three nonlinear 
filtering approaches: EKF, SDRE and UKF in a comparative 
study for state estimation.  

Detection Using EKF 

    In the first method, we set up an EKF estimator using the 
following equations: 

Propagation from time step k to (k+1): 

In the time update part, the state estimate and the local 
estimation error covariance is computed by: 
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The measurement update of the state and local estimation 
covariance is as follows: 
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where, 

kxk
k x

fA
ˆ∂

∂=   Jacobian matrix 

−
kx̂  a priori estimated chaotic state at time step k with 

local estimation error covariance −
kP  

+
kx̂  the posteriori estimated chaotic state at time step k 

with local estimation error covariance +
kP   

C the amplifier gain, assumed 1+=C for EKF1 and 
1−=C for EKF2, corresponding to the transmitter 

part 

W   measurement noise covariance  

Detection Using SDRE 

    In our second approach, we set up an SDRE estimator 
using the following equations: 

    The nonlinear dynamics is rewritten to have the following 
structure: 

Filter 1 

Filter 2 

Error 
Comparison 
and Decision 

Making 
Process Output y 

Chaos Gen.:  f AWGN Channel 

±1 depends on the 
symbol being sent 

y 
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kkkk xxAxf )()( = . Let kP  be the unique positive definite 
solution of the discrete-time algebraic Riccati equation: 
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The SDRE filter gain is updated by:  
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T
kkk                       (8) 

Propagating from time step k to (k+1): 

)ˆ(ˆ)ˆ(ˆ 1 kkkkkkk xCyKxxAx ⋅−+=+                   (9) 

where 1+=C for SDRE Filter 1 and 1−=C for SDRE Filter 
2. The noise covariance is W . 

Detection Using UKF 

    In our third approach, we set up a UKF estimator using 
the following equations:  

System model: Since kx is the scalar state, n equals 1, 
κ equals 2 in our case, satisfying the condition 3=+κn . 

Propagation from time step k to (k+1): 

In time update part, the 1-dimensional (n=1) kx with mean 
+
kx̂ and covariance +

kP is approximated by (2n+1) weighted 
samples or sigma points selected by: 
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⎛ + +)( κ is the thi row or column of the matrix square 

root of ++ kPn )( κ , and the (2n+1)weighting coefficients are 
given as: 
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Each sigma point is initiated through the process model: 
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The predicted mean is computed by: 
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The predicted covariance, which is the a priori error 
covariance, is computed as: 
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The measurement update equations are computed as follows. 
Each predicted observation point is initialized using the 
given observation model. The state variables are the sigma 
points from the time update part shown above. 

( ) ( )i
11 ++ ⋅= k

i
k xCy                            (15) 

The predicted observation is calculated by:  
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Since the measurement noise is AWGN with covariance W , 
the covariance of the predicted measurement is: 
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The cross correlation is determined by: 
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Finally, the measurement update of the state can be 
performed by regular Kalman filter equations as: 
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The amplifier gain 1+=C  for UKF1 and 1−=C for UKF2.  

    The three nonlinear estimators presented above are used 
alternatively for state estimation. After the estimation, both 
of the resulting estimation error signals from the estimators 
designed above are sent to the error comparison and 
decision-making module. At this stage, we compare the sum 
of absolute values of the two estimation error signals 

1e , 2e during each symbol period. The criterion for decision 
making for the transmitted information symbol is given as 
follows: 
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where the summations are taken over the symbol period. At 
this point, two important definitions, which will be used 
later, are given: 

Definition of Minimum Distance [10]: 

 jixxd jiji
, ||,||minmin ∀−=

≠
, where ji xx , are two data 

symbols in a signal constellation { } 1,...,0 −== Miixx  .         (21)  

Definition of Union Bound [10]:  

The probability of error for the ML (Maximum Likelihood) 
detector on the AWGN channel, with M–point signal 
constellation with minimum distance )(min xd , is bounded 
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Therefore, the larger the minimum distance is, the less 
probability of error occurs.       

III. NUMERICAL RESULTS  

    In order to apply the minimum distance and union bound 
introduced in the last section, to explain the experimental 
results, we must guarantee that the estimated state variables 
approximately obey the Gaussian distribution. The following 
computer experiment involving the symmetric tent map 
parameter estimation is used to demonstrate this Gaussian 

distribution property. The symmetric tent map and its 
measurement equation can be written as:  
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The parameter a is between 1 and 2 for chaotic behavior. By 
incorporating the parameter a into the state vector, we apply 
EKF to estimate its probability density function. We choose 

8.1=a  with different SNRs to compare the histograms 
(sample probability density functions) of parameter 
estimates, and find that the histogram is sufficiently close to 
a Gaussian distribution. Then, we find that this quasi-
Gaussian distribution is independent of the selection of 
parameter a. 
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Fig.3. Histogram of the estimated parameter distribution with SNR=30 and 
a=1.8     
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Fig.4. Relationship between parameter estimation MSE with noise variance 

    Fig.3 shows the histogram of the estimated symmetric tent 
map parameter with SNR=30dB and a=1.8. And Fig.4 
shows the existing linear relationship between the parameter 
estimation mean square error and noise variance. Therefore, 
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this experiment demonstrates the approximate Gaussian 
distribution property of the estimated parameter, and shows 
that union bound theory can be applied to explain our 
simulation results. 

Example 1: Symmetric tent map is used to demonstrate the 
performance comparison of the three communication 
schemes: two previous ones [4]-[6] and our proposed 
scheme. In the first scheme: parameter estimation based 
demodulation, the two parameters are 

95.11=a and 55.12 =a . The parameter range in the 
symmetric tent map is very small, therefore the minimum 
distance is relatively small compared with the other two 
schemes, in our example, 4.055.195.121min =−=−= aad , 
which limits the performance of the first scheme. The 
second scheme using two maps technique shows 
improvement over the first scheme, since it has larger 
minimum distance. Our new chaotic communication scheme 
always guarantees the largest minimum distance 

bEd ⋅= 2min among the three schemes, therefore, it gives 
superior BER performance, as shown in Figs.5 and 6.  
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Two Maps EKF
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Parameter Estimation EKF
Parameter Estimation UKF

 

Fig.5.Communication with symmetric tent map BER performance 1 

Fig.6 shows the performance of the SDRE estimator for the 
symmetric tent map. This performance is close to that of 
EKF. In this simulation, we need the factorization 
process kkkk xxAxf )()( = , but )( kk xA can be a very large 
value when kx  is close to zero. Therefore, in order to make 
sure SDRE is still working, we need to set up an upper 
bound on )( kk xA  in this condition, which also limits the 
tracking performance of the SDRE in this application. Both 
Fig.5 and Fig.6 show that our new chaotic communications 
using EKF provides us the best BER performance among all 
these results. As mentioned before, the superior performance 
is due to its inherent largest minimum distance. 
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Fig.6. Communication with symmetric tent map BER performance 2 
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Fig.7. Communication with the 2nd order Chebyshev map BER performance 

Example 2: We simulate the BER performance of the 
chaotic communication using the 2nd order Chebyshev map, 
as shown in Fig.7. The 2nd order Chebyshev map and its 
measurement equation can be written as:  
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Simulation results show that the EKF based schemes do not 
produce reliable convergence, but the UKF based schemes 
produce satisfactory results. Our new scheme using UKF 
still shows better performance compared with the two map 
based estimation scheme using UKF with the 2nd order 
Chebyshev map and the symmetric tent map. We did not 
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include the parameter estimation based communication 
scheme since there is no parameter which can be changed in 
the Chebyshev map. We have also tried the SDRE estimator. 
However, it cannot provide a non-negative solution for the 
discrete algebraic Riccati equation at every time step.   

    It is expected that the filter with the matched model tracks 
the chaotic sequence, and the filter with the unmatched 
model produces more estimation error. However, simulation 
results show that, even with the erroneous system model, 
UKF still tracks the signal quite well by using nonlinear 
transformation of the sigma points, which is not quite 
desirable in this special case. However, we must notice that 
although our new scheme using the EKF gives the best 
performance for symmetric tent map, it is still subject to the 
stability issues of EKF in estimation of the state of the 
nonlinear chaotic map [11], since it employs EKF for 
detection. For severely nonlinear chaotic maps, the EKF and 
SDRE based methods may give unreliable filtering 
performance, and the UKF based methods can provide good 
tracking performance.  

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

 

 Coherent bound
Non-coherent bound
New scheme EKF
New scheme SDRE
New scheme UKF

 

Fig.8. Theoretical bound of chaotic communications 

IV. GENERAL PERFORMANCE ANALYSIS  

    Let us discuss the theoretical performance bound for 
chaotic communications. For coherent reception, such as our 
new chaotic communication scheme, the minimum 
distance bEd ⋅= 2min . For binary transmission 2=M , the 
union bound is given as follows, by using Eqn. (22). 

( )min
0
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2 1 /
2 2

b
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Ed
P Q Q erfc E N
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where dtexerfzerfc
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−=−=
22)(1)(

π
.                         (25)     

For non-coherent reception, such as the COOK, the 
minimum distance bEd =min . Therefore, the performance 
of non-coherent reception is given by 

( )02/
2
1 NEerfcP bcoherentnon =− .                    (26)     

    Fig.8 shows the comparison of our results with what is 
theoretically possible to achieve. Although our new scheme 
greatly improves the BER performance compared with other 
chaotic communication schemes, there still exists room for 
improvement to meet the theoretical performance bound.    

V. CONCLUSIONS 

    We have presented a novel nonlinear-filtering-based 
modulation/demodulation technique for chaotic 
communications. We have compared its bit error rate 
performance with other existing nonlinear filtering based 
schemes. The EKF, SDRE and UKF filters are set up 
separately for state estimation performance comparison. It is 
found that our new scheme using EKF provides the best 
BER performance in these examples. The theoretical BER 
performance bounds for chaotic communications are also 
given in this paper for comparison purposes. With 
reasonable computational complexity and superior BER 
performance, our new digital chaotic communication scheme 
shows superior applicability in the UWB communications. 
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