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Abstract— In this paper, finite impulse response (FIR) control
is addressed for H∞ output feedback stabilization of linear
systems. The problem we deal with is the construction of
an output feedback controller with a certain finite impulse
response structure such that the resulting closed-loop system
is asymptotically stable and a prescribed H∞ norm bound
constraint is guaranteed. Some solvability conditions are sug-
gested in this paper. Sufficient conditions are derived to obtain a
suboptimal solution of the H∞ FIR control problem via convex
optimization. Also, an equivalent condition for the existence
of H∞ FIR control is presented in the set of linear matrix
inequalities and a reciprocal matrices equality constraint. An
effective computational algorithm involving linear matrix in-
equalities is suggested to solve a concave minimization problem
characterizing a local optimal solution of the H∞ FIR control
problem. Numerical examples demonstrate the validity of the
proposed H∞ FIR control and the numerical efficiency of the
proposed algorithm for FIR control.

I. INTRODUCTION

In real control applications, it often happens that the states

of the plant are not completely available and output feedback

control has to be synthesized in many cases. In general,
output feedback control often consists of a state feedback

controller and an observer or a filter that estimates all the

states from measured inputs and outputs [1]. It is noted that
the filters are conventionally of the infinite impulse response

(IIR) and hence output feedback control has the IIR structure

of the form

u(k) =

k∑

i=0

Hk−iy(i) (1)

for some gain function Hk−i and the filter initial state

x̂(k0) = 0. That is, output feedback control of the form (1)

uses all past measurements [k0, k] to compute the current
control signal. Recently, by means of valuable numerical

tools and semidefinite programming in particular [2], output

feedback control is directly computed in the form of full-

order or reduced-order dynamic output feedback without

lunching of a filter [3]–[5]. Note that these existing dynamic

output feedback controllers presented in the literature are
also reduced to the IIR structure of the form (1).

Finite impulse response (FIR) estimators or filters have

been exploited with much attention in signal processing,
image processing, estimation and control areas due to the

following advantages [6]–[9]: FIR filters make use of finite

measurements on the most recent time interval to avoid long
calculation that arises from large data sets as time goes. It
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is generally accepted in the literature that the FIR structure

in filtering leads to more robustness to temporary modeling
uncertainties and computational round-off errors than the IIR

type of structure owing to the inherent properties of the

FIR structure [6], [7], [9]. Likewise, the authors in [10]
have recently applied ideas from the FIR filtering to the

synthesis of control. That is, output feedback control using

finite recent measured inputs and outputs, which is called
receding horizon finite memory control, was constructed

under the separation principle for a receding horizon LQG

criterion. Note that this method needs a large number of both
input and output measurements for least square FIR filtering;

thus it requires storing a large amount of measurements
in the memory at each sample time. Our work is similar

in sprit to the previous work; however, this paper is more

general in scope and focused on H∞ control above all, which
has drawn much attention in the literature. A more flexible

framework for a finite memory control solution, which can

also deal with important issues in control, such as robustness
for uncertain systems, time-delay in systems, multi-objective

constraints, and so forth [3], [5], [11], [12], is provided based

on semidefinite programming. Only output measurements
are required and the number of required measurements is

not necessarily larger than the dimension of the system in

most cases since the proposed method does not involve
state construction. It can be shown that the proposed output

feedback controller can be more robust against temporary

modeling uncertainties than finite memory control in [10].
In particular, unlike the paper [10], a priori knowledge on

the state feedback optimal control solution and the optimal
FIR filter structure are not required in the design to build

output feedback control in this present paper.

An output feedback control scheme with the finite impulse
response structure, called FIR control in this paper,

u(k) =

k∑

i=k−N+1

Hk−iy(i), (2)

is addressed as a counterpart of the existing full-order or
reduced-order dynamic control of the IIR type for H∞

output feedback stabilization of linear discrete-time systems

in the present paper. That is, the FIR type of control will
be obtained without lunching of any filter or state estimator,

while the output feedback controller in [10] is not in the
form of (2) and needs both input and output measurements

and is constructed under the separation principle, which

involves least square state estimation. In addition to the new
type of control, the objective of this paper is to present

an efficient design approach for construction of an output

feedback controller with a certain finite memory structure
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specified a priori such that the resulting closed-loop system
is asymptotically stable and a prescribed H∞ norm bound

constraint is guaranteed. Sufficient conditions are derived to

obtain a suboptimal solution of the H∞ FIR control problem
via convex optimization involving linear matrix constraints.

Also, a necessary and sufficient condition for the existence
of a desired H∞ FIR controller are presented through the

set of linear matrix inequalities (LMIs) and a reciprocal

matrices equality constraint, which is nonconvex. Effective
iterative algorithms involving LMIs are suggested to solve

the nonconvex matrix inequalities characterizing a solution

of the H∞ FIR control problem. The validity of the proposed
H∞ FIR control will be demonstrated by comparisons with

some existing output feedback control schemes, such as H∞

full-order control and H∞ PID control. Also the numerical
efficiency of the proposed algorithm will be illustrated by

comparisons with some existing optimization solvers such as

PENBMI in [13]. The approach in this paper can be directly
applied not only to different types of performance criteria,

such as LQG and mixed H2/H∞, but also many types

of systems, such as uncertain systems, time-delay systems,
and Markovian systems without difficulty, whereas such an

extension is limited under the framework of [10].

The outline of this paper is as follows. A new type of H∞

FIR control is proposed for output feedback stabilization of

linear systems in Section II. Explicit LMI relaxations for

H∞ FIR control are presented in Section III. A necessary
and sufficient condition for H∞ FIR control is presented

together with efficient computational local search algorithms

in Section IV. Numerical examples are included to demon-
strate the advantages of the proposed FIR control scheme

and the numerical efficiency of the proposed algorithm for

the implementation of FIR control in Section V. Finally,
conclusions are given in Section VI.

II. H∞ DESIGN OF FIR CONTROL

Consider a linear system described by

Σ : x(k + 1) = Ax(k) +Bww(k) +Buu(k),
z(k) = Czx(k) +Dzww(k) +Dzuu(k),
y(k) = Cyx(k) +Dyww(k),

(3)

where x ∈ R
nx is the state of the plant, u ∈ R

nu is the
control signal, w ∈ R

nw is the exogenous input, y ∈ R
ny is

the measured output, and z ∈ R
nz is the controlled output.

The problem considered here is the design of an output
feedback controller of the following finite impulse response

(FIR) structure

Σc : u(k) = H0y(k) +H1y(k − 1) +H2y(k − 2) + · · ·

+ HN−1y(k −N + 1)

=

k∑

i=k−N+1

Hk−iy(i) (4)

for the system Σ, where N ∈ N is called the horizon and

assumed to be an arbitrary finite number. Let us define H ,

Yk−1,N−1 as

H =
(
H1 H2 . . . HN−1

)
,

Yk−1,N−1 =







y(k − 1)
y(k − 2)

...
y(k −N + 1)






.

Note that Yk−1,N−1 can be implemented by the memory

stack of the following form

ψ(k + 1) = Aψψ(k) +Bψy(k), (5)

where ψ ∈ R
nψ is the state of the memory, nψ is a pre-

assigned size of the memory by nψ = ny(N − 1), and Aψ,
Bψ are given by

Aψ =





0 0

diag(

N−2
︷ ︸︸ ︷

Iny , . . . , Iny) 0



 , Bψ =

(
Iny
0

)

. (6)

The controller of the FIR structure (4), thus, can be rewritten

as

u(k) = H0y(k) +HYk−1,N−1 = H0y(k) +Hψ(k). (7)

If the memory stack order nψ = 0, namely, N = 1, Σc is

a memoryless output feedback controller, also called static

output feedback controller, which is the simplest feedback
control scheme that can be implemented with a minimum

hardware cost in practice. Notice that N is an arbitrary finite
number and not necessarily to be larger than the dimension

of the system in this paper. Let us define a system matrix

K of the FIR controller Σc by

K :=

(
Aψ Bψ(

H1 H2 . . . HN−1

)
H0

)

. (8)

The closed-loop system is then given by the following state
equations

Σcl : xcl(k + 1) = Aclxcl(k) +Bclw(k),
z(k) = Cclxcl(k) +Dclw(k),

(9)

where xcl =
(
xT ψT

)T
and the system matrix data of the

closed-loop system Σcl is given by

(
Acl Bcl
Ccl Dcl

)

=





A 0 Bw
0 0 0
Cz 0 Dzw





+





0 Bu
Inψ 0
0 Dzu



 K

(
0 Inψ 0
Cy 0 Dyw

)

=:

(
Ã B̃w
C̃z D̃zw

)

+

(
B̃u
D̃zu

)

K
(

C̃y D̃yw

)
. (10)

Let Twz be the closed-loop transfer function from w to

z. Then, from the bounded real lemma [4], the closed-loop
system Σcl is stable and the H∞-norm of Twz is smaller than

γ, i.e., ‖Twz‖∞ < γ, if and only if there exist a symmetric

matrix P ∈ R
(nx+nψ)×(nx+nψ) and an FIR control system
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matrix K ∈ R
(nψ+nu)×(nψ+ny) satisfying the following

inequality






−P PAcl PBcl 0
ATclP −P 0 CTcl
BTclP 0 −γInw DT

cl

0 Ccl Dcl −γInz




 < 0. (11)

Note that (11) with the FIR control system matrix K

includes a memoryless output feedback law as a special case.

Also note that Acl, Bcl, Ccl, and Dcl are affine transforms
of K as shown in (10). Hence the matrix inequality (11) is

a biaffine matrix inequality (BMI) on the variables P and
K . The BMI problem is, however, nonconvex and known

to be NP-hard [14]. Moreover, notice that the finite memory

structure built in K , namely, the FIR control structure (4),
is an enormously difficult issue and there is no instant

solution to it unfortunately, which will be dealt with in

this paper. One may try to use a BMI optimization solver,
such as PENBMI [13], to find an FIR controller in (11).

The numerical efficiency of PENBMI will be discussed with

comparisons in Section V.
This paper approaches these issues by converting the

problem to finding a controller of the structure built in the
following form

K = U + V diag(H0, H1, H2, . . . , HN−1)
︸ ︷︷ ︸

Kstr

W, (12)

where Kstr is a block diagonal matrix variable to be deter-
mined, and U , V , W are constant matrices given by

U =

(
Aψ Bψ
0 0

)

, V =

(
0 0 0 · · · 0
Inu Inu Inu · · · Inu

)

,

W =





0 Iny

diag(

N−1
︷ ︸︸ ︷

Iny , . . . , Iny ) 0



 .

Sufficient solvability conditions and computational local

search algorithms for obtaining the FIR control gains in the

structured variable Kstr will be suggested in the following
sections.

III. FIR CONTROL SUFFICIENT LMI CONDITIONS

Lemma 1: Let symmetric matrices A ∈ R
n×n and ma-

trices B and C of the row dimension n be given. If there
exists a structured instrumental variable Xstr such that the

following inequality holds

A + BXstrC
T + CXT

strB
T < 0, (13)

then the following projection inequalities are satisfied

B
⊥

A B
⊥T < 0, C

⊥
A C

⊥T < 0, (14)

where B⊥ and C⊥ denote any matrices whose columns form
bases of the null spaces of BT and C T , respectively.

Proof: (13) is only sufficient to (14). So note that the

reverse does not hold. The sufficiency is given clearly from
the Projection Lemma [15], [16].

Note that Lemma 1 offers not only a sufficient condition
but also a new degree of freedom with structure, namely,

Xstr, which is called a structured instrumental variable in this

paper, for the matrix inequalities (14). Sufficient solvability

conditions for H∞ FIR control will be presented by applying
Lemma 1 in the following.

Theorem 1: Assume that Dzu is a null matrix and Bu is

a full column rank matrix. The system Σ is stabilizable by
the FIR controller Σc and ‖Twz‖∞ < γ if there exists a

solution {P , Ystr, R, Z, γ} to the following LMI Problem 1.

A suitable H∞ FIR controller is given by Kstr = R−1Z ,
i.e., Hi = R−1

i Zi, for all i = 0, 1, . . . , N − 1.

Problem 1:

Minimize{P,Ystr,R,Z,γ} γ

subject to















P − (Ystr + Y Tstr) ∗ ∗ ∗




ÃTYstr

+C̃Ty U
T B̃Tu Ystr

+C̃Ty W
TZTV T B̃Tu



 −P ∗ ∗





B̃TwYstr

+D̃T
ywU

T B̃Tu Ystr

+D̃T
ywW

TZTV T B̃Tu



 0 −γInw ∗

0 C̃z D̃zw −γInz
















< 0,

(15)

B̃uV R = Y TstrB̃uV, (16)

where R = diag(R0, R1, . . . , RN−1) and Z =
diag(Z0, Z1, . . . , ZN−1).

Proof: The proof is omitted due to the page limit.
Remark 1: Note that when N = 1, Theorem 1 offers an

improved version of sufficient conditions in [17], where an

instrumental variable with a fixed block diagonal structure is
employed, that is, Ystr = diag(Y1, Y4). It is shown that the

instrumental variable presented in the present paper provides

more relaxed form of structure. Consider the singular value

decomposition of B̃u, that is, B̃u = U1

[
Σ1

0

]

V T1 , where U1

and V1 are unitary and Σ1 is diagonal. The equality constraint
(16) is rewritten as

[

Σ1V
T
1 R
0

]

= UT1 Y
T

strU1

[

Σ1V
T
1

0

]

. (17)

Define Ȳstr , UT1 YstrU1 and Ȳstr =

[
Ȳ1 Ȳ2

Ȳ3 Ȳ4

]

. Then, from

the above equality, we have R = V1Σ
−1
1 Ȳ1Σ1V

T
1 and Ȳ2 =

0. Hence, the explicit structure of the instrumental variable

Ystr is given by

Ystr = U1

[
Ȳ1 0
Ȳ3 Ȳ4

]

UT1 . (18)

Therefore, we can reformulate LMI Problem 1 as follows:

Minimize{P,Ȳ1,Ȳ3,Ȳ4,Z,γ} γ subject to (15) and (18) (19)

A memoryless output feedback controller is given by u =
V1Σ

−1
1 Ȳ −1

1 Σ1V
T
1 Zy by solving the above problem. This

clearly improves the results in [17] and produces much less
conservative output feedback solutions. Note that the equality

constraint (16) in Problem 1 can be directly handled by
using the solvers in [18], [19]. Regarding reference papers

on memoryless output feedback, see references provided in

[17]. ♦
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Theorem 2: Assume that Dyw is a null matrix and Cy
is a full row rank matrix. The system Σ is stabilizable by

the FIR controller Σc and ‖Twz‖∞ < γ, if there exists a

solution {Q, Xstr, L, S, γ} to the following LMI Problem 2.
A suitable H∞ FIR controller is given by Kstr = SL−1, i.e.,

Hi = SiL
−1
i , for all i = 0, 1, . . . , N − 1.

Problem 2:

Minimize{Q,Xstr,W,S,γ} γ

subject to










Q− (Xstr +XT
str) ∗ ∗ ∗

0 −γInw ∗ ∗
(
ÃXT

str + B̃uUC̃yX
T
str

+B̃uV SWC̃y

)

B̃w −Q ∗
(
C̃zX

T
str + D̃zuUC̃yX

T
str

+D̃zuV SWC̃y

)

D̃zw 0 −γInz











< 0,

(20)

LWC̃y = WC̃yX
T
str, (21)

where L = diag(L0, L1, . . . , LN−1) and S =
diag(S0, S1, . . . , SN−1).

Proof: The proof is omitted due to the page limit.

IV. FIR CONTROL LOCAL SEARCH ALGORITHMS

A. Nonconvexity in FIR Control Design

In this section, we shall suggest an efficient iterative LMI
method for finding a local optimal solution of the BMI

problem (11) with the FIR control structure (12).

Theorem 3: Given γ > 0, there exists an FIR controller

such that ‖Twz‖∞ < γ if and only if there exists a solution
{P ,Q,Kstr} to the following Problem 3.

Problem 3: Find P , Q, and Kstr satisfying the LMI (22)

and the nonlinear matrix equality

QP = Inx+nψ . (23)

Proof: Pre- and post-multiplying
diag

(
P−1, Inx , Inu , Iny

)
to (11) we have the following

inequalities






−P−1 Acl Bcl 0
ATcl −P 0 CTcl
BTcl 0 −γInw DT

cl

0 Ccl Dcl −γInz






< 0. (24)

We define a reciprocal matrix Q such that Q := P−1. From
the definition of the reciprocal matrices, we have (23). Also,

by the definition of (10) and (12), Acl = Ã + B̃uK C̃y ,

Bcl = B̃w + B̃uK D̃yw, Ccl = C̃z + D̃zuK C̃y , Dcl =
D̃zw + D̃zuK D̃yw, and K = U + VKstrW , where Kstr

is a matrix variable defined in (12), hence we have (22).
Therefore, it is shown that Problem 3 is equivalent to the

original nonconvex problem (11). This completes the proof.

B. Concave Minimization Algorithm

Note that, for any matrices P > 0 and Q > 0, P,Q ∈
R
n×n, if Q − P−1 ≥ 0n is feasible, then tr(QP ) ≥ n,

and tr(QP ) = n if and only if QP = In [20]. We apply

this heuristic technique to deal with the non-convexity in

(23) of Problem 3. From the inequality Q− P−1 ≥ 0n, we

have Q − P−1 ≥ 0nx+nψ , which can be converted into the
following LMI.

(
Q Inx+nψ

Inx+nψ P

)

≥ 0. (25)

Hence, a solution of Problem 3 can be obtained from the

following concave minimization problem.
Problem 4: Minimize{P,Q,Kstr} tr(QP) subject to (22),

(25). ♦
We may see that if the optimal solution of Problem 4

satisfies tr(QP) = nx + nψ, then Problem 3 is solved;
otherwise Problem 3 is infeasible. Hence the H∞ FIR control

problem is now reduced to the problem of finding a global

solution of Problem 4. This is, however, still a difficult issue
since the objective function of Problem 4 is nonconvex. Note

that there exists no global algorithm that always guarantees a

global minimum of such a concave minimization problem in
feasible time. Instead, to search a local optimal minimum of

Problem 4, the popular conditional gradient algorithm, also

called the Frank and Wolfe algorithm [21], can be applied
to Problem 4, such as in [5], [20]. Note that Problem 4

is a new type of concave minimization problem for FIR
control design. A computational algorithm for obtaining a

local solution of the concave minimization problem, Problem

4, is given in the following. To this end, define a convex set
by the set of LMIs as

C(P,Q,Kstr) , {(P ,Q,Kstr) : (22), (25),P > 0,Q > 0}.
(26)

Algorithm 1: Let γ > 0 be given.

1. Find an initial feasible solution (P0,Q0) ∈
C(P,Q,Kstr). Set k = 0.

2. Set Sk = Pk, T k = Qk. Linearize the concave objec-
tive function of Problem 4 at a given point (Sk, T k)
and define a linear function as

fk(Q,P) , tr(SkQ + T kP). (27)

3. Find (Pk+1,Qk+1,K k+1
str ) solving the following LMI

problem.

Minimize{P,Q,Kstr} fk(Q,P) subject to (22), (25).

4. If fk+1(Q
k+1,Pk+1) − 2(nx + nψ) < ǫ1, where ǫ1

is a pre-determined tolerance, is satisfied, then exit.

Otherwise set k = k + 1 and return to Step 2. ♦
The following theorem shows that fk is decreasing and

bounded below, and thus it converges. It is also shown that

if fk tends to 0, then Problem 3 is feasible, which implies

that an H∞ finite memory controller is found for a given
γ > 0.

Theorem 4: The algorithm has the following properties.
(i) 2(nx + nψ) ≤ fk+1 ≤ fk.
(ii) lim

k→∞
fk = 2(nx + nψ) if and only if QP = Inx+nψ

at the optimum.
Proof: Refer to [20], [21].

Remark 2: In Step 4 of Algorithm 1, the following stop-

ping criterion can also be used: ε := tr(QP)− (nx+nψ) <
ǫ, where ǫ is a pre-determined tolerance. LMI Problem
1, 2 and Algorithm 1 presented in this paper are easily

implemented using semidefinite programming algorithms or

existing LMI packages [2], [18], [19]. ♦
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







−Q ∗ ∗ ∗

ÃT + C̃Ty U
T B̃Tu + C̃Ty W

TK T
str V

T B̃Tu −P ∗ ∗

B̃Tw + D̃T
ywU

T B̃Tu + D̃T
ywW

TK T
str V

T B̃Tu 0 −γInw ∗

0

(
C̃z + D̃zuUC̃y

+D̃zuVKstrWC̃y

) (
D̃zw + D̃zuUD̃yw

+D̃zuVKstrWD̃yw

)

−γInz









< 0 (22)

V. ILLUSTRATIVE EXAMPLES

Consider an unstable plant given by

x(k + 1) =





1 −0.3 0.6
0 0 1

0.29 −0.8 + δk 1



x(k)

+ 2w1(k) +





1 0
0 1
1 0



 u(k)

y(k) = x1(k) + x2(k) + 2w2(k)

(28)

and a performance output z =

(
x1

u

)

, where δk is an

uncertain model parameter and considered as δk = 0 in the

controller design, which will be discussed later on. The open-
loop poles of the above plant are {1.1153, 0.4424±0.6660i}.

In this example, an FIR controller with H∞ performance

shall be addressed for stabilization of the linear discrete-time
system (28). We are interested in H∞ performance from w
to z. For reference, it is noted that the optimal γ obtained by

a full-order output feedback H∞ controller of the IIR type
is 4.0169 for the system (28). The IIR full-order controller

is solved by convex optimization [22]. To implement the

proposed methods, we used MATLAB and LMI solvers in
[18], [19] on Intel(R) Core(TM)2 Duo CPU T5200 1.6GHz

and Windows Vista with 1GB RAM.
For fair comparison purpose with the existing control

schemes, an achievable minimum value of γ needs to be
found. So Algorithm 1 will be mainly used to obtain a local

optimal solution in this example. Now let γ = 4.1, N = 3,
and the stopping criterion ǫ = 10−8. Using Algorithm 1, we

obtain a controller of the finite impulse response structure

uk =

[
−0.5313
−0.0594

]

yk +

[
0.4448
0.0068

]

yk−1 +

[
−0.3007
−0.0020

]

yk−2,

(29)

which satisfies the actual H∞ performance ‖Twz‖∞ =
4.0998 with the accuracy tolerance ε = 5.1178 × 10−9.
It took around 100 seconds to reach the stopping criterion.

However, it is affordable and the computation is run off-line.

It is shown that the H∞ performance of the FIR controller
(29) is comparable to that of the IIR full-order controller. As

N is large, the FIR type of control will approximate the IIR
type of control well.

It is noticed that, due to the finite memory structure, the
FIR control will be robust in most cases against temporary

modeling uncertainties and thus has a better recovery or
tracking ability compared with IIR type of control [6],

[7], [9]. In contrast, IIR type of control with the infinite

memory with respect to the measurements takes a long
time to recover or track to the normal state after temporary

modeling uncertainties disappears. To illustrate this point, the

IIR full-order controller and the proposed FIR controller are

compared when a system has actually temporary modeling
uncertainty. Now the uncertain model parameter δk in (28) is

considered as δk = 1.2 for the time period 350 ≤ k ≤ 450;

otherwise δk = 0. Fig. 1 compares the robustness of two
controllers given temporary modeling uncertainty δk. This

figure shows that the suggested FIR controller is more robust

than the IIR type of controller when applied to systems with
model parameter uncertainties. In addition, FIR controllers

can be preferred in the real implementation to full-order or

reduced-order dynamic control of the IIR type because of
the structurally much simpler advantage.

One may try to obtain an FIR controller by directly solving

(11) with a BMI solver, i.e., PENBMI developed by Kočvara

and Stingl [13]. We tried to find an FIR controller using
PENBMI. A random search technique was used to find

several local solutions, as in [5]. Actually, PENBMI works

quite well for simple memoryless output feedback control
problems. However, for the FIR control problem that has

the memory structure in (8), it could not get a comparable

result to the proposed algorithm. That is, PENBMI failed
to optimize H∞ performance subject to the FIR control

structure. It can be said that the proposed algorithm is

numerically efficient for the implementation of FIR control.

Now consider H∞ memoryless output feedback control.
Let γ = 7.58 for memoryless feedback. Using Algorithm

1, we obtain a local optimal memoryless output feedback

controller

u =

[
−0.4477
−0.4562

]

y (30)

with H∞ performance ‖Twz‖∞ = 7.5787 and the accuracy

ε = 6.6929 ·10−12 as shown in Table I. Now let γ = 5.3 and
consider H∞ PID output feedback control. Using Algorithm

1, we obtain

uk =

[
−0.2999
−0.0828

]

yk +

[
−0.0202
−0.0185

] k∑

i=0

yi +

[
−0.1725
−0.3012

]

∆yk,

(31)

with H∞ performance ‖Twz‖∞ = 5.3 and ε = 0.8752 ×
10−10 as shown in Table I. As expected, it is clearly demon-

strated that the proposed FIR controller (29) outperforms

the memoryless output feedback controller (30). Also the
proposed FIR controller (29) outperforms the output feed-

back PID controller (31) because the FIR control includes

additional measurement terms, which provide additional in-
formation to predict the behavior of the dynamic system.

VI. CONCLUSIONS

A new type of output feedback control with the finite
impulse response (FIR) structure is proposed for H∞ output

feedback stabilization of linear systems, which is called FIR

control in this paper. For construction of FIR control, an
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Fig. 1. Comparison of FIR and IIR controls for temporary modeling uncertainties.

TABLE I

MEMORYLESS OUTPUT FEEDBACK, PID CONTROL V.S. FIR CONTROL

SCHEME

Control scheme γ ‖Twz‖∞ ε

Memoryless output feedback 7.58 7.5787 6.6929 × 10−12

Output feedback PID control 5.3 5.3 0.8752 × 10−10

FIR control (N = 3) 4.1 4.0998 5.1178 × 10−09

efficient design approach is exploited and optimization tech-

niques are developed based on semidefinite programming.

Sufficient solvability conditions are suggested. A necessary
and sufficient condition for the existence of H∞ FIR control

is presented through a set of a linear matrix inequality

and a reciprocal matrices equality constraint. Explicit com-
putational local search algorithms have been proposed to

solve the matrix inequalities characterizing a solution of H∞

FIR control. The advantages of the proposed FIR control
are illustrated through numerical examples as well as the

numerical efficiency of the proposed algorithm. This paper
can be applied not only to different types of performance

criteria, such as LQG and mixed H2/H∞, but also many

types of systems, such as uncertain systems, time-delay
systems, Markovian systems, etc.
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