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Abstract— This paper examines the effects of position-
dependent delays of mobile actuator/sensor pairs when em-
ployed for the control of spatially distributed systems. It is
assumed that a collocated pair moves freely within the spatial
domain in order to minimize the effects of a moving source. A
time delay that depends on the distance of the actuator/sensor
pair from the base station is incorporated into the guidance
scheme and the supervisor has to manage conflicting objectives:
that of stability robustness by keeping the moving agent close to
the base station in order to minimize position-dependent delays,
and of performance enhancement by commanding the mobile
agent to the spatial region with the largest deviation from
equilibrium, and inadvertently increasing the time delays. An
algorithm that contains a time-delay management along with
performance enhancement is proposed and extensive numerical
studies that examine the delay effects on controller performance
and agent trajectory are included.

I. INTRODUCTION

A way to minimize the effects of moving source (distur-

bances) in processes governed by partial differential equa-

tions, is to consider actuating and sensing devices that can

move inside the spatial domain (i.e. “chase” the moving

disturbance and “undo” its effects on the process state by dis-

pensing the appropriate control signal). The use of spatially

moving and/or scheduled actuating and sensing devices for

improved control and state estimation in systems governed

by partial differential equations has recently been considered

in the literature (see [1], [2] and references therein), directly

following the recent explosion of published works on mobile

sensor networks for coverage, foraging and state estimation

in finite dimensional systems. However, the inclusion of

the sensing and actuating devices into the dynamics of the

process at which these devices are called for to perform

tasks such as estimation, detection and control, have not been

considered, other than few works [3], [4], [5], [6], [7], [8].

In earlier work [6], a moving actuator/sensor was utilized

for the suppression of the effects of a moving source on the

state of a 1D PDE. However, the effects of time delays have

not been considered. Transmission delays from the mobile

agent (sensor and/or actuator) due to the distance of such an

agent from the base station were not considered. In a related

work [9], the authors used the Fokker-Planck PDE for target

tracking, but in that case the process state represented the

probability density of the target movement. Here, the effects

of delays, which are modeled as proportional to the distance
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of the agent from the base station squared, on the ability to

address the effects of a moving source are considered.

The result from [6] is extended to include position-

dependent delays in a class of systems with locally dis-

tributed state measurements and model such delays as pro-

portional to the square of the distance from the base station.

The guidance policy that takes into consideration the delays

is presented in § III and extensive simulation studies exam-

ining the effects of the position-dependent time delays on

the controller performance and the actuator/sensor trajectory

are presented in § IV. Conclusions follow in § V.

II. PROBLEM FORMULATION

We consider the employment of a mobile collocated sen-

sor/actuator system for the improved control of the 1D PDE

∂x(t,ξ)

∂t
= a1

∂2x(t,ξ)

∂ξ2
+a2

∂x(t,ξ)

∂ξ
+a3x(t,ξ)+b1(t,ξ),

with Dirichlet boundary conditions x(t,0) = x(t, ℓ) = 0 and

initial condition x(0,ξ) = x0(ξ). The function b1(t,ξ) denotes

the moving disturbance in the sense of a disturbance that is

both temporally and spatially varying. It is assumed that the

disturbance spatial distribution is the same at each location

but its centroid changes with time. Additionally, we allow the

disturbance temporal component to be time varying. Thus

b1(t,ξ) = b1s(ξ;ξd(t)) d(t),

where ξd(t) denotes the time-varying centroid of the spatial

distribution of the disturbance and d(t) denotes its temporal

component; for example, when the centroid of the moving

disturbance is at the location ξd , then the disturbance has a

spatial component b1s(ξ;ξd) (or acts at the support of the

spatial function b1s(ξ;ξd)) and has a time intensity equal to

d(t). Figure 1 depicts the case where the spatial distribution

is the box function and d(t) = 5×10−2e−t cos(2t) for three

different values of the centroid: at ξd(t0) = 0.5, at ξd(t1) =
0.578 and at ξd(t2) = 0.397. To address the effects of the

moving disturbance, a moving actuating device is assumed

to freely move throughout the spatial domain Ω = [0, ℓ] and

dispense the control signal with a chosen intensity u(t). Thus,

the controlled diffusion-advection PDE is rewritten

∂x(t,ξ)

∂t
= a1

∂2x(t,ξ)

∂ξ2
+a2

∂x(t,ξ)

∂ξ
+a3x(t,ξ)

+b1(t,ξ)+b2(ξ;ξa(t))u(t).

(1)
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Fig. 1. Spatial distributions of moving disturbance.

The function b2(ξ;ξa(t)) denotes the spatial distribution of

the moving actuating device that is located at the spatial

position ξa(t), which is termed the actuator centroid.

To minimize the complexity of the control design and

the subsequent moving actuator guidance policy, a moving

sensor that is collocated with the actuator can be used to

provide locally distributed measurements of the state x(t,ξ)

y(t,ξ;ξs(t)) = c(ξ;ξs(t))x(t,ξ). (2)

This mobile sensing device provides local-in-space dis-

tributed measurements of the state over the sensor range

(support). In the above equation, the function c(ξ;ξs(t)) de-

notes the spatial distribution of the sensing device. Since it is

assumed to be a moving sensor, the variation of the location

of the sensor inside the spatial domain Ω is described by the

centroid ξs(t) of its spatial distribution.

In a similar fashion as in the delay-free case in [6],

an effective and minimum-complexity way to minimize the

effects of the moving source b1(t,ξ) is to employ a mobile

collocated actuator/sensor pair. Going further in the sim-

plification of the control and supervision structure, a static

output feedback controller will be considered. For a given

position of the collocated actuator/sensor ξa(t) = ξs(t), the

controller architecture would use a constant multiple of the

measured distributed signal u(t,ξ) =−ky(t.ξ;ξs(t)) and thus

the supervisor would only provide the guidance policy of the

collocated mobile pair. To further minimize the complexity of

the control design, it is assumed that the spatial distribution

of the actuating device, denoted here by b2(ξ;ξa), has the

same support as the spatial distribution of the sensing de-

vice, denoted in (2) by c(ξ;ξs). Analytically, the distributed

measurements from the sensor are assumed to be available

over the spatial interval [ξs −∆ξ,ξs +∆ξ], where the sensor

support has length equal to twice the one-half spatial support

of the actuating device i.e. equal to 2∆ξ. An example of

such a collocated pair with different spatial distributions
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Fig. 2. Spatial distributions of input and measurement functions.

that satisfy the assumption of compatible support is given

in Figure 2. In this figure, the spatial distribution of the

sensing device was taken to be a smoothened distribution

of a polynomial function and given by

c(ξ;ξs) =



















1 if ξ ∈ [ξs −0.6∆ξ,ξs +0.6∆ξ]

1−3ξ2
l −2ξ3

l if ξ ∈ [ξs −∆ξ,ξs −0.6∆ξ]

1−3ξ2
r +2ξ3

r if ξ ∈ [ξs +0.6∆ξ,ξs +∆ξ]

0 otherwise.

where ξr = ξ−ξs−0.6∆ξ
0.4∆ξ

and ξl = ξ−ξs+0.6∆ξ
0.4∆ξ

. Such a dis-

tribution was used in the simulation studies presented in

Section IV. In the same figure, the spatial distribution of

the collocated actuating device was taken to be the boxcar

function, which approximates the spatial delta function

b2(ξ;ξs) =

{

1
2∆ξ

if ξ ∈ [ξs −∆ξ,ξs +∆ξ]

0 otherwise

We can formally make the assumption of compatible

support of the spatial distributions of the actuating and

sensing devices that additionally requires that the support of

the actuator be contained in the support of the sensor. Such

an assumption significantly reduces the controller complexity

in the sense that the control term as appears in weak form

does not require additional modifications:

〈B2(ξa)u(t),φ〉 =

∫ ℓ

0
b2(ξ;ξa(t))u(t)φ(ξ)dξ

=
∫ ξs+∆ξ

ξs−∆ξ

1

2∆ξ
u(t)φ(ξ)dξ, since D(b2) ⊆ D(c)

=
−k

2∆ξ

∫ ξs+∆ξ

ξs−∆ξ
y(t,ξ;ξs)φ(ξ)dξ

=
−k

2∆ξ

∫ ξs+∆ξ

ξs−∆ξ
c(ξ;ξs)x(t,ξ)φ(ξ)dξ.

The above demonstrates that when the sensor distribution is

defined over the domain of the actuator i.e. [ξa −∆ξ,ξa +

827



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

ξ
a

spatial distribution of control function b
2
(ξ;ξ

a
), centered at ξ

a
=0.5 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2 ξ
s

spatial distribution of measurement function c(ξ;ξ
s
), centered at ξ

s
=0.5 L

spatial variable ξ

Fig. 3. Combined effects of collocated distributions for different supports:
(a) support of b2 inside support of c, (b) support of c inside support of b2.

∆ξ] ⊆ [ξs −∆ξ,ξs +∆ξ], then the control term in the spatial

integral will be truncated but the control signal will be

delivered by the actuating device throughout the support of

the actuator. Only the portion of the measured state that

falls inside the domain of the actuator will be utilized. The

opposite, where the support of the actuator is larger than the

support of the sensor would result in portions of the actuator

support receiving zero control signal, if the proposed control

policy is used. Both scenarios are depicted in Figure 3.

Assumption 1 (Compatible supports): To minimize con-

troller design complexity and ensure real-time feasibility of

the proposed moving collocated output feedback controller,

one requires that the support of the actuating device be inside

the spatial domain of definition of the sensing device; this

means D(b2) ⊆ D(c). For simplicity, in this work, it will

be assumed that the actuator spatial domain is equal to the

sensor spatial domain (i.e. D(b2) ≡ D(c)).

Remark 1: In the compatibility assumption above, it was

assumed that the spatial range of influence of the actuating

device was equal to that of the collocated sensing device.

Following the demonstration in Figure 3, when the support

of the actuator is larger than that of the sensor, it means

that the control signal is not delivered in the support that

falls outside the intersection of the two devices; i.e. the part

of the spatial support [ξa −∆ξ,ξs −∆ξ)∪ (ξs∆ξ,ξa + ∆ξ] of

the actuator will deliver zero control effort. On the other

hand, if the spatial distribution of the actuating device is

inside the support of the sensing device, it means that the

portions [ξs −∆ξ,ξa −∆ξ)∪ (ξa∆ξ,ξs +∆ξ] of the measured

information are not utilized in the feedback control, but that

every spatial point of the spatial support of the actuating

device receives a control signal.

The added feature in this work, as compared to the earlier

work [6], is the inclusion of transmission delays that are

directly proportional to the sensor/actuator position inside

Ω. Towards that end, we make the following assumption.

Assumption 2 (position-dependent delay): The measured

signal from the collocated sensor/actuator that is transmitted

to the base station is delayed by a time-and-space dependent

delay. Such a delay is assumed to be proportional to the

square of the distance of the collocated device from the left

boundary, considered to be the base station, and given by

τ(ξs(t)) = αξ2
s (t), (3)

where the proportionality constant α has units of [T ][D−2].
The measured output signal is given by

ymeas(t,ξ;ξs(t)) = c(ξ;ξs(t))x(t,ξ)

whereas the transmitted output signal is given by

ytrans(t,ξ;ξs(t)) = ymeas(t − τ,ξ;ξs(t)).
With the assumptions of compatible supports and position-

dependent delays, the controlled process (1), its distributed

output (2) with the delay given in (3) can be written as

∂x(t,ξ)

∂t
= a1

∂2x(t,ξ)

∂ξ2
+a2

∂x(t,ξ)

∂ξ
+a3x(t,ξ)

+b1(t,ξ)+b2(ξ;ξs(t))u(t), x(0,ξ) = x0(ξ)

ymeas(t,ξ;ξs(t)) = c(ξ;ξs(t))x(t,ξ)

ytrans(t,ξ;ξs) = ymeas(t − τk,ξ;ξs), τk = α.ξ2
s (tk)

(4)

In view of Assumptions 1,2 and Remark 1, the control

and monitoring objectives can be stated.

Problem statement: Consider the controlled process with

collocated moving actuator/sensor pair that satisfy the com-

patibility assumption (Assumption 1). The objective becomes

that of proposing a sensor centroid guidance policy and an

associated control law that would minimize the effects of the

moving disturbance on the distributed state x(t,ξ) despite

the position-dependent delay as described in Assumption 2.

III. GUIDANCE POLICY OF SENSOR/ACTUATOR

While it has been established that a mobile actuator,

capable of moving throughout the spatial domain, can better

affect a process compared to a stationary actuator, a possible

implementation drawback arises. This is because of the

control design complexity which now has to provide a control

signal at each centroid location of the actuating device. An

optimal control strategy that would incorporate the motion

of the mobile actuator into the optimization procedure would

provide a truly optimal control signal and optimal guidance

policy of the mobile actuator, but might not be feasible due

to the on-line computational burden. Instead, a suboptimal

control policy is proposed, whereby the feedback architecture

is simplified to that of a static output feedback of the form

u = −ky. In other words, the supervisor has to provide

the guidance policy of the actuator which would collect

the measured signal from the collocated sensor and simply

amplify it and feed it back to the actuating device.

As it was already established in the literature on mobile

sensor networks, the equations of motion of the mobile

devices must be incorporated into the guidance optimization

scheme, as a mobile agent will have inertia and velocity
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constraints. To incorporate velocity constraints of the moving

sensor, one may view the system in (4) as a hybrid system

with the change in the sensor position occurring at discrete

time instances. Furthermore, the distance that it can traverse

over a prescribed time interval is bounded by velocity consid-

erations. This significantly minimizes the complexity of the

guidance scheme. Towards that, we divide the time interval

[t0, t f ] into n equidistant subintervals [t0, t1, t2. . . . , t f ], with

tk+1 = tk + ∆t. In a given interval [tk, tk + ∆t], the sensor is

constrained to traverse at a maximum of a distance ±∆ξ from

the current centroid position ξs(tk). Therefore, the maximum

average speed is bounded by υav = ∆ξ
∆t

. The moving sensor

guidance policy would then consider a given speed υav and

a prescribed time interval ∆t and propose an updated sensor

position from ξs(tk) to ξs(tk+1) where

ξs(tk)−∆ξ ≤ ξs(tk+1) ≤ ξs(tk)+∆ξ.

Alternatively, this can be viewed as a constraint on the next

iterate of the sensor centroid position ξs(tk +∆t) = ξs(tk+1)∈
[ξs(tk)−∆ξ,ξs(tk)+∆ξ], or even as employing the projection

operator to restrict the next iterate to [ξs(tk)−∆ξ,ξs(tk)+∆ξ].
The above constraint can be used in conjunction with

a sensor centroid guidance policy. In view of the real-

time implementation ability of the guidance policy resulting

from possible on-line guidance optimization, the proposed

guidance policy (whether constrained or not) is based on the

maximum deviation policy summarized in [6], [10]. However,

one may combine the Lyapunov-based guidance policy that

was also presented in [10] along with the adaptation of the

feedback gain using the adaptive scheme in [6]. In order

to minimize computational burden resulting from the on-

line computations, we consider the constrained maximum

deviation policy with location-dependent delays.

As was already presented in [6] for the delay-free case, the

maximum deviation guidance policy moves the centroid of

the sensor from the current position ξs(tk) to the next position

ξs(tk+1) by finding the maximum deviation of the measured

state c(ξ;ξs(tk))x(t,ξ) from the equilibrium over the sensor

support at the current position ξs(tk) and moves the sen-

sor to that maximum. However, in light of the position-

dependent delays, the correct policy might be to keep the

sensor centroid at the previous position, but the delayed state

measurements would be predicting a new position within

[ξs(tk)−∆ξ,ξs(tk) + ∆ξ]. Figure 4 demonstrates the effects

of position-dependent delays in the correct prediction of the

centroid guidance. The current sensor centroid is at ξs(tk) =
0.6, but the delayed output (solid blue) has the centroid at

ξs(tk − τk) = 0.5. The maximum deviation policy for the

current measured output would predict the new centroid

position at ξs(tk+1) = 0.63 whereas using the delayed output,

the prediction would place the centroid at ξs(tk+1) = 0.53.

The collocated actuator can be more effective at the correct

predicted position of ξs(tk+1) = 0.63 since the state has a

larger deviation from its equilibrium, whereas the delayed

measurements predicts the position at ξs(tk+1) = 0.53 and

hence the actuator will not be as effective. A direct conse-

quence of the delay effects is the performance degradation
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of the moving actuator/sensor. Added to that is the stability

effects of delayed measurements on the closed loop system.

Following the above, the sensor motion using the maxi-

mum deviation guidance policy can be expressed by

ξs(tk+1) = arg max
ξ∈[ξs(tk)−∆ξ,ξs(tk)+∆ξ]

∣

∣

∣
ymeas(t − τk,ξ;ξs(tk))

∣

∣

∣

where the position-dependent delay is given by (3). Associ-

ated with the above guidance policy, is the control policy. In

view of the previous arguments on complexity reduction, a

simplified static output feedback control law is proposed

u(t,ξ;ξs(t)) = −k y(t,ξ;ξs(t)) = −k c(ξ;ξs(t))x(t,ξ)

where the static scalar gain k > 0 may be chosen arbitrarily.

However, in view of the position-dependent delay, the actual

feedback controller will involve delayed measurement

u(t,ξ;ξs(t)) = −k ymeas(t − τk,ξ;ξs(tk)). (5)

When the PDE in (4) is written in abstract form and includes

the delayed feedback in (5), it results in

Ẋ (t) = AX (t)− kB2(tk)C (tk)X (t − τk)+B1(t)d(t).

Even in the case of a fixed-in-space actuator/sensor pair, the

system will be expressed by

Ẋ (t) = AX (t)− kB2C X (t − τk)+B1(t)d(t). (6)

On one hand, the supervisor would want to move the

actuator/sensor pair close to the base station in order to

minimize the delay. This would eliminate the destabilizing

effects of time delays in the closed loop system (6). However,

the performance-based guidance policy would move the

actuator/sensor to the location with the largest deviation from

the equilibrium. If such a deviation is far away from the
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base station, then the corresponding delay would significantly

increase and possibly destabilize the system. To ameliorate

this conflicting requirements of stability robustness versus

performance, a modification to the algorithm in [6] is pro-

posed here and which attempts to minimize time delays by

keeping the mobile sensor/actuator close to the base station

whenever a certain level of performance is attained, and to

move the agent in the spatial region that is needed the most

while at the same time ensuring that the resulting predicted

time delays will not destabilize the system.

Algorithm 1: sensor/actuator guidance based on maximum

state deviation using static feedback and delay management

1) using velocity considerations υav and sensor support

specifications (∆ξ), find the smallest time interval ∆t

which takes into consideration data processing delays

and dwell time [11], [12]

2) (initialization) first consider the interval [t0, t0 +∆t)
3) place (move) the sensor at an initial location ξs(t0)

that maximizes observability of the associated pair

(A ,C (ξs(t0)) representing the process and output op-

erators in the abstract formulation of (1)

4) implement the locally distributed static control law

u(t,ξ;ξs(t0)) = −k c(ξ;ξs(t0))x(t,ξ), t ∈ [t0, t0 +∆t]

5) find location of maximum state deviation from equi-

librium over the span of the sensing device (sensor

support) at current centroid location ξs(t0)

ξs(t1) = arg min
ξs(t0)−∆ξ≤ξ≤ξs(t0)+∆ξ

∣

∣

∣
c(ξ;ξs(t0))x(t,ξ)

∣

∣

∣

6) move sensor at new position ξs(t1) and implement

u(t,ξ;ξs(t1))=−k ymeas(t−τ1,ξ;ξs(t1)), t ∈ [t1, t1 +∆t]

a) if at the end of [t1, t1 +∆t], the maximum devia-

tion of the measured state does not subside, then

move towards the base station in order to reduce

the time delays in the closed loop system

b) if the measured state’s maximum deviation is re-

duced by the end of [t1, t1 +∆t], then move sensor

towards the new maximum deviation within the

support of the sensor at the current position

7) consider next interval with tk+1 = tk +∆t, and perform

search in step 5 over current sensor span [ξs(tk)−
∆ξ,ξs(tk)+∆ξ] and repeat step 6 for new interval.

The well-posedness of the combined sensor/actuator mo-

tion and static output feedback (5) applied to the system

(4) can be argued within the context of switched infinite

dimensional systems as detailed in [2], [12].

IV. RESULTS

The PDE in (1) was simulated using 80 linear ele-

ments [13] in Ω = [0,1] and an initial condition x(0,ξ) =

sin(πξ)e−7(ξ−ℓ)2
. The coefficients in (1) were a1 = 0.005,

a2 = 0.15, a3 = 0.003. The moving source was taken as

b1(t,ξ) = 10−5
(

0.3cos( 9πt
t f

)+0.5
)

×

(H(ξ+ξc(t)+∆ξ)−H(ξ−ξc(t)−∆ξ))
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Fig. 5. Effects of spatially moving disturbance on open loop state.

where ξc(t) denotes the centroid of the moving source and

∆ξ = ℓ/20 denotes the one-half of the spatial support of the

spatial distribution of the moving source. The same spatial

support ∆ξ was used for the moving sensing and actuating

devices. The closed loop system was simulated in the time

interval [0,5] with a maximum velocity υav = 0.5, thus

resulting in n =
t f υav

∆ξ
= 50 subintervals and therefore ∆t =

t f

n
= 0.1, i.e. the switching times at which the sensor/actuator

pair was being moved were occurring every ∆t = 0.1 time

units. The moving source, as described above, had its own

centroid moving with a lower speed of υsource = 0.1111.

The effects of the moving disturbance on the state are

seen in Figure 5, which necessitate the use of a mobile

actuator. The L2 state norm for both a stationary and moving

sensor/actuator pair for two different values of a time delay

are presented in Figure 6. It can be observed that large delays

have a detrimental effect on controller performance. The

spatial distribution of the state at the final time is presented

for these two cases in Figure 7, and the effects of the time

delays on the sensor trajectory are presented in Figure 8.

V. CONCLUSIONS

This paper examined the effects position-dependent de-

lays on the performance of a moving sensor/actuator pair

employed for the control of a process governed by a 1-D

diffusion-advection PDE. It was assumed that an unknown

source was moving within the spatial domain thereby forcing

the state to deviate from its equilibrium, and therefore a

moving actuator/sensor would be used to counterbalance the

effects of this moving disturbance. While in the delay-free

case it was shown that a moving actuator/sensor pair can

have a superior performance in suppressing the effects of a

moving disturbance, in the nonzero delay such a performance

was shown to deteriorate for large values of the time delay.

Such a delay was proportional to the distance of the mobile

actuator/sensor pair from the base station.

To improve the performance of the moving actuator/sensor

pair under the influence of a position-dependent delay, a
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Fig. 7. Spatial distribution of state at final time t = 5 sec.

robust modification scheme was incorporated into the guid-

ance scheme which allowed the moving actutor/sensor pair

to move closer to the base station minimizing the time delays

at the expense of performance. A balance between stability

robustness and performance was introduced and allowed the

pair to move to a position further from the base station if it

deemed such a move as performance enhancing and to move

closer to the base station if it considered that the closed loop

stability was compromised by the increase in time-delays.

Extensive simulation studies revealed that a moving sen-

sor/actuator pair capable of providing locally distributed

measurements and dispensing locally distributed control ac-

tion at the spatial range of the sensor, can significantly

minimize the effects of a moving source on the process state.
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