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Abstract— How to control an unstable linear system with a
long pure delay in the actuator path? This question was resolved
using ‘predictor’ or ‘finite spectrum assignment’ designs in the
1970s. Here we address a more challenging question: How to
control an unstable linear system with a wave PDE in the
actuation path? Physically one can think of this problem as
having to stabilize a system to whose input one has access
through a string. The challenges of overcoming string/wave
dynamics in the actuation path include their infinite dimension,
finite propagation speed of the control signal, and the fact that
all of their (infinitely many) eigenvalues are on the imaginary
axis. In this paper we provide an explicit feedback law that
compensates the wave PDE dynamics at the input of an LTI
ODE and stabilizes the overall system. In addition, we prove
robustness of the feedback to the error in a priori knowledge
of the propagation speed in the wave PDE. Finally, we consider
a dual problem where the wave PDE is in the sensing path and
design an exponentially convergent observer.

I. INTRODUCTION

The ‘Smith predictor’ and its extensions developed since
the 1970s [1], [3], [4], [5], [6], [7], [8], [13], [9], [14],
[15], [16], [17], [18], [19], [21], [22], [25], [26], [27], [28],
[29], [30], [31] are important tools in several application
areas. They allow to compensate a pure delay of arbitrary
length in either the actuation or sensing path of a linear
system, even when the system is unstable. Several results
in adaptive control for unknown ODE parameters have been
published [2], [20]. Extensions to nonlinear systems are also
beginning to emerge [10].

In [11] we presented a first attempt of compensating
infinite-dimensional actuator dynamics of more complex
type than pure delay. We presented a design for diffusion-
dominated PDE dynamics (such as the heat equation). While
these dynamics do not have a finite speed of propagation,
they are ‘low-pass’ and ‘phase-lag’ to the extreme, as they
have infinitely many (stable) poles and no zeros.

In this paper we tackle a problem from a different class
of PDE dynamics in the actuation or sensing path—the
wave/string equation. The wave equation is challenging due
to the fact that all of its (infinitely many) eigenvalues are on
the imaginary axis, and due to the fact that it has a finite
(limited) speed of propagation (large control doesn’t help).

The problem studied here is more challenging than in [11]
due to another difficulty—the PDE system is second order in
time, which means that the state is ‘doubly infinite dimen-
sional’ (distributed displacement and distributed velocity).
This is not so much or a problem dimensionally, as it
is a problem in constructing the state transformations for
compensating the PDE dynamics. One has to deal with the
coupling of two infinite-dimensional states.

As in [13] for delay-ODE cascades, and in [11] for
heat-PDE-ODE cascades, we design feedback laws that are
given by explicit formulae. We start in Section II with
an actuator compensation design with full state feedback.
In Section III we approach the question of robustness of
our infinite-dimensional feedback law with respect to small
uncertainty in the wave propagation speed and provide an
affirmative answer. Finally, in Section IV we develop a
dual of our actuator dynamics compensator and design an
infinite-dimensional observer which compensates the wave
PDE dynamics of the sensor.

II. STABILIZATION WITH FULL-STATE FEEDBACK

We consider the cascade of a wave (string) equation and
an LTI finite-dimensional system given by

Ẋ(t) = AX(t)+Bu(0, t) (1)
utt(x, t) = uxx(x, t) (2)
ux(0, t) = 0 (3)
ux(D, t) = U(t) , (4)

where X ∈ Rn is the ODE state, U is the scalar input to the
entire system, and u(x, t) is the state of the PDE dynamics
of the actuator governed by a wave equation. The cascade
system is depicted in Figure 1.

The length of the PDE domain, D, is arbitrary. Thus, we
take the wave propagation speed to be unity without loss of
generality. We assume that the pair (A,B) is stabilizable and
take K to be a known vector such that A+BK is Hurwitz.

We recall from [13] that, if (2), (3) are replaced by the
delay/transport equation,

ut(x, t) = ux(x, t) , (5)

then the predictor-based control law

U(t) = K
[

eADX(t)+
∫ D

0
eA(D−y)Bu(y, t)dy

]
(6)

achieves perfect compensation of the actuator delay and
achieves exponential stability at u≡ 0,X = 0. When the pure
delay actuator dynamics are replaced by the wave equation
dynamics, a much more involved feedback law is needed.

We seek an invertible transformation (X ,u,ut) 7→ (X ,v,vt)
that converts (1)–(3) into

Ẋ(t) = (A+BK)X(t)+Bv(0, t) (7)
vtt(x, t) = vxx(x, t) (8)
vx(0, t) = 0 (9)
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Fig. 1. The cascade of the wave equation PDE dynamics of the actuator with the ODE dynamics of the plant.

and then another transformation (X ,v,vt) 7→ (X ,w,wt) that
converts (7)–(9) into

Ẋ(t) = (A+BK)X(t)+Bw(0, t) (10)
wtt(x, t) = wxx(x, t) (11)
wx(0, t) = c0w(0, t) , c0 > 0. (12)

We also seek a feedback law that achieves

wx(D, t) =−c1wt(D, t) , c1 > 0 . (13)

The system (10)–(13) is exponentially stable, as we shall
see. With the invertibility of the composite transformation
(X ,u,ut) 7→ (X ,w,wt), we will achieve exponential stability
of the closed-loop system in the original variables (X ,u,ut).

We postulate the transformation (X ,u,ut) 7→ (X ,v,vt) in
the form

v(x, t) =u(x, t)−
∫ x

0
k(x,y)u(y, t)dx−

∫ x

0
l(x,y)ut(y, t)dy

− γ(x)X(t) , (14)

where the kernel functions k(x,y), l(x,y), and γ(x) are to
be found. By matching the systems (1)–(3) and (7)–(9), a
lengthy but straightforward calculation leads to the following
conditions on the kernels:

γ
′′(x) = γ(x)A2 (15)
γ(0) = K (16)

γ
′(0) = 0 (17)

lxx(x,y) = lyy(x,y) (18)
l(x,x) = 0 (19)

ly(x,0) = −γ(x)B (20)

kxx(x,y) = kyy(x,y) (21)
k(x,x) = 0 (22)

ky(x,0) = −γ(x)AB . (23)

These differential equations can be solved explicitly. The
solutions are

γ(x) = KM(x) (24)
l(x,y) = m(x− y) (25)
k(x,y) = µ(x− y) (26)

M(x) =
[

I 0
]

e

[
0 A2

I 0

]
x [

I
0

]
(27)

m(s) =
∫ s

0
γ(ξ )Bdξ (28)

µ(s) =
∫ s

0
γ(ξ )ABdξ . (29)

Thus the transformation (X ,u,ut) 7→ (X ,v,vt) is defined as

v(x, t) =u(x, t)−
∫ x

0
µ(x− y)u(y, t)dx

−
∫ x

0
m(x− y)ut(y, t)dy− γ(x)X(t) (30)

vt(x, t) =ut(x, t)−KBu(x, t)−
∫ x

0
µ(x− y)ut(y, t)dx

−
∫ x

0
m′′(x− y)u(y, t)dy− γ(x)AX(t) . (31)

With similar derivations, one can show that the inverse of
the transformation (X ,u,ut) 7→ (X ,v,vt) is defined as

u(x, t) =v(x, t)−
∫ x

0
σ(x− y)v(y, t)dx

−
∫ x

0
n(x− y)vt(y, t)dy−ρ(x)X(t) (32)

ut(x, t) =vt(x, t)+KBv(x, t)−
∫ x

0
σ(x− y)vt(y, t)dx

−
∫ x

0
n′′(x− y)v(y, t)dy−ρ(x)AX(t) , (33)

where

ρ(x) = −KN(x) (34)

N(x) =
[

I 0
]

e

[
0 (A+BK)2

I 0

]
x [

I
0

]
(35)

n(s) =
∫ s

0
ρ(ξ )Bdξ (36)

σ(s) =
∫ s

0
ρ(ξ )ABdξ . (37)

The transformation (X ,v,vt) 7→ (X ,w,wt) is simpler and
given by

w(x, t) = v(x, t)+ c0

∫ x

0
v(y, t)dy (38)

wt(x, t) = vt(x, t)+ c0

∫ x

0
vt(y, t)dy , (39)

whereas its inverse is

v(x, t) = w(x, t)− c0

∫ x

0
e−c0(x−y)w(y, t)dy (40)

vt(x, t) = wt(x, t)− c0

∫ x

0
e−c0(x−y)wt(y, t)dy . (41)
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The composite transformation (X ,u,ut) 7→ (X ,w,wt) is

w(x, t) =u(x, t)

+
∫ x

0

(
c0−µ(x− y)− c0

∫ x−y

0
µ(ξ )dξ

)
u(y, t)dy

−
∫ x

0

(
m(x− y)+ c0

∫ x−y

0
m(ξ )dξ

)
ut(y, t)dy

−
(

γ(x)+ c0

∫ x

0
γ(ξ )dξ

)
X(t) (42)

wt(x, t) =ut(x, t)−KBu(x, t)

−
∫ x

0

(
c0m′(x− y)+m′′(x− y)

)
u(y, t)dy

+
∫ x

0

(
c0−µ(x− y)− c0

∫ x−y

0
µ(ξ )dξ

)
ut(y, t)dy

−
(

γ(x)+ c0

∫ x

0
γ(ξ )dξ

)
AX(t) (43)

and its inverse is

u(x, t) =w(x, t)

−
∫ x

0

(
c0e−c0(x−y) +σ(x− y)

−c0

∫ x−y

0
e−c0(x−y−ξ )

σ(ξ )dξ

)
w(y, t)dy

−
∫ x

0

(
n(x− y)− c0

∫ x−y

0
e−c0(x−y−ξ )n(ξ )dξ

)
×wt(y, t)dy

−ρ(x)X(t) (44)
ut(x, t) =wt(x, t)+KBw(x, t)

−
∫ x

0

(
n′′(x− y)− c0n′(x− y)+ c2

0n(x− y)

+c3
0

∫ x−y

0
e−c0(x−y−ξ )n(ξ )dξ

)
w(y, t)dy

−
∫ x

0

(
c0e−c0(x−y) +σ(x− y)

−c0

∫ x−y

0
e−c0(x−y−ξ )

σ(ξ )dξ

)
wt(y, t)dy

−ρ(x)AX(t) . (45)

Next, we design a controller that satisfies the boundary
condition (13). First, from (42) we get

wx(x, t) =ux(x, t)+ c0u(x, t)

−
∫ x

0

(
µ
′(x− y)+ c0µ(x− y)

)
u(y, t)dy

−
∫ x

0

(
m′(x− y)+ c0m(x− y)

)
ut(y, t)dy

−
(
γ
′(x)+ c0γ(x)

)
X(t) . (46)

Then, the control law is

U(t) =(−c0 + c1KB)u(D, t)− c1ut(D, t)

+
∫ D

0
p(D− y)u(y, t)dy+

∫ D

0
q(D− y)ut(y, t)dy

+π(D)X(t) (47)

where

p(s) =µ
′(s)+ c0µ(s)+ c1

(
m′′(s)+ c0m′(s)

)
(48)

q(s) =m′(s)+ c0m(s)+ c1

(
µ(s)+ c0

∫ s

0
µ(ξ )dξ − c0

)
(49)

π(x) =γ
′(x)+ γ(x)(c0I + c1A)+ c1c0

∫ x

0
γ(ξ )dξ A . (50)

Next we state a new controller that compensates the wave
PDE actuator dynamics and prove exponential stability of
the resulting closed-loop system.

Theorem 1: (Stabilization) Consider a closed-loop sys-
tem consisting of the plant (1)–(4) and the control law
(47). For any initial condition such that u(·,0) ∈ H1 and
ut(·,0) ∈ L2, the closed-loop system has a unique solution(
X(t),u(·, t),ut(·, t)

)
∈ C([0,∞),Rn × H1(0,D) × L2(0,D))

and is exponentially stable in the sense of the norm(
|X(t)|2 +u(0, t)2 +

∫ D

0
ux(x, t)2dx+

∫ D

0
ut(x, t)2dx

)1/2

.

(51)
Moreover, if the initial condition

(
u(·,0),ut(·,0)

)
is

compatible with the control law (47) and belongs
to H2(0,D) × H1(0,D), then

(
X(t),u(·, t),ut(·, t)

)
∈

C1([0,∞),Rn×H1(0,D)×L2(0,D)) is the classical solution
of the closed-loop system.

Proof: We will use the system norms

Ω(t) = u(0, t)2 +‖ux(t)‖2 +‖ut(t)‖2 + |X(t)|2 (52)
Ξ(t) = w(0, t)2 +‖wx(t)‖2 +‖wt(t)‖2 + |X(t)|2 , (53)

where ‖u(t)‖2 is a compact notation for
∫ D

0 u(x, t)2 dx. In
addition, we employ a Lyapunov function

V (t) = X(t)T PX(t)+aE(t) , (54)

where the matrix P = PT > 0 is the solution to the Lyapunov
equation P(A+BK)+(A+BK)T P =−Q for some Q = QT >
0, the parameter a > 0 is to be chosen later, and the function
E(t) is defined by

E(t) =
1
2

(
c0w(0, t)2 +‖wx(t)‖2 +‖wt(t)‖2)

+δ

∫ D

0
(1+ x)wx(y, t)wt(y, t)dy , (55)

By using (43), (46), (45), and

ux(x, t) =wx(x, t)− c0w(x, t)

−
∫ x

0

(
−c2

0e−c0(x−y) +σ
′(x− y)− c0σ(x− y)

+c2
0

∫ x−y

0
e−c0(x−y−ξ )

σ(ξ )dξ

)
w(y, t)dy

−
∫ x

0

(
n′(x− y)− c0n(x− y)

+c2
0

∫ x−y

0
e−c0(x−y−ξ )n(ξ )dξ

)
wt(y, t)dy

−ρ
′(x)X(t) (56)

u(0, t) =w(0, t)+KX(t) , (57)
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and by using Poincare’s inequality, for sufficiently small
δ it is possible to show that there exist positive constants
θ1,θ2,θ3,θ4 such that

θ1Ξ ≤ Ω ≤ θ2Ξ (58)
θ3Ξ ≤V ≤ θ4Ξ . (59)

Furthermore, it is readily shown that

Ė(t) = −
(

c1−δ
1+D

2
(
1+ c2

1)
))

wt(D, t)2

−δ

2
(
wt(0, t)2 + c2

0w(0, t)2)
−δ

2
(
‖wx(t)‖2 +‖wt(t)‖2) . (60)

Then, by choosing

a ≥ 8|PB|2

δc2
0λmin(Q)

, (61)

we get

V̇ ≤−ηV (62)

for some sufficiently small positive η . From (58), (59), (62),
it follows that

Ω(t)≤ θ2θ4

θ1θ3
Ω(0)e−ηt . (63)

The rest of the argument is almost identical to [12].

III. ROBUSTNESS TO UNCERTAINTY IN THE WAVE
PROPAGATION SPEED

We now study robustness of the feedback law (47) to a
small perturbation of the propagation speed in the actuator
dynamics, i.e., we study stability robustness of the closed-
loop system

Ẋ(t) = AX(t)+Bu(0, t) (64)
utt(x, t) = (1+ ε)uxx(x, t) (65)
ux(0, t) = 0 (66)
ux(D, t) = (−c0 + c1KB)u(D, t)− c1ut(D, t)

+
∫ D

0
p(D− y)u(y, t)dy+

∫ D

0
q(D− y)ut(y, t)dy

+π(D)X(t) (67)

to the perturbation parameter ε , which we allow to be either
positive or negative but small.

With a very long calculation, we arrive at the representa-
tion of the system (64)–(67) in the w-variable:

Ẋ(t) =(A+BK)X(t)+Bw(0, t) (68)
wtt(x, t) =(1+ ε)wxx(x, t)+ εΠ(x, t) (69)
wx(0, t) =c0w(0, t) (70)
wx(D, t) =− c1wt(D, t) , (71)

where

Π(x, t) =
(

γ(x)+ c0

∫ x

0
γ(ξ )dξ

)
× ((A+BK)X(t)+Bw(0, t))

+KBwt(x, t)+(KB)2w(x, t)

+
∫ x

0
g(x− y)w(y, t)dy+

∫ x

0
h(x− y)wt(y, t)dy

−
(

KBρ(x)+
∫ x

0
ω(x−ξ )ρ(ξ )dξ

)
AX(t) (72)

and where

ω(x) =m′′(x)+ c0m′(x) (73)

g(x) =KBφ(x)+KBω(x)+
∫ x

0
ω(x− y)φ(y)dy (74)

h(x) =KBψ(x)+ω(x)+
∫ x

0
ω(x− y)ψ(y)dy (75)

φ(x) =−n′′(x)+ c0n′(x)− c2
0n(x)+ c3

0

∫ x

0
e−c0(x−y)n(y)dy

(76)

ψ(x) =− c0e−c0x−σ(x)+ c0

∫ x

0
e−c0(x−y)

σ(y)dy . (77)

The state perturbation Π(x, t) is very complicated in appear-
ance but

∫ D
0 Π(x, t)2dx can be bounded in terms of Ξ(t) as

defined in (53), and hence also in terms of V (t) as defined in
(54). Consequently, the same kind of Lyapunov analysis can
be conducted as in the proof of Theorem 1, dominating the
effect of Π(x, t) for small ε , to prove the following robustness
result.

Theorem 2: (Robustness to Small Error in Wave Propa-
gation Speed) Consider the closed-loop system (64)–(67).
There exists a sufficiently small ε∗ > 0 such that for all
ε ∈ (−ε∗,ε∗) the closed-loop system is exponentially stable
in the same sense as in Theorem 1.

IV. OBSERVER DESIGN

Consider the LTI ODE system in cascade with a wave
PDE in the sensing path (as depicted in Figure 2),

Y (t) = u(0, t)) (78)
utt(x, t) = uxx(x, t) (79)
ux(0, t) = 0 (80)
u(D, t) = CX(t) (81)

Ẋ(t) = AX(t)+BU(t) . (82)

We recall from [13] that, if (79), (80) are replaced
by the delay/transport equation, ut(x, t) = ux(x, t), then the
predictor-based observer

ût(x, t) = ûx(x, t)+CeAxL(Y (t)− û(0, t)) (83)
û(D, t) = CX̂(t) (84)

˙̂X(t) = AX̂(t)+BU(t)+ eADL(Y (t)− û(0, t)) (85)

achieves perfect compensation of the observer delay and
achieves exponential stability at u− û ≡ 0,X − X̂ = 0.
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Fig. 2. The cascade of the ODE dynamics of the plant with the wave equation PDE dynamics of the sensor.

We are seeking an observer of the form

ût(x, t) = ûxx(x, t)+α(x)(Y (t)− û(0, t))
+β (x)

(
Ẏ (t)− ût(0, t)

)
(86)

ûx(0, t) = −a(Y (t)− û(0, t))−b
(
Ẏ (t)− ût(0, t)

)
(87)

û(D, t) = CX̂(t) (88)
˙̂X(t) = AX̂(t)+BU(t)+Λ(Y (t)− û(0, t)) , (89)

where the functions α(x),β (x), the scalars a,b, and the vec-
tor Λ are to be determined, to achieve exponential stability
of the observer error system

ũt(x, t) = ũxx(x, t)−α(x)ũ(0, t)−β (x)ũt(0, t) (90)
ũx(0, t) = aũ(0, t)+bũt(0, t) (91)
ũ(D, t) = CX̃(t) (92)

˙̃X(t) = AX̃(t)−Λũ(0, t) , (93)

where

ũ(x, t) = u(x, t)− û(x, t) (94)
X̃(t) = X(t)− X̂(t) . (95)

We consider the transformation

w̃(x) = ũ(x)−Γ(x)X̃ (96)

and try to find Γ(x), along with α(x),β (x),a,b,Λ, that
convert (90)–(93) into the exponentially stable system

w̃tt(x, t) =w̃xx(x, t) (97)
w̃x(0, t) =c0w̃t(0, t) (98)
w̃(D, t) =0 (99)

˙̃X(t) =(A−ΛΓ(0)) X̃ −Λw̃(0, t) , (100)

where c0 > 0 and A−ΛΓ(0) is a Hurwitz matrix.
By matching the systems (90)–(93) and (97)–(100), we

obtain the conditions

Γ
′′(x) = Γ(x)A2 (101)

Γ
′(0) = c0Γ(0)A (102)

Γ(D) = C , (103)

as well as

α(x) = Γ(x)AΛ (104)
β (x) = Γ(x)Λ (105)

a = c0Γ(0)Λ (106)
b = c0 . (107)

Solving the linear ODE two-point-boundary-value problem
(101)–(103), we obtain

Γ(x) = Γ(0)G(x) , (108)

where

Γ(0) = CG(D)−1 (109)

G(x) =
[

I c0A
]

e

[
0 A2

I 0

]
x [

I
0

]
. (110)

Thus, we have determined all the quantities needed to
implement the observer (86)–(89) except Λ, which needs to
be chosen so that the matrix A−ΛΓ(0) is Hurwitz. We pick
Λ as

Λ = G(D)L , (111)

where L is chosen so that the matrix A−LC is Hurwitz. Since
A and G(D) commute, using G(D) as a similarity transfor-
mation for the matrix A−ΛΓ(0) = A−G(D)LCG(D)−1, we
get that the matrices A−LC and A−ΛΓ(0) have the same
eigenvalues, so the latter matrix is Hurwitz.

So the system (97)–(100) is a cascade of a wave equation
(97)–(99), which is exponentially stable due to the ‘damping’
boundary condition (98), and of the exponentially stable
ODE (100). So, the entire observer error system is expo-
nentially stable.

Theorem 3: (Observer Design and Convergence) Assume
that the matrix G(D) is non-singular. The observer (86)–(89),
with gains defined through (104)–(111), guarantees that X̂ , û
exponentially converge to X , u, i.e., more precisely, that the
observer error system is exponentially stable in the sense of
the norm (

|X(t)− X̂(t)|2

+
∫ D

0
(ux(x, t)− ûx(x, t))

2 dx

+
∫ D

0
(ut(x, t)− ût(x, t))

2 dx
)1/2

. (112)

Proof: Very similar to the proof of Theorem 1, with a
Lyapunov function

V (t) = X̃(t)T M(D)−T PM(D)−1X̃(t)+aE(t) , (113)

where P = PT > 0 is the solution to the Lyapunov equation
P(A−LC)+ (A−LC)T P = −Q for some Q = QT > 0, and
with

E(t) =
1
2

(
‖w̃x(t)‖2 +‖w̃t(t)‖2)

+δ

∫ D

0
(−1−D+ x)w̃x(y, t)w̃t(y, t)dy , (114)
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The system norms are simpler,

Ω(t) = ‖ũx(t)‖2 +‖ũt(t)‖2 + |X̃(t)|2 (115)
Ξ(t) = ‖w̃x(t)‖2 +‖w̃t(t)‖2 + |X̃(t)|2 , (116)

and the system transformations are much simpler,

w̃x(x, t) = ũx(x, t)−Γ
′(x)X̃(t) (117)

w̃t(x, t) = ũt(x, t)−Γ(x)AX̃(t)+Γ(x)Λũ(0, t)
ũt(x, t) = w̃t(x, t)+Γ(x)(A−ΛΓ(0))X̃(t)

−Γ(x)Λw̃(0, t) . (118)

One obtains the inequalities (58), (59) with the help of
Agmon’s inequality, or, with the help of Poincare’s inequality
and the alternative representation of the state transformation,

w̃t(x, t) = ũt(x, t)+Γ(x)Λũ(x, t)−Γ(x)Λ
∫ D

0
ũx(y, t)dy

−Γ(x)AX̃(t)

ũt(x, t) = w̃t(x, t)−Γ(x)Λw̃(x, t)+Γ(x)Λ
∫ d

0
w̃x(y, t)dy

+Γ(x)(A−ΛΓ(0))X̃(t) . (119)

Then, one obtains (63), which completes the proof.
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