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Abstract— The goal of this paper is to provide an elementary
proof for the exactness of the (D, G) scaling applied to the
uncertainty structure with one repeated real scalar block
and one full complex matrix block. The (D, G) scaling has
vast application area around control theory, optimization and
signal processing. This is because, by applying the (D, G)
scaling, we can convert inequality conditions depending on an
uncertain parameter to linear matrix inequalities (LMIs) in
an exact fashion. However, its exactness proof is tough, and
this stems from the fact that the proof requires an involved
matrix formula in addition to the standard Lagrange duality
theory. To streamline the proof, in the present paper, we clarify
that the involved matrix formula is closely related to a norm
preserving dilation under structural constraints. By providing
an elementary proof for the norm preserving dilation, it follows
that basic results such as Schur complement and congruence
transformation in conjunction with the Lagrange duality theory
are enough to complete a self-contained exactness proof.

I. INTRODUCTION

The goal of this paper is to provide an elementary proof for
the exactness of the (D,G) scaling applied to the uncertainty
structure with one repeated real scalar block and one full
complex matrix block [11]. The (D,G) scaling was firstly
proposed in [6] in the early 90’s to compute an upper bound
of the structured singular value in μ theory. Subsequently,
in the late 90’s, the (D,G) scaling was proved to be exact
(lossless) when the underlying uncertainty structure consists
of one repeated scalar block and one full complex matrix
block [11]. As the development of the study on the robustness
analysis and synthesis of LTI systems depending on uncertain
parameters [2], [13], the (D,G) scaling received renewed
interest. This is because, by applying the (D,G) scaling, we
can convert inequality conditions depending on an uncertain
parameter to linear matrix inequalities (LMIs) in an exact
fashion. Currently, the usefulness of the (D,G) scaling is
well-recognized, and it has vast application area ranging from
control theory to optimization and signal processing.

However, to complete an exactness proof of the (D,G)
scaling is undoubtedly a tough problem. This stems from the
fact that the proof requires involved matrix formulas [11] in
addition to the standard Lagrange duality theory. This is in
stark contrast with the standard Kalman-Yakubovich-Popov
(KYP) lemma where simple convexity arguments related to
the Lagrange duality theory suffices to complete the proof
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[12]. In the (D,G) scaling, we have to deal with parameter
variation over finite interval and this makes the proof more
complicated.

To streamline the proof of the (D,G) scaling, in the
present paper, we firstly clarify that the proof can be done
straightforwardly if we complete an involved matrix formula
that is closely related to a norm preserving dilation [4],
[14] under structural constraints. By providing an elementary
proof for the norm preserving dilation, it follows that basic
results such as Schur complement and congruence transfor-
mation in conjunction with the Lagrange duality theory are
enough to complete a self-contained exactness proof. We
also briefly discuss the proof of the finite frequency KYP
lemma [9], [10], which has an strong impact on the recent
development of linear control theory. We clarify that its proof
readily follows if we simply modify the matrix formula used
in the exactness proof of the (D,G) scaling.

We use the following notations in this paper. The symbols
Hn, Pn, Skn and Un denote respectively the set of n × n

Hermitian, positive-semidefinite Hermitian, skew-symmetric
Hermitian and unitary matrices.

For W ∈ Cn×m, we denote its Moor-Penrose generalized
inverse by W †. It is worth mentioning that, for V ∈ Hn

with its eigenvalue decomposition

V = U1ΣU∗
1 , [ U1 U2 ] ∈ Un (1)

where Σ is non-singular, V † is given by

V † = U1Σ−1U∗
1 .

Moreover, for any W ∈ Cl×n, the equality WU2 = 0 holds
iff W (1n − V V †) = 0 holds.

II. (D,G) SCALING AND ITS PROOF

A. (D,G) Scaling

To begin with, let us first recall the (D,G) scaling applied
to the uncertainty structure with one repeated real scalar and
one full-block complex matrix [11].
Proposition 1: For given A ∈ Cn×n, B ∈ Cn×m, Π ∈
Hn+m and E := [−1, 1], suppose A has no eigenvalues on
(−∞,−1]∪[1,∞) and define K(δ) := (In−Aδ)−1B. Then,
the following two conditions are equivalent:

(i) The following inequality condition holds:[
δK(δ)

1m

]∗

Π

[
δK(δ)

1m

]
≺ 0 ∀δ ∈ E. (2)
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(ii) There exist D ∈ Pn and G ∈ Skn such that[
A B

1n 0

]∗ [
D G

G∗ −D

][
A B

1n 0

]
+ Π ≺ 0 (3)

It should be noted that the condition (i) is not explicitly
dealt with in [11]. Roughly speaking, the problem discussed
in [11] is to determine whether the following condition for
given M ∈ C(n+m)×(n+m) holds or not:

det (I − diag(δIn,Δ)M) �= 0 ∀(δ,Δ) ∈ E × Δ,

Δ := {Δ : Δ ∈ Cm×m, ‖Δ‖ ≤ 1}
(4)

By partitioning M as

M =

[
A B

C D

]
, A ∈ Cn×n, D ∈ Cm×m

and assuming that A has no eigenvalues on (−∞,−1] ∪
[1,∞) as in Proposition 1, it can be readily seen that (4)
holds iff

det(I − Δ(CδK(δ) + D)) �= 0 ∀(δ,Δ) ∈ E × Δ

or equivalently,

‖CδK(δ) + D‖ < 1 ∀δ ∈ E.

It is clear that the above condition holds iff the condition (i)
in Proposition 1 holds with

Π =

[
C D
0 1m

]∗ [
1n 0

0 −1m

][
C D
0 1m

]

For this particularly chosen Π, it was shown in [11] that
the conditions (i) and (ii) are equivalent. In this sense,
Proposition 1 can be seen as a slight extension of [11].

The (D,G) scaling (in the form of Proposition 1) has vast
application area ranging from control theory to optimization
and signal processing. In these study areas, it is often the case
that we should check the positive definiteness of a univariate
polynomial matrix of the form

J(δ) =
N∑

k=0

δkJk (Jk ∈ Hm, k = 0, · · · , N)

over δ ∈ E. Since this J(δ) can also be written as

J(δ) = J0 + Cδ(ImN − Aδ)−1B,

A :=

[
0m(N−1),m Im(N−1),m(N−1)

0m,m 0m,m(N−1)

]
,

B :=

⎡
⎢⎢⎣

J1

...

JN

⎤
⎥⎥⎦ , C :=

[
Im 0m,m(N−1)

]

and since

J(δ) 
 0 ∀δ ∈ E

⇔
[

J(δ)

1m

]∗ [
0 −1m

−1m 0

][
J(δ)

1m

]
≺ 0 ∀δ ∈ E

⇔ (3) with

Π =

[
C J0

0 1m

]∗ [
0 −1m

−1m 0

][
C J0

0 1m

]
(5)

holds, the positive definiteness of J(δ) can be checked by
testing the feasibility of the LMI (3) with Π given in (5) via
numerical computation.

B. Proof of (D,G) Scaling based on a Matrix Formula

Let us move on to the proof of the (D,G) scaling. It
should be noted that the proof for the implication (ii) ⇒ (i)
is fairly easy. To see this, we first note that[

A B

1n 0

][
δK(δ)

1m

]
=

[
I

δI

]
K(δ).

Thus if (3) in (ii) holds, it follows for all δ ∈ E that[
δK(δ)

1m

]∗

Π

[
δK(δ)

1m

]

≺ −
[

δK(δ)

1m

]∗ [
A B

1n 0

]∗ [
D G

G∗ −D

][
A B

1n 0

] [
δK(δ)

1m

]

= −K(δ)∗D(1n − δ21n)K(δ)


 0.

This clearly shows that the condition (i) holds.
On the other hand, the proofs for (i)⇒(ii) found in the

literature, i.e., the proof for the exactness of the (D,G)
scaling, is rather involved. To complete the proof, the next
matrix formula, proved later in this paper, plays a crucial
role.
Lemma 1: For given matrices F ,G ∈ Cn×m, the following
two conditions are equivalent:
(i) The following two conditions hold:

FF∗ � GG∗, FG∗ = GF∗. (6)
(ii) There exists Ω ∈ Hm such that G = FΩ and ‖Ω‖ ≤ 1.
Once we have accepted this matrix formula, however, the
exactness proof of the (D,G) scaling can be done straight-
forwardly in conjunction with the Lagrange duality theory.
Proof of (i)⇒(ii) in Proposition 1: To complete the proof
via contradiction, suppose (3) does not hold for any D ∈ Pn

and G ∈ Skn. Then, from the Lagrange duality theory which
is elegantly summarized in [1], [8], [13], we see that there
exists H ∈ Pn+m such that

trace(ΠH) ≥ 0, trace(H) = 1,

Γ11(H) � Γ22(H), Γ12(H) = Γ∗
12(H) (7)
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where[
Γ11(H) Γ12(H)

Γ∗
12(H) Γ22(H)

]
:=

[
A B

1n 0

]
H

[
A B

1n 0

]∗

. (8)

Let us denote the full-rank factorization of H as

H =

[
H1

H2

] [
H1

H2

]∗

, H1 ∈ Cn×r, H2 ∈ Cm×r (9)

where r := rank(H). Then, (7) implies that the two
conditions in (6) holds with F = AH1 +BH2 and G = H1.
It follows from Lemma 1 that there exists Ω ∈ Hr such that

H1 = (AH1 + BH2)Ω, ‖Ω‖ ≤ 1. (10)

If we denote the eigenvalue decomposition of Ω by

Ω = UΛU∗, Λ = diag(λ1, · · · , λr), λi ∈ E, U ∈ Ur,

we have

H1U = (AH1 + BH2)UΛ. (11)

More precisely, if we define[
h1 · · · hr

g1 · · · gr

]
:=

[
H1

H2

]
U, (12)

we note that (11) can be rewritten, equivalently, as

hi = λi(1n − Aλi)−1Bgi = λiK(λi)gi (i = 1, · · · , r).

Thus we readily obtain

H =

[
H1

H2

]
UU∗

[
H1

H2

]

=
r∑

i=1

[
λiK(λi)

1m

]
gig

∗
i

[
λiK(λi)

1m

]∗

.

Since trace(ΠH) ≥ 0, the above expression of H implies
that there exists at least one index j such that

trace

⎛
⎝Π

[
λjK(λj)

1m

]
gjg

∗
j

[
λjK(λj)

1m

]∗⎞⎠ ≥ 0

or equivalently,

g∗j

[
λjK(λj)

1m

]∗

Π

[
λjK(λj)

1m

]
gj ≥ 0.

We note that gj �= 0 since [ H∗
1 H∗

2 ]∗ is full-column rank.
The above inequality clearly shows that (i) does not hold for
λj ∈ E. This completes the proof.

C. Finite Frequency KYP Lemma and Its Proof

The finite frequency KYP lemma was firstly introduced
in [9]. This is an extension of the standard KYP lemma and
particularly useful for loop shaping in low frequency range.
Since this publication, several extensions of KYP lemma
in terms of frequency range and system description were

successfully done by Iwasaki et al. Recently, those results
are unified as a generalized KYP lemma [10].

As clearly mentioned in [9], the finite frequency KYP
lemma is closely related to the (D,G) scaling. Indeed, we
will show that simple modification of Lemma 1 is enough for
its proof. To see this, let us first describe the finite frequency
KYP lemma explicitly in the next proposition.
Proposition 2 (Finite Frequency KYP Lemma [9], [10]):
For given A ∈ Cn×n, B ∈ Cn×m and Π ∈ Hn+m,
suppose A has no eigenvalues on jE. Let us define
L(jω) := (jωI − A)−1B. Then, the following two
conditions are equivalent:

(i) The following inequality condition holds:[
L(jω)

1m

]∗

Π

[
L(jω)

1m

]
≺ 0 ∀ω ∈ E. (13)

(ii) There exist P ∈ Hn and Q ∈ Pn such that[
A B

1n 0

]∗ [
−Q P

P Q

][
A B

1n 0

]
+ Π ≺ 0 (14)

Even though the proof of Proposition 2 is thoroughly given
in [9], we will revisit the proof to demonstrate the usefulness
of Lemma 1. To prove Proposition 2, we need the next lemma
which was already derived in [9]. In our context, this lemma
can be viewed as an obvious modification of Lemma 1 as
explicated in the subsequent proof.
Lemma 2: For given matrices F,G ∈ Cn×m, the following
two conditions are equivalent:

(i) The following two conditions hold:

FF∗ � GG∗, FG∗ = −GF∗. (15)

(ii) There exists Ξ ∈ Skm such that G = FΞ and ‖Ξ‖ ≤ 1.

Proof of Lemma 2: It is obvious that the two conditions
in (i) can be rewritten, equivalently as

(jF)(jF)∗ � GG∗, (jF)G∗ = G(jF)∗.

From Lemma 1, the above conditions hold iff there exists
Ω ∈ Hn such that G = jFΩ = F(jΩ). This is nothing but
the condition (ii) with Ξ = jΩ ∈ Skm.

If we admit Lemma 2, we can provide a very concise proof
for Proposition 2.
Proof of Proposition 2: (i)⇒(ii): Again, to complete the
proof via contradiction, suppose (14) does not hold for any
P ∈ Hn and Q ∈ Pn. Then, from the Lagrange duality
theory, there exists H ∈ Pn+m such that

trace(ΠH) ≥ 0, trace(H) = 1,

Γ11(H) 
 Γ22(H), Γ12(H) = −Γ∗
12(H) (16)

where Γ11(H) and so on are defined in (8). If we denote the
full-rank factorization of H as in (9), the conditions in (16)
imply that the two conditions in (15) hold with F = H1 and
G = AH1 + BH2. It follows that there exists Ξ ∈ Skr such
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that AH1 + BH2 = H1Ξ and ‖Ξ‖ ≤ 1. Furthermore, if we
denote the eigenvalue decomposition of Ξ by

Ξ = UΛU∗, Λ = diag(λ1, · · · , λr), λi ∈ jE, U ∈ Ur,

we have (AH1 + BH2)U = H1UΛ. This implies hi =
L(λi)gi (i = 1, · · · , r) where hi and gi (i = 1, · · · , r) are
defined by (12). Thus we readily obtain

H =
r∑

i=1

[
L(λi)

1m

]
gig

∗
i

[
L(λi)

1m

]∗

.

Since trace(ΠH) ≥ 0, we can conclude that there exists at
least one index j such that

g∗j

[
L(λj)

1m

]∗

Π

[
L(λj)

1m

]
gj ≥ 0.

This clearly shows that (i) does not hold for λj ∈ jE.
(ii)⇒(i): We first note that[

A B

1n 0

][
L(jω)

1m

]
=

[
jωI

I

]
L(jω).

Thus if (14) holds, it follows for all ω ∈ E that[
L(jω)

1m

]∗

Π

[
L(jω)

1m

]

≺ −
[

L(jω)

1m

]∗ [
A B

1n 0

]∗ [
−Q P

P Q

][
A B

1n 0

][
L(jω)

1m

]

= −L(jω)∗D(1n − ω21n)L(jω)


 0.

This completes the proof.
To summarize the arguments in this section, we see that

the matrix formula in Lemma 1 plays a very important role
for the exactness proof of the (D,G) scaling and the finite
frequency KYP lemma. We note that a self-contained proof
for Lemma 2 is given in [9]. In our opinion, however, the
proof is rather complicated since Lemma 2 involves a skew-
symmetric Hermitian matrix Ξ and we need a special care
for its treatment. In the next section, we provide a concise
proof for Lemma 1, by noting that the matrix formula is
closely related to a norm preserving dilation under symmetric
structure constraints.

III. ELEMENTARY PROOF FOR THE MATRIX FORMULA

We first note that the next lemma holds.
Lemma 3 (Norm Preserving Dilation): For given X ∈
Hn and Y ∈ Cn×m, suppose ‖[ X Y ]‖ ≤ 1!%Then, there
exists Z ∈ Hm such that∥∥∥∥∥

[
X Y

Y ∗ Z

]∥∥∥∥∥ ≤ 1. (17)

Moreover, one of such Z is given by

Z = 1m − Y ∗(1n − X)†Y (18)
Under this lemma (proved later), the proof of Lemma 1 is

straightforward.
Proof of Lemma 1: It is obvious that if (ii) holds then (i)
holds. To prove the converse, suppose (i) holds and let us
define U ∈ Um such that FU = [ F1 0 ] where F1 ∈ Cn×r

is full column rank with r = rank(F ). Then, we see from
the first inequality in (i) that there exist X ∈ Cr×r and
Y ∈ Cr×(m−r) such that

GU = F1[ X Y ], ‖[ X Y ]‖ ≤ 1.

Moreover, since the second equality reduces to

F1X
∗F ∗

1 = F1XF ∗
1

and since F1 is full-column rank, we have X = X∗. It
follows from Lemma 3 that there exists Z ∈ Hm−r such
that

GU = [ F1 0 ]

[
X Y

Y ∗ Z

]
,

∥∥∥∥∥
[

X Y

Y ∗ Z

]∥∥∥∥∥ ≤ 1.

This can be rewritten as

G = FΩ, ‖Ω‖ ≤ 1, Ω := U

[
X Y

Y ∗ Z

]
U∗,

which clearly shows that (ii) holds.
Our task now is to prove Lemma 3. It should be noted

that the norm preserving dilation problem in general setting
is fully studied in the literature [4], [7], [14]. However,
in Lemma 3, we should achieve dilation under symmetric-
ity constraint and the inequalities involved are non-strict.
Therefore its proof is not necessarily obvious. Moreover,
it would be of benefit if we can provide a concise LMI-
based proof by making use of its particular symmetricity
structure. This is indeed possible, and to realize this, we
introduce the following three lemmas that would be fairly
easy to understand.
Lemma 4: (Schur complements for non-strict inequali-
ties [3]) For given J ∈ Hn, R ∈ Hm and W ∈ Cn×m, the
following two conditions are equivalent.

(i)

[
J W

W ∗ R

]
� 0.

(ii) R � 0, W (Im − RR†) = 0, J − WR†W ∗ � 0.

Lemma 5: For given P ∈ Hn, Q,S ∈ Hm, R ∈ Hl,
V ∈ Cn×m and W ∈ Cm×l, the following conditions are
equivalent.

(i) The following inequality condition holds:⎡
⎢⎢⎣

P V 0

V ∗ Q + S W

0 W ∗ R

⎤
⎥⎥⎦ � 0. (19)

(ii) There exists Z ∈ Hm such that
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[
P V

V ∗ Q + Z

]
� 0,

[
S −Z W

W ∗ R

]
� 0. (20)

If the conditions in (ii) are satisfied for some Z , one of such
Z is given by
Z = S − WR†W ∗. (21)

Proof of Lemma 5: (i)⇒(ii): From Lemma 4, we see that
(19) holds iff

R � 0, W (Il − RR†) = 0, (22)[
P V

V ∗ Q + S − WR†W ∗

]
� 0.

Hence, if we define Z by (21), the first inequality in (ii)
obviously holds. It is also apparent that the second inequality
in (ii) holds with Z in (21) since (22) and

S −Z − WR†W ∗ = 0

do hold. Hence, again from Lemma 4, the second inequality
in (ii) readily follows.
(ii)⇒(i): The proof of this direction is exactly the same as
[5]. Indeed, it is obvious that (ii) holds iff⎡
⎢⎢⎢⎢⎢⎣

P V 0 0

V ∗ Q + Z 0 0

0 0 S −Z W

0 0 W ∗ R

⎤
⎥⎥⎥⎥⎥⎦ � 0. (23)

Then we have⎡
⎢⎢⎢⎢⎢⎣

1n 0 0

0 1m 0

0 1m 0

0 0 1l

⎤
⎥⎥⎥⎥⎥⎦

∗ ⎡
⎢⎢⎢⎢⎢⎣

P V 0 0

V ∗ Q + X 0 0

0 0 S −X W

0 0 W ∗ R

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1n 0 0

0 1m 0

0 1m 0

0 0 1l

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

P V 0

V ∗ Q + S W

0 W ∗ R

⎤
⎥⎥⎦ � 0.

This completes the proof.
Lemma 6: For given X ∈ Hn and Y ∈ Cn×m, the
following three conditions are equivalent:

(i) ‖[ X Y ]‖ ≤ 1.

(ii)

⎡
⎢⎢⎣

1n X Y

X 1n 0

Y ∗ 0 1m

⎤
⎥⎥⎦ � 0.

(iii)

⎡
⎢⎢⎣

1n + X Y 0

Y ∗ 21m Y ∗

0 Y 1n − X

⎤
⎥⎥⎦ � 0. (24)

Proof of Lemma 6: The equivalence of (i) and (ii) is an
elementary fact. To prove the equivalence of (ii) and (iii), let
us define a non-singular matrix T ∈ R(2n+m)×(2n+m) by

T :=
1√
2

⎡
⎢⎢⎣

1n 1n 0n,m

0m,n 0m,n 21m

1n −1n 0n,m

⎤
⎥⎥⎦ .

Then, the equivalence readily follows via congruence trans-
formation with T if we note

T

⎡
⎢⎢⎣

1n X Y

X 1n 0

Y ∗ 0 1m

⎤
⎥⎥⎦T ∗

=
1
2

⎡
⎢⎢⎣

1n + X 1n + X Y

2Y ∗ 0m,n 2Im

1n − X −(1n − X) Y

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1n 0n,m 1n

1n 0n,m −1n

0m,n 21m 0m,n

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1n + X Y 0

Y ∗ 21m Y ∗

0 Y 1n − X

⎤
⎥⎥⎦ .

Now we are ready to state the proof of Lemma 3.
Proof of Lemma 3: From Lemma 6, we first note that
‖[ X Y ]‖ ≤ 1 holds iff (24) holds. From Lemma 5, we see
that (24) holds iff there exists Z such that[

1n + X Y

Y ∗ 1m + Z

]
� 0,

[
1m −Z Y ∗

Y 1n − X

]
� 0

ore equivalently,

1n+m �
[

X Y

Y ∗ Z

]
� −1n+m.

Moreover, Lemma 5 clearly shows that one of such Z is
given by Z = 1m − Y ∗(1n − X)†Y . This completes the
proof.

Thus we have completed the proof of Lemma 3 without
any difficulties, by means of such basic results as Schur
complement and congruence transformation. As mentioned
earlier, the exactness proof of the (D,G) scaling is straight-
forward if we complete Lemma 3 and hence Lemma 1.

IV. CONCLUSION

In this paper, we provided an elementary proof for the
(D,G) scaling applied to the uncertainty structure with one
repeated real scalar block and one full complex matrix block.
We first showed that the proof can be done straightforwardly
if we accept a certain matrix formula and the Lagrange
duality theory. We further showed that the matrix formula is
closely related to a norm preserving dilation under structural
constraints. By providing an elementary proof for the norm
preserving dilation, we clarified that basic results such as
Schur complement and congruence transformation in con-
junction with the Lagrange duality theory are enough to
complete a self-contained exactness proof. Since the (D,G)
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scaling is frequently used as a basic tool in up-to-date control
theory, we believe that the result in this paper is useful
certainly from a pedagogical point of view.
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