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Abstract— This paper is concerned with the problem of H∞

filter design for a class of linear uncertain systems with time-
varying delay. The uncertainty parameters are supposed to be
time-varying, unknown, but bounded, which appear affinely in
the matrices of system model. Our proposed robust H∞ filter
is a switching-type filter, in which the filter parameters are
tuned in a switching manner via a switching logic. Asymptotical
stability and a prescribed H∞ performance of the filtering error
systems are guaranteed. The resultant filter design conditions
are less conservative than those of filter with fixed gains. A
numerical example is given to illustrate the validity of the
proposed design.

I. INTRODUCTION

Over the past few years, state estimation of dynamic systems
has been extensively investigated [1], [6] and [15]. Compared with
traditional Kalman filtering, the H∞ filtering approach possesses
many advantages, such as no need for priori information on the
external noises and insensitiveness to uncertainty in dynamic model
[16]. Hence, recently there has been substantial interest in the study
of H∞ filtering problem [2], [9], [11], [13], [18], which is designed
to make the H∞ norm of the system minimized.

On the other hand, time-delay phenomena often arises from
biology, mechanics and economics intrinsically, and also appears
in actuation and measurement. As is well known [8], the existence
of time-delay degrades the control performance and may make
the closed-loop stabilization very difficult. Recently, H∞ filtering
results have been extended to linear systems with time-delays. Both
delay-independent and delay-dependent results have been proposed
[4], [5], [12], [14], [15], [17] and [19]. Some of these results deal
with the so-called norm-bounded uncertainty, which is somewhat
conservative in many application [7] and [10].

Recently, robust H∞ filtering linear time-delay systems with
polytopic type uncertainties have been treated, based on parameter-
independent Lyapunov function [4], [14], [17] or parameter-
dependent Lyapunov function [5] using LMI methodologies. In fact,
parameter-dependent Lyapunov method can reduce conservative-
ness compared with parameter-independent one when the uncertain
parameters are time-invariant. Also parameter-dependent Lyapunov
method can include the traditional quadratic stability approach
as a special case if the time-varying parameters and their rate
of variation are assumed to belong to a given convex-bounded
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polyhedral domain. However, while the uncertain parameters is
time-varying and the bound of its derivative is unknown, only the
parameter-independent Lyapunov function method can be applied.

In this paper, we investigate the robust H∞ filtering problem
for linear time-delay systems with time-varying uncertainties. The
uncertainty parameters are supposed to be time-varying, unknown,
but bounded, which appear affinely in the matrices of system model.
Apart from traditional filter with fixed gains, the proposed filter is
a switching-type filter, which consists of a number of fixed gain
filters. One of the fixed gain filters will be active at a time according
to some switching laws derived from the Lyapunov stability theory.
The derived filter design conditions of the switching-type filers
are given in terms of LMIs, which can reduce conservativeness
compared with the corresponding conditions of traditional filter with
fixed gains. A numerical example is given to show the effectiveness
of the proposed switching-type filter.

This paper is organized as follows. Section 2 introduces the prob-
lem and some preliminaries. It is followed by the robust switching-
type H∞ filtering design method in Section 3. An illustrative
example is given in Section 4 to demonstrate the proposed method.
Finally, Section 5 gives the conclusions.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Consider a linear uncertain system with time-varying delay
described by

ẋ(t) = A(δ(t))x(t) + Ad(δ(t))x(t − d(t)) + Bωω(t)

y(t) = C2x(t) + D21ω(t) + C3x(t − d(t))

z(t) = C1x(t)

x(t) = φ(t), t ∈ [−d̄, 0) (1)

where x(t) ∈ Rn is the state, y(t) ∈ Rp is the measured output and
z(t) ∈ Rq is the output signal vector to be estimated, respectively.
ω(t) ∈ Rv is the exogenous disturbance in L2[0,∞). φ(t) is
the given initial vector function that is continuous on the interval
[−d̄, 0), d(t) is time-varying bounded delays satisfying

d(t) ≤ d̄ < ∞, 0 ≤ ḋ(t) ≤ h < 1

And

A(δ(t)) = A0 +

N0
∑

i=1

δi(t)Ai, Ad(δ(t)) = Ad0 +

N0
∑

i=1

δi(t)Adi

A0, Ai, Ad, AdiBω, C1, C2, C3 and D21 are known constant ma-
trices of appropriate dimensions. δi(t)(i = 1 · · ·N0) are unknown
time-varying uncertainty, which satisfy δi ≤ δi(t) ≤ δ̄i. Here δi

and δ̄i are known lower and upper bounds of δi(t), respectively.
Since C2 ∈ Rp×n and rank(C2) = p1 ≤ p, then there exists
a matrix Tc ∈ Rp1×p such that rank(TcC2) = p1. Furthermore,

there exists a matrix Ccn such that rank

[

TcC2

Ccn

]

= n. Denote Tcn

=

[

TcC2

Ccn

]

−1

.

Assumption 1: System (1) is asymptotically stable.
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For traditional robust filtering, the following form filter is usually
used.

ξ̇1(t) = AFfξ1(t) + BFfy(t)

zF1(t) = CFfξ1(t) (2)

where AFf ∈ Rn×n, BFf ∈ Rn×p and CFf ∈ Rq×n are the
filter parameter matrices to be determined. Here, we assume that
the filter is of the same order as the system model.
Denote xef (t) = [xT (t) ξT

1 (t)]T and zef (t) = z(t)−zF1(t). Then
combining (2) with (1), the filtering error dynamic can be obtained
as

ẋef (t) = Aefxef (t) + Aefdxef (t − d(t)) + Befω(t)

zef (t) = Cefxef (t) (3)

where

Aef =

[

A(δ) 0
BFfC2 AFf

]

, Aefd =

[

Ad(δ) 0
BFfC3 0

]

,

Be =

[

Bω

BFfD21

]

, Cef = [C1 − CFf ].

In this paper, the following robust filter with switching-type gains
is considered.

ξ̇(t) = AF (δ̂(t))ξ(t) + BF (δ̂(t))y(t)

zF (t) = CF (δ̂(t))ξ(t) (4)

where δ̂i(t)(i = 1 · · ·N0) are the estimations of δi(t), which will

be obtained according to the designed switching laws. AF (δ̂) ∈
Rn×n, BF (δ̂) ∈ Rn×p and CF (δ̂) ∈ Rm×n have the following
forms, that is

AF (δ̂) = AF0 +

N0
∑

i=1

δ̂iAFi, BF (δ̂) = BF0 +

N0
∑

i=1

δ̂iBFi,

CF (δ̂) = CF0 +

N0
∑

i=1

δ̂iCFi

where AF0, AFi, BF0, BFi, CF0, CFi are fixed parameter
matrices to be designed. Here, the designed filter is of the same
order as the system model.
Denote xe(t) = [xT (t) ξT (t)]T and ze(t) = z(t) − zF (t).
Applying the robust filter (4) to the system (1), it follows

ẋe(t) = Aexe(t) + Aedxe(t − d(t))Beω(t)

ze(t) = Cexe(t) (5)

where

Ae =

[

A(δ) 0

BF (δ̂)C2 AF (δ̂)

]

, Aed =

[

Ad(δ) 0

BF (δ̂)C3 0)

]

,

Be =

[

Bω

BF (δ̂)D21

]

, Ce = [C1 − CF (δ̂)]

The purpose of this paper is to develop delay-dependent condi-
tions for the existence of the robust switching-type H∞ filter (4)
for linear time-delay system (1). Specially, for given γ > 0, find a
filter of the form (4) such the corresponding error dynamics (5) is
asymptotically stable and satisfies ‖Tzeω‖∞ < γ under zero-initial
conditions for any nonzero ω(t) ∈ L2[0,∞] and all admissible
uncertainties.

B. Preliminaries

Lemma 1[20]: Let x(t) ∈ Rn be a vector-valued function
with first-order continuous-derivative entries. Then, the following
integral inequality holds for any matrices M1, M2 ∈ Rn×n and
X = XT > 0, and a scalar function h := h(t) ≤ 0:

−

∫ t

t−h

ẋ
T (s)Xẋ(s)ds

≤

[

x(t)
x(t − h)

]T [

MT
1 + M1 −MT

1 + M2

∗ −MT
2 − M2

] [

x(t)
x(t − h)

]

+

[

x(t)
x(t − h)

]T [

MT
1

MT
2

]

X
−1 [

M1 M2

]

[

x(t)
x(t − h)

]

(6)

Lemma 2: Consider the closed-loop system described by (2). Then
the following statements are equivalent:
(i) there exist symmetric positive-definite matrices Pa, Q, S, matri-
ces M1, M2 and a filter described by (3) such that for δi ∈ [δi, δ̄i]























∆0

[

PaBef

0

]







d̄MT
1

0
d̄MT

2

0













d̄AT S
0

d̄AT
d S
0







[

CT
ef

0

]

∗ −γ2I 0 d̄BT
ω 0

∗ ∗ −S 0 0
∗ ∗ ∗ −d̄S 0
∗ ∗ ∗ ∗ −I























< 0 (7)

where

∆0 =









Ξ0 PaAedf +

[

−MT
1 + M2 0
0 0

]

∗ −(1 − h)Q +

[

−MT
2 + M2 0
0 0

]









with Ξ0 = PaAef + AT
efPa + Q +

[

MT
1 + M1 0

0 0

]

(ii) there exist symmetric matrices Y, N, Q̄, S̄ with 0 < N < Y ,

Q̄ =

[

Q̄11 Q̄12

∗ Q̄22

]

, matrices M1, M2 and a filter described by (3)

with AFf = AFe0, BFf = BFe0 and CFf = CFe0 such that for
δi ∈ [δi, δ̄i]

Va1 : =























Θ1 Θ2 Θ4 0
∗ Θ3 Θ5 0
∗ ∗ Θ6 − (1 − h)Q̄11 −(1 − h)Q̄12

∗ ∗ ∗ −(1 − h)Q̄22

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Θ7 d̄M̄T
1 d̄AT S̄ CT

1

Θ8 0 0 −CT
Fe0

0 d̄M̄T
2 d̄AT

d S̄ 0
0 0 0 0

−γ2I 0 0 0
∗ −S̄ 0 0
∗ ∗ −d̄S̄ 0
∗ ∗ ∗ −I























< 0 (8)
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where

Θ1 = Y A(δ) − NBFe0C2 + M̄1 + Q̄11

+ [Y A(δ) − NBFe0C2 + M̄1]
T

Θ2 = −NAF (δ) − A
T (δ)N + C

T
2 B

T
Fe0N + Q̄12

Θ3 = NAFe0 + (NAFe0)
T + Q̄22

Θ4 = Y Ad(δ) − NBFe0C3 − M̄
T
1 + M̄2

Θ5 = −NAd(δ) + NBFe0C3

Θ6 = −M̄2 − M̄
T
2

Θ7 = Y Bω − NBFe0D21

Θ8 = −NBω + NBFe0D21

Proof: Due to the space of limitation, the proof is omitted here.
Algorithm 1: Let γ denotes the robust H∞ performance bound of
the closed-loop system (3). Let NAFf = ĀFf and NBFf = B̄Ff .

min η s.t. 0 < N < Y (8)

where η = γ2. Then the resultant gains of robust filter (2) are
AFf = ĀFfN−1, BFf = B̄FfN−1 and CFf .

III. ROBUST H∞ SWITCHING-TYPE FILTER DESIGN

Theorem 1: Consider the filtering error system (5), and let
γ > 0, d̄ > 0 and 0 < h < 1 be given scalars. If there exist positive
definite matrices N, Y, Q11, Q22, S with 0 < N < Y and matrices
Q12, M1, M2, AF0, AFi, BF0, BFi, CF0, CFi, i = 1 · · ·N0 such

that for δi(t), δ̂i(t) ∈ [δi, δ̄i] the following matrix inequalities hold:






















T1 T2 T4 0 T7

∗ T3 T5 0 T8

∗ ∗ T6 − (1 − h)Q11 −(1 − h)Q12 T9

∗ ∗ ∗ −(1 − h)Q22 0
∗ ∗ ∗ ∗ T10 − γ2I
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

d̄MT
1 d̄AT S CT

1

0 0 −CT
F (δ)

d̄MT
2 d̄AT

d S 0
0 0 0
0 0 0
−S 0 0
∗ −d̄S 0
∗ ∗ −I























< 0 (9)

with

AF (δ) = AF0 +

N0
∑

i=1

δiAFi, BF (δ) = BF0 +

N0
∑

i=1

δiBFi

T1 = Ψ1 + ΨT
1

Ψ1 = Y A(δ) − NBF (δ)C2 + M

+

N0
∑

i=1

(δ̂i − δi)[−2N
T
3 NBFiC2 + NBFiC2]

T2 = −NAF (δ) − A
T (δ)N + C

T
2 B

T
F (δ)N

+

N0
∑

i=1

(δ̂i − δi)[−N
T
3 NAFi − C

T
2 B

T
FiN ] + Q12

T3 = NAF (δ) + (NAF (δ))T + Q22

T4 = Y Ad(δ) − NBF (δ)C3 − M
T
1 + M2 +

N0
∑

i=1

(δ̂i − δi)

× [−2N
T
3 NBFiC3 + NBFiC3 + 2C

T
2 B

T
FiNN4]

T5 = −NAd(δ) + NBF (δ)C3

+

N0
∑

i=1

(δ̂i − δi)[−C
T
3 B

T
FiN + N

T
4 NAFi]

T6 =

N0
∑

i=1

2(δ̂i − δi)[N
T
4 NBFiC3 + (NT

4 NBFiC3)
T ]

− M2 − M
T
2

T7 = Y Bω − NBF (δ̂)D21 +

N0
∑

i=1

2(δ̂i − δi)

× [CT
2 B

T
FiNN2 + NBFiD21 − N

T
3 NBFiD21]

T8 = −NBω + NBF (δ̂)D21

+

N0
∑

i=1

(δ̂i − δi)[A
T
FiNN2 − 2NBFiD21]

T9 = 2

N0
∑

i=1

(δ̂i − δi)[N4TNBFiD21 + C
T
3 B

T
FiNN2]

T10 = 2

N0
∑

i=1

(δ̂i − δi)(N
T
2 NBFiD21 + D

T
21B

T
FiNN2)

N1 = Tcn

[

Tc

0

]

, N2 = Tcn

[

TcD21

0

]

N3 = Tcn

[

0
Ccn

]

, N4 = Tcn

[

TcC3

0

]

and also δ̂i(t) is determined according to the switching law

δ̂i =

{

δ̄i, if Ui + Ūi < 0
δi, if Ui + Ūi ≥ 0

, i = 1 · · ·N0 (10)

Ui = ξ
T
NAFiξ − y

T
N

T
1 NAFiξ + ξ

T
NBFiy

− y
T
N

T
1 NBFiy

Ūi = ξ
T
NBFiy − y

T
N

T
1 NBFiy

Then, the filter error system (5) is asymptotically stable with an
H∞ disturbance attenuation level γ.
Proof: Choose the following Lyapunov-Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t).

where

V1(t) = x
T
e (t)Pxe(t), V2(t) =

∫ t

t−d(t)

x
T
e (α)Qxe(α)dα,

V3(t) =

∫ 0

−d̄

∫ t

t+β

ẋ
T
e (α)HT

SHẋe(α)dαdβ.

with H =
[

I 0
]

, Q =

[

Q11 Q12

∗ Q22

]

> 0, and S > 0.

Then the derivative of V (t) along any trajectory of the filtering
error system (5) is given by

V̇1(t) = 2x
T
e (t)P ẋe(t) (11)

V̇2(t) ≤ x
T
e (t)Qxe(t) − (1 − h)xT

e (t − d(t))Qxe(t − d(t))
(12)

V̇3(t) ≤ d̄η0





AT

AT
d

BT
ω



 S
[

A Ad Bω

]

η
T
0

−

∫ t

t−d(t)

ẋ
T (α)Sẋ(α)dα (13)
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with η0 =
[

xT (t) xT (t − d(t)) ωT (t)
]

.
Using Lemma 2, it follows

−

∫ t

t−d(t)

ẋ
T (s)Sẋ(s)ds (14)

≤

[

x(t)
x(t − d)

]T [

MT
1 + M1 −MT

1 + M2

∗ −MT
2 − M2

] [

x(t)
x(t − d)

]

+

[

x(t)
x(t − d)

]T [

MT
1

MT
2

]

S
−1 [

M1 M2

]

[

x(t)
x(t − d)

]

(15)

Then Ae and Aed can be written as

Ae = Aea + Aeb, Aed = Ae1 + Ae2

where

Aea =

[

A(δ) 0
BF (δ)C2 AF (δ)

]

,

Aeb =

N0
∑

i=1

(δ̂i − δi)

[

0 0
BFiC2 AFi

]

Ae1 =

[

Ad(δ) 0
BF (δ)C3 0

]

, Ae2 =

N0
∑

i=1

(δ̂i − δi)

[

0 0
BFiC3 0

]

Let P be of the following form,

P =

[

Y −N
−N N

]

with 0 < N < Y , which implies P > 0. From (1), it follows

TcC2x = Tc[y − D21ω − C3x(t − d(t))] (16)

Thus

x = Tcn

[

TcC2x
Ccnx

]

= N1y − N2ω + N3x − N4x(t − d(t)) (17)

with N1 = Tcn

[

Tc

0

]

, N2 = Tcn

[

TcD21

0

]

, N3 =

Tcn

[

0
Ccn

]

, N4 = Tcn

[

TcC3

0

]

.

Furthermore, we have

PAea =

[

Y A(δ) − NBF (δ)C2 −NAF (δ)
−NA(δ) + NBF (δ)C2 NAF (δ)

]

and

PAeb =

N0
∑

i=1

(δ̂i − δi)

[

−NBFiC2 −NAFi

NBFiC2 NAFi

]

which follows

[xT
ξ

T ]PAeb[x
T

ξ
T ]T

=

N0
∑

i=1

(δ̂i − δi){−x
T
NBFiC2x − x

T
NAFiξ

+ ξ
T
NBFiC2x + ξ

T
NAFiξ}

By (16) and (17), it is easy to see

− x
T
NBFiC2x

= (ωT
N

T
2 − x

T
N

T
3 + x

T (t − d(t))NT
4 )NBFi

× (C2x + D21ω + C3x(t − d(t))) + x
T
NBFiD21ω

− y
T
N

T
1 NBFiy + x

T
NBFiC3x(t − d(t))

− x
T
NAFiξ = −(yT

N
T
1 − ω

T
N

T
2 + x

T
N

T
3

− x
T (t − d(t))NT

4 )NAFiξ

ξ
T
NBFiC2x = ξ

T
NBFi(y − D21ω − C3x(t − d(t)))

Thus,

x
T
e PAebxe = η

T
APeη + η

T
BPeω + U

+

N0
∑

i=1

(δ̂i − δi)ω
T
N

T
2 NBFiD21ω

where ηT =
[

xT
e xT

e (t − d(t))
]

=
[

xT (t) ξT (t) xT (t − d(t)) ξT (t − d(t))
]

APe =

N0
∑

i=1

(δ̂i − δi)

[

Ψ11 Ψ12

Ψ21 Ψ22

]

, Bpe =

N0
∑

i=1

(δ̂i − δi)

[

F1

F2

]

with

Ψ11 =

[

−NT
3 NBFiC2 −NT

3 NAFi

0 0

]

,

Ψ12 =

[

−NT
3 NBFiC3 + NBFiC3 0

−NBFiC3 0

]

,

Ψ21 =

[

NT
4 NBFiC2 NT

4 NAFi

0 0

]

,

Ψ22 =

[

NT
4 NBFiC3 0

0 0

]

F1 =

[

CT
2 BT

FiNN2 + NBFiD21 − NT
3 NBFiD21

AT
FiNN2 − NBFiD21

]

F2 =

[

CT
3 BT

FiNN2 + NT
4 NBFiD21

0

]

U =

N0
∑

i=1

(δ̂i − δi)Ui,

Ui = ξ
T
NAFiξ − y

T
N

T
1 NAFiξ + ξ

T
NBFiy

− y
T
N

T
1 NBFiy

On the other hand, we have

PAe1 =

[

Y Ad(δ) − NBF (δ)C3 0
−NAd(δ) + NBF (δ)C3 0

]

and

PAe2 =

N0
∑

i=1

(δ̂i − δi)

[

−NBFiC3 0
NBFiC3 0

]

which follows

x
T
e (t)PAebx

T
e (t − d(t))

=

N0
∑

i=1

(δ̂i − δi){−x
T
NBFiC3x(t − d(t))

+ ξ
T
NBFiC3x(t − d(t))}

By (16) and (17), it is easy to see

− x
T
NBFiC3x(t − d(t))

= (ωT
N

T
2 − x

T
N

T
3 + x

T (t − d(t))NT
4 )NBFi

× (C2x + D21ω + C3x(t − d(t))) + x
T
NBFiD21ω(t)

− y
T
N

T
1 NBFiy + x

T
NBFiC2x(t)

ξ
T
NBFiC3x(t − d(t)) = ξ

T
NBFi(y − D21ω − C2x(t))

Thus,

x
T
e PAe2xe(t − d(t)) = η

T
ĀPeη + η

T
B̄Peω + Ū

+

N0
∑

i=1

(δ̂i − δi)ω
T
N

T
2 NBFiD21ω
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where

ĀPe =

N0
∑

i=1

(δ̂i − δi)

[

Φ11 Φ12

Φ21 Φ22

]

, B̄Pe =

N0
∑

i=1

(δ̂i − δi)

[

F3

F4

]

with

Φ11 =

[

−NT
3 NBFiC2 + NBFiC2 0

−NBFiC2 0

]

,

Φ12 =

[

−NT
3 NBFiC3 0

0 0

]

,

Φ21 =

[

NT
4 NBFiC2 0

0 0

]

, Φ22 =

[

NT
4 NBFiC3 0

0 0

]

F3 =

[

CT
2 BT

FiNN2 + NBFiD21 − NT
3 NBFiD21

−NBFiD21

]

F4 =

[

CT
3 BT

FiNN2 + NT
4 NBFiD21

0

]

Ū =

N0
∑

i=1

(δ̂i − δi)Ūi,

Ūi = ξ
T
NBFiy − y

T
N

T
1 NBFiy.

Then from the derivative of V (t) along the closed-loop system (5),
it follows

V̇1(t) ≤

[

η
ω

]T





Ω0

[

PBe + F1 + F3

F2 + F4

]

∗ Φ1





[

η
ω

]

+ 2(U + Ū)

where

Ω0 =

[

Γ1 Θ1

∗ Θ2

]

+
[

CT
e 0

] [

Ce

]

Φ1 = 2

N0
∑

i=1

(δ̂i − δi)(N
T
2 NBFiD21 + D

T
21B

T
FiNN2) − γ

2
I

with

Γ1 = PAea + A
T
eaP

+

N0
∑

i=1

(δ̂i − δi)[Φ11 + Ψ11 + (Φ11 + Ψ11)
T ]

Θ1 = PAe1 +

N0
∑

i=1

(δ̂i − δi)[Φ12 + ΦT
21 + Ψ12 + ΨT

21]

Θ2 =

N0
∑

i=1

(δ̂i − δi)[Φ22 + Ψ22 + (Φ22 + Ψ22)
T ]

Furthermore, from (11) and (16) we can obtain that

V̇ (t) + z
T
e (t)ze(t) − γ

2
ω

T (t)ω(t)

≤

[

η
ω

]T

Ω1

[

η
ω

]

+ 2(U + Ū) (18)

where

Ω1 =





Ω2 + Π

[

PBe + F1 + F3

F2 + F4

]

∗ Φ1





+ d̄











AT

0
AT

d

0
BT

ω











S
[

A 0 Ad 0 Bω

]

with

Ω2 =




Q +

[

MT
1 + M1 0

0 0

] [

−MT
1 + M2 0
0 0

]

0 Θ0





+ Ω0

Π = d̄







MT
1

0
MT

1

0






S

−1 [

M1 0 M2 0
]

, Q =

[

Q11 Q12

∗ Q22

]

Θ0 = −(1 − h)Q +

[

−MT
2 + M2 0
0 0

]

The design condition V̇ (t) + zT
e (t)ze(t) − γ2ωT (t)ω(t) ≤ 0 is

reduced to

Ω1 < 0 (19)

and
U + Ū ≤ 0. (20)

Since y and ξ are available on line, the switching law can be chosen
as (10). So (20) can be achieved.
Notice that

PBe =

[

Y Bω − NBF (δ̂)D21

−NBω + NBF (δ̂)D21

]

It is easy to see Ω1 < 0 is equivalent to

Ω4 =






















Ω2

[

PBe + F1 + F3

F2 + F4

]







d̄MT
1

0
d̄MT

2

0













d̄AT S
0

d̄AT
d S
0







[

CT
e

0

]

∗ Φ1 0 d̄BT
ω 0

∗ ∗ −S 0 0
∗ ∗ ∗ −d̄S 0
∗ ∗ ∗ ∗ −I























< 0 (21)

If (9) holds, which implies Ω4 < 0. Thus it follows Ω1 < 0.

Together with the switching laws (10) , we can get V̇ (t) ≤ 0.
Furthermore, we have

V̇ (t) + z
T
e (t)ze(t) − γ

2
ω

T (t)ω(t) ≤ 0.

Integrate the above-mentioned inequalities from 0 to ∞ on both
sides, we obtain

V (∞) − V (0) +

∫

∞

0

ze(t)
T
ze(t)dt ≤ γ

2

∫

∞

0

ω(t)T
ω(t)dt.

which implies that the H∞ disturbance attenuation of the closed-
loop system (5) is no larger than γ holds.

Theorem 2: If the condition in Lemma 1 holds for the closed-
loop system (3) with traditional robust filter (2), then the condition
in Theorem 1 holds for the closed-loop system (5) with robust
switching-type filter (4).
Proof: The proof can be easily obtained from Theorem 1, so we
omit it here.
Algorithm 2: Let γ denotes the robust H∞ performance bound
of the closed-loop system (5). Let NAF0 = ĀF0, NAFi = ĀFi,
NBF0 = B̄F0.and NBFi = B̄Fi.

min η s.t. 0 < N < Y and (9),

where η = γ2. Then the resultant gains of robust switching-
type filter (4) are AF0 = ĀF0N

−1, AFi = ĀFiN
−1, BF0 =

B̄F0N
−1, BFi = B̄FiN

−1, CF0 and CFi, i = 1 · · ·N0.
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IV. NUMERICAL EXAMPLE

Consider the following linear time-delay system (1) with time-
varying uncertainty satisfying

A(δ) =

[

−2 5
−1 −4

]

+ δ1(t)

[

1 0
0 0.5

]

+ δ2(t)

[

0 0.1
1 0.1

]

Ad(δ) =

[

−0.1 0.4
0.2 0.3

]

+ δ1(t)

[

0.2 0.1
0.05 0

]

+ δ2(t)

[

0.1 0
0 0.1

]

C1 =

[

1 0
0 2

]

, Bω =

[

0 1
0 2

]

, C2 =

[

3 0
1 0

]

C3 =

[

0 1
2 −1

]

, D21 =

[

2 0
1 0

]

x(0) =

[

0
0

]

with δ1(t) = 0.5cos(t), δ2(t) = sin(t) and d(t) = 1
2

sin(t)+ 1
2

. Here

we chose Tc =
[

1 0
]

.

Using Matlab LMI tool box [3], Algorithm 1 and Algorithm
2, we get the H∞ performance index is 1.1179 with the robust
switching-type filter while that of traditional robust filter with fixed
gains is 1.3037. Just as the theory has proved the robust switching-
type H∞ filter design method is less conservative than traditional
robust filter with fixed gains.

The simulations are carried out with the following disturbance

ω(t) =
[

ω1(t) ω2(t)
]T

, where

ω1(t) = ω2(t) =

{

1, 1 ≤ t ≤ 2 (seconds)
0 otherwise

Figure 1 and Figure 2 are the responses curves of system states
with the robust switching-type H∞ filter and traditional robust H∞

filter with fixed gains, respectively. It is easy to see that our robust
switching-type H∞ filter has more disturbance attenuation ability
than that of traditional robust filter with fixed gains as theory has
proved.

V. CONCLUSIONS

This paper has proposed a novel robust H∞ filter design pro-
cedure for linear uncertain systems with time-varying delay. The
uncertainty parameters are supposed to be time-varying, unknown,
but bounded, which appear affinely in the matrices of system model.
A new switching-type filter is established based on LMI method and
switching laws to guarantee asymptotic stability and a prescribed
H∞ performance level of the error systems for all admissible
uncertainties. The derived design conditions are less conservative
than those of the corresponding filter with fixed gains, which has
also been demonstrated by an illustrative example.
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Fig. 1. Response curve of the first state with robust switching-type filter
(solid) and traditional robust filter with fixed gains (dashed).
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Fig. 2. Response curve of the second state with robust switching-type filter
(solid) and traditional robust filter with fixed gains (dashed).
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