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Abstract— This paper concerns the average consensus prob-
lem with the constraint of quantized communication between
nodes. A broad class of algorithms is analyzed, in which the
transmission strategy, which decides what value to communicate
to the neighbours, can include various kinds of rounding, prob-
abilistic quantization, and bounded noise. The arbitrariness
of the transmission strategy is compensated by a feedback
mechanism which can be interpreted as a self-inhibitory action.
The result is that the average of the nodes state is not conserved
across iterations, and the nodes do not converge to a consensus;
however, we show that both errors can be made as small
as desired. Bounds on these quantities involve the spectral
properties of the graph and can be proved by employing
elementary techniques of LTI systems analysis.

I. INTRODUCTION

Consider the following variation of the average consensus

problem [1]: each node in a graph knows a number xi(0) ∈
R, and the goal is to drive each node’s belief to the initial

average α, with the limitation that nodes can communicate

only with their neighbours, and that the channel is quantized.

At first sight, this problem looks like a false problem, for

if a node can send even only one bit over a channel, then

it can send anything, by creating an adequate coding. For

example, if a resolution of 2−8 is needed, then one could

consider 8 consecutive bits as a code word, where the i-th
bit would represent the i-th bit in the binary expansion of

the number being transmitted. With such coding, one can

apply the standard consensus algorithms which will achieve

a precision of 2−8. If more precision is required, one can use

a 16 bit word, and so on. This is true, but the problem can

be framed in another way: given a certain quantization, how

precise can the consensus be? Previous work always assumed

that the achievable precision would have been in the order of

the quantization step; instead, we show that consensus can

be reached with a precision which is arbitrarily small, at the

expense of slower convergence, and without “cheating” by

changing the channel coding. For example, it is possible to

attain a precision of 2−16 even using 8 bit words.

Also note that there are situations in which the channel

carries only one bit, and there is no complexity available

to change the channel coding. Biological neural networks

are such an example. Neurons communicate through trains

of spikes, which are a all-or-none, partly probabilistic phe-

nomenon [2], [3]; a spike has a self-inhibitory effect on the

spiking neuron and either a excitatory or inhibitory effect
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on the other connected neurons. Consider the cartoonish

representation of a neural network in Fig. 1. Assume some

of the neurons are sensible to the same external stimulus

(temperature, light intensity, sweetness, etc.) and that we

wish to obtain an average of these measures, which we

think as real-valued excitation levels. This can be cast as an

average consensus problem with 0−1 communication links,

where {0, 1} can be mapped to {no spike, spike}, subject to

“noisy” or “probabilistic” quantization.

More in general, we are interested in the kind of com-

putation that can be implemented by a network of spatially

distributed, noisy, slow elements, with limited bandwidth,

such as neurons. The evidence from biology suggests that,

under these constraints, it is possible to implement fast,

robust, and adaptive control systems. Yet we do not have,

in our control-systems toolbox, design methods that can

work on this computational substrate. In this context, average

consensus on a graph is a good toy problem because it clearly

has the flavor of “computation”, and still it can be solved

with tools from linear system theory.

In contrast with previous work (summarized in the next

section), we do not consider the quantization strategy as

part of the design. Rather, we take the basic discrete-time

consensus algorithm [1], and we consider its behavior when

the transmitted values are subject to an arbitrary, possibly

noisy, quantization strategy. In this paper, we consider any

quantization strategy ψ, either deterministic or probabilistic,

with the condition that |ψ(x) − x| is bounded. We show

that the problem can be solved by adding a feedback loop

around ψ; this is essentially an integrator that compensates

for the error in time. When ψ is given the interpretation of

a spiking function, the feedback loop can be interpreted as a

self-inhibitory action. Using this method, the average of the

nodes state is not conserved across iterations, and the nodes

do not converge to a consensus; however, both errors can be

made as small as desired, at the cost of slower convergence.
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Fig. 1. Cartoonish representation of a biological neural network. A group of
neurons is sensible to the same stimulus (for example, light); the activation
value plays the same role as the initial node values xj(0). The problem of
averaging the stimulus response can be cast as an average consensus problem
with 1-bit channels (spike/no spike). Using the algorithm proposed in this
paper, the spiking frequency of the neurons would eventually synchronize
approximately to a frequency equal to the average of the external stimuli.

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA12.5

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4361



II. RELATED WORK

A consensus algorithm over quantized channels is a two-

part strategy:

1) Communication strategy: how to decide the value

yj(k) to send to the neighbors.

2) Update strategy: how to update one node’s value xi(k)
based on the yj(k) received from its neighbors.

We will be consistent through the paper to use the index j to

refer to the communication strategy, and the index i to refer

to the update strategy.

Many works dealt with reaching a quantized consensus, in

the sense that xj(k) ∈ Z, and in the limit the states differ at

most by 1; for the analysis of this problem see [4], [5] and

references therein.

In [6], [7], [8], [9] the authors consider the problem of

reaching a consensus in R using quantized channels. They

propose the following communication strategy:

yj(k) = q(xj(k))

where q(x) rounds x to the nearest integer, and the following

is the update strategy:

xi(k + 1) = xi(k) − yi(k) +
∑

j

Pi,j yj(k)

where P is any doubly stochastic matrix with positive diag-

onal and with the corresponding graph strongly connected.

This algorithm is such that:

• The average of the states is conserved.

• The nodes converge to different values, in general

not in Z.

• The disagreement is in the order of the discretization

step.

In [10] the authors propose a “probabilistic quantization”

scheme. The probabilistic quantization qp(x) of x is a

random variable with the distribution:

qp(x) =

{

⌈x⌉ with probability x − ⌊x⌋
⌊x⌋ otherwise

(1)

They consider the following communication strategy:

yj(k) = qp(xj(k))

with the following updating strategy:

xi(k + 1) =
∑

j

Pi,j yj(k)

with P doubly stochastic.

This algorithm is such that:

• The average is not conserved.

• Nodes converge to a consensus τ ∈ Z.

• The expected value of τ is α.

III. PROPOSED STRATEGY

As for the updating strategy, we use the same update rule

discussed as the base case in the tutorial paper [1], with

the difference is that we use yj(k), the quantized value

transmitted by node j, instead of using the real state xj(k).

xi(k + 1) = xi(k) +
η

∆

∑

j

aij (yj(k) − xi(k)) (2)

Here aij is an element of the adjacency matrix and ∆ is

the maximum degree of the graph. The parameter η ∈ (0, 1)
influences the convergence speed (and, as we will see, the

precision of the consensus).

The communication strategy relies on the definition of an

auxiliary state variable cj(k) ∈ R, for which initially cj(0) =
0, and a certain function ψ : R → Z, or random variable,

such that

|ψ(y) − y| ≤ β (3)

for some β > 0.

Our proposed communication strategy is:
{

yj(k) = ψ (xj(k) − cj(k))

cj(k + 1) = cj(k) + (yj(k) − xj(k))
(4)

Note that the auxiliary variable cj(k) integrates the error

in approximating xj with yj . This error is then used as a

negative feedback for ψ. If ψ is interpreted as a spiking

TABLE I

SUMMARY OF CONSIDERED METHODS

Method Communication strategy Update strategy Drift Disagreement

No quantization
y(k) = x(k) x(k + 1) = x(k) + (P − I)y(k) d(k) = 0 ϕ(k) → 0

Carli et al.
y(k) = q(x(k)) x(k + 1) = x(k) + (P − I)y(k) d(k) = 0 ϕ(k) → c > 0

Aysal et al.
y(k) = qp(x(k)) x(k + 1) = Py(k) d(k) 6= 0 ϕ(k) → 0

Proposed
strategy

y(k) =ψ(x(k) − c(k))

c(k + 1) = c(k) + (y(k) − x(k))

for any ψ such that |ψ(z)− z| ≤ β

x(k+1) = (I−
η

∆
D)x(k)+

η

∆
Ay(k)

for any η ∈ (0, 1)

d(k) ≤ ηβ ϕ(k) ≤ c · ηβ
λn{L}

λ2{L}
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function, the feedback inhibits the next spike, similarly to the

effect of the inhibitory post-synaptic potential in the neuron.

Examples of allowed ψ include:

• Rounding functions: Define the function q : R → Z

such that q(x) is the integer closest to x. Then one can

choose

ψ(x) = q(x), β = 0.5

• Ceiling/floor functions:

ψ(x) = ⌈x⌉ , β = 1

ψ(x) = ⌊x⌋ , β = 1

• Threshold-and-fire: Fire to the next integer if x − ⌊x⌋
is over a threshold t ∈ (0, 1).

ψ(x) =

{

⌈x⌉ if x − ⌊x⌋ > t

⌊x⌋ otherwise
, β = max{t, 1−t}

(5)

• Random rounding: Choose randomly between the previ-

ous and the next integer, according to a fixed probability

p ∈ (0, 1).

ψ(x) =

{

⌈x⌉ with probability p

⌊x⌋ otherwise
, β = 1

• Probabilistic quantization: Use the probabilistic quan-

tization defined as in (1):

ψ(x) =

{

⌈x⌉ with probability x − ⌊x⌋
⌊x⌋ otherwise

, β = 1

In the case without quantization (yj(k) = xj(k)), it is

possible to obtain, with very mild assumptions, two nice

properties of the update strategy (2): the mean is conserved

across iterations, and the disagreement tends to zero. This is

not true in our case: the mean is not conserved, and the states

do not converge to a consensus. However, we can provide

bounds that depend linearly on the parameter η in (2) and

therefore can be made as small as desired, and, in particular,

much smaller than the quantization.

To measure the performance of the algorithm, we define

two error measures. The first is the drift from the mean:

d(k) ,

∣

∣

∣

∣

∣

1

n

∑

i

xi(k) − α

∣

∣

∣

∣

∣

The other is the disagreement among the nodes:
∑

i,j

aij (xi(k) − xj(k))
2

= x(k)T
Lx(k)

In this expression L is the Laplacian of the graph (L =
D−A, where D is the degree matrix and A is the adjacency

matrix). Because we are interested in the performance as the

number of nodes grows, we look at the average disagree-

ment ϕ(k), which we define as

ϕ(k) ,





1

n∆

∑

i,j

aij (xi(k) − xj(k))
2





1/2

TABLE II

SYMBOLS USED IN THIS PAPER

n number of nodes
A adjacency matrix
D degree matrix
dj degree of node j
∆ graph degree
L Laplacian matrix; L = D − A

P Perron matrix; P = I − ǫL with ǫ < 1/∆
xj(k) node state

α target value: α =
P

i xi(0)/n
yj(k) value transmitted by node j to neighbors at time k
ψ generic (noisy) quantization function

d(k) drift
ϕ(k) average disagreement
q(x) nearest integer to x

qp(x) probabilistic quantization for x

r(x) , q(x) − x
cj(k) auxiliary state variable

1 n × 1 vector of 1s

Note that we use n∆ as an approximation to the number

of edges; the square root is to obtain a linear measure

comparable with d(k).
In the next section we prove the following bounds:

d(k) ≤ ηβ

lim
k→∞

ϕ(k) ≤
√

6 · ηβ · λn{L}
λ2{L}

(6)

In this paper, with abuse of notation, we write

limk→∞ ϕ(k) ≤ c in the sense that ϕ(k) ≤ c + f(k)
with limk→∞ f(k) = 0; in general, ϕ(k) does not have a

limit because it settles on an oscillatory behavior.

Note in (6) the three factors that impact the accuracy of

the consensus: η ∈ (0, 1) appears in the update strategy,

β depends on the quantization strategy, and λn{L}/λ2{L}
depends on the topology of the graph. The bound on the drift

depends only on β and η and is independent of the topology.

By choosing a smaller η, we can make these two errors as

small as desired; the trade-off is that a smaller η produces

slower convergence.

IV. MAIN RESULTS

We briefly recalls the main spectral properties of graphs

that we use in the following; for the proofs, see [1] and

references therein. See also Table III for a summary of the

symbols.

We assume that the graph is undirected and connected. Let

D be the degree matrix and A the adjacency matrix. Then the

Laplacian matrix L = D−A is symmetric positive semidefi-

nite. The smallest eigenvalue λ1{L} is 0, with eigenvector 1:

1
T
L = 0. The second smallest eigenvalue λ2{L} is different

than zero. The largest eigenvalue λn{L} is at least ∆ and at

most 2∆.

If ǫ = η/∆, with η ∈ (0, 1) then P = I − ǫL is a doubly

stochastic matrix. P and L have the same eigenvectors. If

λj is the j-th eigenvalue of L, then the j-th eigenvalue for

P is µj = 1 − ǫλj . 1 is an eigenvector for the simple
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eigenvalue 1 of P: 1
T
P = 1. Because the other eigenvalues

of P are strictly less than 1, and 1
T
L = 0, this implies that

limk→∞ P
k
L = 0.

Before stating the main results, we begin with two lemmas.

The first describes an invariant quantity of the system.

Lemma 1: Let dj be the degree of node j and ǫ = η/∆.

Then the following quantity V (k) is invariant:

V (k) =
∑

i

(xi(k) − ǫdjcj(k)) = 1
T (x(k) − ǫDc(k))

Proof: Notice that y(k) can be written as:

y(k) = x(k) + [c(k + 1) − c(k)]

Hence the dynamics can be rewritten as:

x(k + 1) = Px(k) + ǫA(c(k + 1) − c(k))

Now a straight computation gives:

V (k + 1) = 1
T (x(k + 1) − ǫDc(k + 1))

= 1
T (Px(k) + ǫA(c(k + 1) − c(k)) − ǫDc(k + 1))

= 1
T (Px(k) − ǫDc(k) + ǫL(c(k + 1)))

= 1
T (x(k) − ǫDc(k)) = V (k)

Lemma 2: The auxiliary variable cj(k) used in the feed-

back loop is bounded: |cj(k)| ≤ β

Proof:

|cj(k + 1)| = |cj(k) + (yj(k) − xj(k))|
= |ψ(xj(k) − cj(k)) − (xj(k) − cj(k))|
= |ψ(z) − z| ≤ β

Given the previous lemma, the bound on the drift is an easy

consequence.

Proposition 1: The drift is bounded:

d(k) ≤ ηβ (7)
Proof: Notice that

α =
1

n
V (0) =

1

n
V (k) =

1

n
1

T (x(k) − ǫDc(k)) ,

and thus
∣

∣

∣

∣

1

n
1

Tx(k) − α

∣

∣

∣

∣

=

∣

∣

∣

∣

ǫ
1

n
1

T
Dc(k)

∣

∣

∣

∣

≤ ǫ
1

n
Tr(D)β

≤ ǫ
1

n
(n∆) β = ǫ∆β = ηβ

Proposition 2: Eventually, the disagreement is bounded

by ǫ:

lim
k→∞

ϕ(k) ≤
√

6 · ηβ
λn{L}
λ2{L}

(8)

Proof: The dynamics of the system can be written as

x(k + 1) = Px(k) + ǫAc(k + 1) − ǫAc(k),

where ǫ = η/∆. In this proof, we consider Ac(k) as a

disturbance input to the system x(k +1) = Px(k). Because

c(k) is bounded (Lemma 2) and P, being doubly stochastic,

has a “mixing” effect, the disturbance is filtered by the

dynamics, and the final effect on the consensus can be

bounded.

Note that ǫAc(k) is added to the state at time x(k) (with

a plus sign) and to x(k + 1) (with a minus sign). The

contribution to x(k+1) is globally +PǫAx(k)−ǫAc(k) =
ǫ(P − I)Ac(k) = −ǫ2LAc(k). Consequently, the state

admits the following closed form expression:

x(k) = P
kx(0)+ǫAc(k)−ǫ2

k−1
∑

τ=1

P
k−τ

LAc(τ)−ǫPk
Ac(0)

We want to compute the limit of the disagreement function

x(k)T
Lx(k) as k → ∞. Note that it is composed by 6

terms:

x(k)T
Lx(k) = (9)

x(0)T
P

k
LP

kx(0) + (10)

ǫ2c(k)T
ALAc(k) + (11)

ǫ4
k−1
∑

m=1

k−1
∑

τ=1

c(τ)T
ALP

k−m
LP

k−τ
LAc(τ) +(12)

ǫx(0)T
P

k
LAc(k) + (13)

−ǫ2x(0)T
P

k
L

k−1
∑

τ=1

P
k−τ

LAc(τ) + (14)

−ǫ3c(k)T
A

k−1
∑

τ=1

LP
k−τ

LAc(τ) (15)

Because P
k
L → 0, the terms (10), (13), (14) disappear. The

term (11) can be bounded as follows:

|ǫ2c(k)T
ALAc(k)| ≤ β2ǫ2 max

||u||∞≤1
|uT

ALAu|

≤ β2ǫ2∆2 max
||u||∞≤1

|uT
Lu|

≤ β2ǫ2∆2nλn{L}

The term (15) can be bounded as

|ǫ3c(k)T
A

k−1
∑

τ=1

LP
k−τ

LAc(τ)| ≤

ǫ3
k−1
∑

τ=1

|c(k)T
ALP

k−τ
LAc(τ)| ≤

β2ǫ2∆2n

k−1
∑

τ=1

λmax

{

LP
k−τ

L

}

Recall that P and L have the same eigenvectors; hence the

typical eigenvalue for the matrix LP
k−τ

L has the value

λi

{

LP
k−τ

L

}

= λi{L}2 (1 − ǫλi{L})k−τ

This expression can be bounded by choosing the largest

eigenvalue λn for the first factor, and the smallest non-zero

eigenvalue λ2 for the second factor.

λmax

{

LP
k−τ

L

}

≤ λn{L}2 (1 − ǫλ2{L})k−τ
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The sum of the series can be computed as:

k−1
∑

τ=1

(1 − r)
k−τ

=
(1 − r)

r

[

1 − (1 − r)
k−1

]

Hence for the sixth term:
∣

∣

∣

∣

∣

ǫ3c(k)T
A

k−1
∑

τ=1

LP
k−τ

LAc(τ)

∣

∣

∣

∣

∣

≤

β2ǫ2∆2n
λ2

n{L}
λ2{L}

(1 − ǫλ2{L})
[

1 − (1 − ǫλ2{L})k−1
]

For the same reasons, but with longer computations, the

remaining term can be bounded as follows:
∣

∣

∣

∣

∣

ǫ4
k−1
∑

m=1

k−1
∑

τ=1

c(τ)T
ALP

k−m
LP

k−τ
LAc(τ)

∣

∣

∣

∣

∣

≤

β2ǫ4n∆2
k−1
∑

m=1

k−1
∑

τ=1

λmax

{

LP
k−m

LP
k−τ

L

}

We find again that

λmax

{

LP
k−m

LP
k−τ

L

}

≤

λ3
n {L} (1 − ǫλ2 {L})(k−m)+(k−τ)

and for the series:

k−1
∑

m=1

k−1
∑

τ=1

(1 − ǫλ2 {L})(k−m)+(k−τ)
=

(1 − ǫλ2{L})2
ǫ2λ2{L}2

[

1 − (1 − ǫλ2{L})k−1
]2

And hence the bound for the sixth term is
∣

∣

∣

∣

∣

ǫ4
k−1
∑

m=1

k−1
∑

τ=1

c(τ)T
ALP

k−m
LP

k−τ
LAc(τ)

∣

∣

∣

∣

∣

≤

β2ǫ2n∆2 λ3
n{L}

λ2
2{L}

(1 − ǫλ2{L})2
[

1 − (1 − ǫλ2{L})k−1
]2

Finally, the limit for the disagreement function is

lim
k→∞

x(k)T
Lx(k) ≤ β2ǫ2n∆2λn{L}

(

1 +
λn{L}
λ2{L}

+
λ2

n{L}
λ2

2{L}

)

Note that λn/λ2 ≥ 1; a good approximation is
(

1 +
λn{L}
λ2{L}

+
λ2

n{L}
λ2

2{L}

)

≤ 3
λ2

n{L}
λ2

2{L}
At this point, use the fact that λn{L} ≤ 2∆:

lim
k→∞

x(k)T
Lx(k) ≤ 6β2ǫ2n∆3 λ2

n{L}
λ2

2{L}
Hence for the average disagreement:

lim
k→∞

ϕ(k) ≤
√

6 · ηβ
λn{L}
λ2{L}

V. SIMULATIONS

Fig. 2 shows an example run of our algorithm, with ψ = q,

on a circular graph composed of n = 10 nodes, for η = 0.01
and η = 0.05. The states eventually seem to converge to a

periodic function (but note that we did not prove such result).

These results are quantitatively similar for other choices of

deterministic ψ; while, of course, probabilistic quantizations

do not settle on a periodic behavior.

Table VI shows the result of comparing our algorithm

to the one proposed by Carli et al. on a set of canonical

graphs (star-shaped, ring, path, complete), for two sizes of

the graphs (n = 10, 30). We set the initial value of node i
to be xi(0) = πi; the asymptotic results are qualitatively un-

changed if one chooses random initial values. The simulation

is run for 10,000 time steps, which is enough for the methods

to reach the stationary behavior. Because an equilibrium is

not reached, we report in the table the worst values of the

drift and the disagreement as recorded in the last 100 steps.

The results of our algorithm appear substantially better than

the algorithm of Carli et al. However, we observe that the

bounds we found are very loose, especially the bound on the

disagreement given by Proposition 2.

VI. CONCLUSIONS AND FUTURE WORK

This paper showed how real-valued consensus can be

reached (up to an arbitrary accuracy) even in the case that

the channels are quantized, and the quantization function is

noisy. The method consists in wrapping a negative feedback

loop around the quantization function; this has a loose

similarity to the self-inhibitory action of spiking neurons.

The algorithm presented in this paper seems to be effec-

tive, but the bounds derived, while they show qualitatively

that the errors can be made as small as desired by varying

the parameter η, are not quantitatively satisfactory, because

they greatly overestimate the errors. The reason is that in

the derivation of Proposition 2 we treated the quantization

function essentially as an arbitrary bounded disturbance. The

analysis is particularly pessimistic for the ring and path

graphs, because λn/λ2 ∼ n2, while, in practice, we ob-

served that the asymptotic disagreement seems to be largely

independent of the number of nodes. These results can be

improved by either focusing on one particular quantization

function instead of the broad class we considered, or on one

particular class of graphs. The speed of convergence must

be investigated further. Far from convergence, before the

quantization error becomes relevant, the convergence appears

to be exponential, and this should be easily proved. When

the quantization error is dominant, the analysis complicates

because of the nonlinearity and stochasticity of ψ; in the case

of deterministic quantizations, the system seems to tend to a

periodic orbit, but we do not have a proof of this yet.

Acknowledgements. Thanks to Li Na (*+'!,-) for disprov-

ing a conjecture of ours, and to the anonymous reviewers for

the thorough remarks.
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TABLE III

SIMULATIONS

graph nodes ∆ λnL λ2L λn/λ2 Carli et al. Proposed

ϕ(k) d(k) bound ϕ(k) bound

star 10 n − 1 n 1 n 0.01263 0.00493 0.050 0.00003262 1.22474
30 0.00341 0.00166 0.050 0.00000153 3.67423

complete 10 n − 1 n n 1 0.05904 0.00756 0.050 0.00001391 0.12247
30 0.03939 0.00320 0.050 0.00000117 0.12247

ring 10 2 4 2−2 cos
`

2π
n

´

∼ n2 0.04214 0.01512 0.050 0.00113779 1.28256

30 0.02467 0.00740 0.050 0.00076440 11.20924

path 10 2 2+2 cos
`

π
n

´

2−2 cos
`

π
n

´

∼ n2 0.03594 0.01767 0.050 0.00061120 4.88225

30 0.00911 0.01767 0.050 0.00136018 44.59170

Fig. 2. Consensus on a ring graph with n = 10 nodes.

2
4
6
8

States

x

−10

0

10
Disagreement

lo
g

(x
T
 L

x
)

100 200 300 400 500 600 700 800 900 1000
−0.05

0

0.05
Drift

d
(k

)

time steps

(a) η = 0.1, overall behavior

5.3

5.35

States

x

−8

−6

−4
Disagreement

lo
g

(x
T
 L

x
)

900 920 940 960 980 1000
−0.05

0

0.05
Drift

d
(k

)

time steps

(b) η = 0.1, last 100 steps

2
4
6
8

States

x

−10

0

10
Disagreement

lo
g

(x
T
 L

x
)

100 200 300 400 500 600 700 800 900 1000
−0.02

0

0.02
Drift

d
(k

)

time steps

(c) η = 0.05, overall behavior

5.3

5.32

States

x

−7

−6

−5
Disagreement

lo
g

(x
T
 L

x
)

900 920 940 960 980 1000
−0.01

0

0.01
Drift

d
(k

)

time steps

(d) η = 0.05, last 100 steps

REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the

IEEE, vol. 95, pp. 215–233, Jan. 2007.

[2] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek,
Spikes: Exploring the Neural Code. The MIT Press, 1999.

[3] W. Maass and C. M. Bishop, eds., Pulsed neural networks. The MIT
Press, 2001.
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