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Neuro-fuzzy Network Control
for a Mobile Robot

Jun Oh Jang and Hee Tae Chung

Abstract—A control structure that makes possible the
integration of a kinematic controller and a neuro-fuzzy network
(NFN) dynamic controller for mobile robots is presented. A
combined kinematic/dynamic control law is developed using
backstepping and stability is guaranteed by Lyapunov theory.
The NFN controller proposed in this work can deal with
unmodeled bounded disturbances and/or unstructured
unmodeled dynamic in the mobile robot. On-line NFN parameter
tuning algorithms do no require off-line learning yet guarantee
small tracking errors and bounded control signals are utilized.

Index Terms- Mobile robot, Neuro-fuzzy networks, Lyapunov
stability, Feedback control.

1. INTRODUCTION

mobile robot is an uncertain nonlinear dynamic system,

which suffers from structured or unstructured

uncertainties. The mobile robots have been used
extensively in various industrial and service applications. The
application ranges from security, transportation, inspection,
and planetary exploration, etc. Mobile robots constitute a
class of mechanical systems called nonholonomic mechanical
systems characterized by kinematic constraints that are not
integrable and cannot, therefore, be eliminated from the model
equations. Using Lagrange formalism and differential
geometry, a general dynamical model can be derived for
mobile robots with nonholonomic constraints.

In the trajectory tracking problem, the mobile robot is to
follow a prespecified trajectory. Using the kinematic model of
the mobile robots, the tracking problem was solved in [1].
Dynamic feedback linearization has been used for trajectory
tracking and posture stabilization of mobile robot systems in
chained form [2]. Adaptive robust motion force control of
holonomic constrained nonholonomic mobile manipulators is
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appeared in [3]. Also, artificial intelligence control using
neural networks and fuzzy logic can be considered as an
effective tool for nonlinear controller design [4].

In this paper, actuator nonlinearity is included in system
dynamics. The contribution of this paper is the utilization of
an NFN for estimating the nonlinear robot functions involving
actuator friction nonlinearity. A rigorous design procedure
with proofs is given, resulting in a kinematic tracking loop
with an NFN in the feed forward loop. This paper is organized
as follows. Section 2 presents the mobile robot model. Section
3 summarizes the NFN. Tracking problem definition,
controller design details, and stability analysis are described
in Section 4. Experimental results of the proposed controller
with a mobile robot system are given in Section 5. Finally,
conclusions are included in Section 6.

II. MOBILE ROBOT

The mobile robot shown in Fig. 1 is a typical example of a
nonholonomic mechanical system. It consists of a vehicle with
two driving wheels mounted on the same axis, and a front free
wheel [5]. The motion and orientation are achieved by
independent actuators, e.g., dc motors providing the necessary
torques to the rear wheels. One mobile robot with n
generalized coordinates and m constraints is described by

M(q)§+V(q.9)q+F(§)+G(q)+7, =B(@)t—A" ()4 (1)
where M (g)e R™" is a symmetric, positive definite inertia
matrix, V(q,q) € R™" is the centripetal and Coriolis matrix,

F(§)e R™ denotes the surface friction, G(g)e R™ is the
gravitational vector, 7, denotes the bounded unknown
disturbances including unstructured unmodeled dynamics,

B(g)e R™" is the input transformation matrix, 7€ R™" is

mxn

the input vector, A(g)€ R"™" is the matrix associated with

the constraints, and Ae R™ is the vector of constraint
forces.
We consider that all kinematic equality constraints are
independent of time, and can be expressed as follows:
Al@)g =0. @)
Let S(g) be afull rank matrix (n-m) formed by a set
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of smooth and linearly independent vector fields in the null
space of A(q),1i.e.,

ST (@A (g)=0. 3)
According to (2) and (3), it is possible to find an auxiliary

vector time function v(r) € R"™ such that, for all 7

q=S(qv@). “)

The nonholonomic constraint states that the robot can only

move in the direction normal to the axis of the driving wheels,

i.e., the mobile base satisfies the conditions of pure rolling and
nonslipping

y,cos@—x,sinf—-df=0. (5)
It is easy to verify that S(g) is given by
cos@ —dsiné
S(g) =|sind dcos@ |. (6)
0 1

The kinematic equations of motion (4) of C, an inertial
cartesian frame, in terms of its linear velocity and angular
velocities are

X, cos@ —dsinf
v=[v}, Ve |=|sin@ dcos@ {v} @)
(4 . (4
2] 0 1
where [vISV, and l@ISQ ., Vi and Q. are the

maximum linear and angular velocities of the mobile robot.
Equation (7) is also known as Posture kinematic model. This

model could also be obtained in polar coordinates, where the

posture vector is composed by the triple (e, @, &) (as shown in

Fig. 1), which is related to the cartesian coordinates by
e=qx; +y;

¢=tan” (22) . ®)
X

c

a=0-¢

The cartesian coordinates can be calculated from polar
coordinates by using

X, = ecos(p)
Y. = esin(@)
from which, under time differentiation and solving for e and

¢

€))

€ =x,cos(@)+ y, sin(@) (10)

and
.1 .
o= Z(—xc sin(@) + y, cos(9)) . (1

By replacing (7) into (10), (11) and differentiation of the third
equation of (8) with respect to time, the kinematic model in
polar coordinates can be written as

B cos() —dsin()
¢ _ sin(&) d cos() [ (12)
. e e L
@ sin(&) 1—d cos()
L € e i

When the reference posture is not equal to triple (0,0,0°),
the triple (e, @, &) can not be calculated as in (8). This is the

case for tracking because the reference points change with
time. More precisely, in this case we have to rely on Fig. 2,

where
_ (2,2
e = €x+€y

with[e, e e, =[x, y, 0.1 =[x, y, 6]". The sides
of the triangle COR are calculated from the projections of

with CO given by e, cos(d,)+e, sin(f,) and

13)

e, and ey,
OR by —e,sin(8, )+ e, cos(6,) . Hence

—e, sin(6,) +e, cos(6, )

¢=tan”'( ) (14

e, cos(d,)+e,sin(,)
and then
a=ey—¢. (15)
The controller structure is described only for point
stabilization. Equations (13)-(15) are needed in order to
describe the robot model in polor coordinates for the tracking
case, which is a more general problem than point stabilization.
The dynamical equations of the mobile base in Fig. 1 can be
expressed in matrix form (1) where

m 0 md sin @
M(g)=1|0 m —md cos @
| mdsin@ —md cos@ 1
I md@ cos 6
V(g.§)=|0 md@sin 6
0 0 0
G(g)=0
cos@ cosd
B(g)=—|siné sin @
"IR ~R
—sin@

Tr T
T= , A(g)= cos @

A=-m(x,cos0+ 7y, sin6)b . (16)
The system (1) is now transformed into a more appropriate
representation for controls purposes. Differentiating (4),

substituting this result in (1), and then multiplying by S” , we
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can eliminate the constraint matrix A” (¢)A . The complete

equations of motion of the nonholonomic platform are given
by
a7)

(18)

where v(r)e R"™™ is a velocity vector. By appropriate

q=3Sv
STMSv+ST(MS+VSWw+F(w)+7, =S"Br

definitions we can rewrite (18) as follows:
Mgy +V(q.g)v+F(v)+7, =Bt
T=Br (19)
where M (g)€ R™ is a symmetric positive definite inertia
matrix, V (g,4)e R™ is the centripetal and coriolis matrix,
F v)eR ™l is the surface friction, 7, denotes bounded
unknown disturbances including unstructured unmodeled
dynamics, and 7€ R"™ is the input vector.

III. NEURO-FUZZY NETWORKS

The NFN in Fig. 3 has a network output of the input X by the
formula

N, N,
y= Z[w,m JT v exp(=
k=1 J=1 i

with the Gaussian function with the mean m and the standard
deviation o , v i (=1), the interconnection weights from

2
(x; _m[j)
2

(20

membership to rule layer, and w,, , the interconnection
weights from rule to output layer, N,, the number of neurons
in the membership layer, and N, , the number of neurons in

the rule layer. The NFN equation may be conveniently
expressed in a  vector format by  defining,

~

W =Wy, wyyneawy, ,]€ R¥Y  T=[I}, Ty, Ty 1",
l"j (x,m,0) =exp{—(x; — m; )2 /0'5} and a matrix format by

defining VT =y, le RN Then,

y=WTQ@M) =WTVTI(X,), X, € R™ is the input state
of the NFN. Since v = 1, for notational convenience,
y=WTT(x,m,0). Q21
A general function, f , can be modeled by an NFN as:
f =W+ T(x,m*,6%)+¢ (22)
where W * is the constant ideal weight of the current weight

W , m* is the ideal mean of the current mean m, o * is the
ideal standard deviation of the current standard deviation o ,
and I'(x,m*,o0*) is the ideal Gaussian function of the current
function I'" so that £ is bouned by a known constant &) , and

& 1is the reconstruction error due to the NEN structure.

IV. MOBILE ROBOT CONTROLLER

In this section, we derive the kinematic controller and
dynamic NFN controller of the mobile robot. The structure for
the tracking control system to be derived in this section is
presented in Fig. 4.

A. Kinematic controller
Consider (12) with d =0. This is not required by the stability
analysis of the overall control system carried out in stability
proof, but rather imposed by the particular kinematic
controller used here.

Let the candidate Lyapunov function be

Vi(e,9,2) =%(e2 +a’ +h¢?) (23)
where /i is a positive constant. Then
. sin(@)
Vile,¢,) =ecos(@)v+a(w————=(ax—hg)v). (24)
ea

If the linear velocity v and the angular velocity @ are made
to follow the command signals v, and @., given by the
feedback law

V. =—Y,ecos(q)

(25)

V. =

sin(@)

W, =—Y,0— Y, cos(&x)

(@—he)
where y, and ¥, are nonnegative constants, it follows that

Vk (e,¢,a) <0, which means e and a are bounded. The
second time derivative is
V, (e,0,0) = 2y e*[cos” () + cos* () sin* ()]
+2y3a% =2y, y,hpcos(a)sin(@)  (26)
<4y’ +2y5a”
thus, from Barbalat’s Lemma, e and & converges to zero,
which implies, form (12) and (25) that e, ¢—> 0. Then ¢

converges to a finite value ¢ . Additionally, & = 71h5 ,S0 &
exists and is bounded, and then ¢ — 0, which implies that ¢

must converge to zero.

B. Dynamic controller
Given the desired velocity v, (t), define now the auxiliary
velocity tracking error as

e.=v,—Vv 27
Differentiating (27) and using (19), the mobile robot

dynamics may be written in terms of the velocity tracking
error as

M(q)é. ==V (q.9)e. —T+ [(0)+7, (28)
where the important nonlinear mobile robot function is
F) =M@y +V (g, qv. +Fv). (29)

The vector ¢ required to compute f({) can be defined as
=t oW T (30)

& &
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which can be measured. Function f({) contains all the

mobile robot parameters such as masses, moments of inertia,
friction coefficients, and so on. These quantities are often
imperfectly known and difficult to determine. It is assumed
T, <17y ,with 7, being a known positive constant.

In applications the nonlinear robot function f({) is at

least partially unknown. Therefore, a suitable control input for
velocity following is given by the computed torque like
control

T=f+Kse.~7 31
with K, a diagonal positive definite gain matrix, and f &)
an estimate of the robot function f(¢) that is provided by the
NEN. The robustifying signal y(¢) is required to compensate

the unmodeled unstructured disturbances. Using this control
in (28), the closed loop system becomes

M(q)é, =~(Ky+ Ve, + [ +7, +7 (32)
where the velocity tracking error is driven by the functional
estimation error

fF=f-7. (33)
Some definitions are required in order to proceed.
Definition 1. We denote by Il - Il any suitable vector norm.

when it is required to be specific we denote the p-norm by
-
P

Definition 2: given A =[a;], Be R™" the Frobenius norm

is defined by
(34)

NANG=0r{AT A} = a]
ij
with tr{-} the trace. The associated inner product is
<AB>p= tr{ AT B} . The Frobenius norm cannot be defined
as the induced matrix norm for any vector norm, but is
compatable with the 2-norm so that Il AxIl,<Il Allzll xIl,,
with Ae R™" and xe R".
Definition 3 : For notational convenience, we define the
matrix of all the NFN parameters as 7= diag{W, m,G}.
Definition 4: Define the parameter estimation error as
W=W*-W, m=m*-,6=0%-6 and Z=2-7 .
Definition 5: Define the membership layer output error for a
given x as
[=C-1=T(x,m*0%)-T(x,7,8). (35)
The Taylor series expansion of I'(x) for a given x may be
written as
I'(x,m*,0%) =T (x,m,6)-T,m+I;6+0(x,m,&) (36a)
with

aI'(z)

3 al'(z)
@)= 0z

, Tp(2)=

m=ii 2 lo=6

(36b)

and O(x,m,&) denoting the higher-order terms in the Taylor
series. We have

(36¢)
Definition 6: The operators diag(-) and #r{-} have the

[=T,m+I[,6+0(x,m&).

following property:
rZT(Z-2)=<Z,Z>-0Z1I*ANZI-NZI-1ZI?
VAV VAL '

The following mild assumption always hold in practical
applications.

(37)

Assumption 1: On any compact subset of R", the ideal
NFN parameters are bounded by known positive values so
that I m*ll,<my, , llo*lz<o, , IW*I,<W,, , or
N ZIz<Z,, with Z;, known.

Assumption 2: The desired reference trajectory is
bounded so that Il ¢, II< g,, with g,, a known scalar bound.

We will use an NFN to approximate f({) for computing

the control in (31). By placing into (31) the NFN
approximation equation given by (21), the control input then
becomes

(38)
with (¢) afunction to be detailed subsequently that provides

7= VlA/TF(x,n%,oA')+K4eC 4

robustness in the face of robot kinematics and higher order
terms in the Taylor series.
Using this controller, the closed loop velocity error dynamics
become
M(q)é. =~(K4 +V)e, +W * T(x,m*,0%) 39
—WIT(x, . 8)+(e+T, +7)

Denoting = ['(x,m,6) , and adding and subtracting
W T T yields
M(q)e, =—(K, +V)e, +WIT+w*' T

(40)
+(E+T, +Y)
Adding and subtracting wiT yields
M(q)é, =—(K, +V)e +WIT+WIT+WIT @1

+(E+T, +p)

Using the Taylor series approximation for I, the closed loop
error system becomes

M(q)é, =—(K, +V)e, +WTT+WT (T, m+T,8)

_ (42)

+(0+y+e+Ty)

where the disturbance term are
St)=WI (T, m+T,6)+W 0(x,m,&). (43)

Assumption 3: The disturbance termin (43), J is bounded by
aconstant dy ,i.e.,0<Jdy.

It remains now to show how to select the tuning algorithms
for the NFN parameters Z , and the robustifying term ¥(¢) so

that robust stability and tracking performance are guaranteed.
Theorem 1: Consider a nonholomic system (17) and (18).
Take the control 7 for (19) as (38) with robustifying term

Y(t)=—(Oy + 7y e (44)
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where e, =e./lle, Il . Let NFN parameter tuning be
provided by
W = Flel +kF lle, IW
im=Ge! WL, +kGlle, Il i
G=He!WI', +kH lle, | &

where F', G, and H are positive definite design parameter

(45)

matrices, k >0 . The parameter estimates W, 6 will
remain bounded and the tracking error e, (f) evoles within a

practical bound

k
" Zy +ey
e, lI< (46)
4
Proof: Consider Lyapunov candidates:
Vie,p,a e, W, i, &)=V, +V, 47)
where
1 77— ~ T el ~
V, =—le! Me, + tr{WF "W} + tr{im" G in}
2 - (48)
+1r{6TH'6})
Differentiating yields
V=V, +V, =eé+hpp+oi+V,
i .. (49)
=ecos(a)v+ (Z{w—w((l— h@w}+V,
e

Differentiating V, and substituting from (42), we obtain
V,=—el'K e, +EeZ (M =2V )e,
+1r(WT (F'W +Te! )y +er{m” (G 7'

+e! WIT, )} +1r(G(H '6+el W, )}

+el (S+y+e+1y)

(50)

The skew symmetry property, M-2V =0 , makes the
second term zero, and since Vl7 = —WA/ ) ; ;
tuning rules yield
V,=—e K,e, +klie, Itr{WT (W*-W))
+klle, Ner{m" (m*—m)}+klle N r{G" (o*
—&))+el (S+y+e+Ty)
=—e'Kye.+klle 1 tr{ZT(Z-Z)}

. (81

+el (S+y+e+1y)
From definition 6 and robustifying term (44), these results
V,=—elKye. +klie, 11 Z Il (Zy =1 Z 1)
+lle 1 (d+y+e+7,)
<—e'Kye, +klle N1 Z N, (Z, =1 ZIy)
—lle, 1 (Oy +Ty)+le N 0+T,)+ e, lley
Substituting (52) and (25) into (49), we obtain

(52)

V < —yie? cos’ (@) —y,a” —el K e,
ke, M Z N, (Zy—UZ 1 )+lle, lley
Since the first two terms in (53) are negative, there results
V<—e'Kie, +klie, 11 Z N (Zy=1Z 1)
+lle. Il &€y

e, M {-K,lle, I+k N Z N, Zyy —kUZ 12 +£,} (54)

(33)

o1
e 1=Ky le =k Z 1y =7, )?

+ika¢ +ey)

which is guaranteed to be negative as long as

Ezfl +ey
[P A— (55)
K,
or
5 1 2ok 2
KIZlp =52y) 2525 +ey (56)
which is equivalent to
(57)

V. EXPERIMENTAL RESULTS

In this section, we illustrate the effectiveness of a proposed
NEN controller for a mobile robot. The dynamic NFN
controller is implemented on a mobile robot. Fig 5(a) shows
the experimental set up for a mobile robot. The vehicle

parameters are m =10[Kg]and [ =5[Kg - mz] . The wheels
have a radius r = 0.05[m] and are mounted on an axle of
length 2R =0.35[m] . The wheels are drived by motors
20[mN -m] at 3000[rpm] and
24[{V] rated voltage. Each motor is equipped with an

having rated torque
incremental encoder counting 600[ pulse/turn] and a gear.

As shown in Fig. 5(b), the control algorithm is implemented at
a 100[Hz] sampling rate via PC microcontroller. Wheel

PWM duty cycle commands are sent to the robot and the
encoders measure A@, and A, for odometric computation.

If App, and Ag, be the wheel angular displacements
measured during sampling time 7 by the encoders, the robot
linear and angular displacements are constructed as
As=(r12)(Apg +A@,)), AO=(r/2R)(Apr —A@,) . The

posture estimated at time ¢, = kT is

X cosgk 0
k=5 l=a +|sng, o™ (58)
= = sin
q ):k 9x—1 k AB
6, 0 1
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where gk = ék_l +A@/2. The NFN input vector x can be

takenas x=[v, Vv, sgn(Ag) v]? . The number of nodes

in successive layer of the NFN is 4-9-9-1. The reference
trajectory is generated by the following velocities;

v, =1.1[m/sec]
w, ==5.7+28sin(t/2)[deg ree/sec]. (59)

Fig. 6 shows the tracking response with friction nonlinearity.
The performance degraded by the friction effects. However,
the proposed NFN controller shows an improvement in
trajectory response compared with the feedback controller.

VI. CONCLUSIONS

The NFN dynamic controller with a kinematic controller for
tracking of nonholonomic mobile robots has been developed.
In fact, perfect knowledge of the mobile robot parameters is
unattainable, e.g., the friction nonlinearity is very difficult to
model by conventional techniques. To confront this, an NFN
dynamic controller with guaranteed performance has been
derived. There is not need of a prior information of the
parameters of the mobile robot, because the NFN learns them
on the fly. The proposed controller is shown to be

asymptotically stable through theoretical proof and
experiment with a mobile robot.
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