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Abstract— This paper describes the stationary distribution of
the a-posteriori covariance matrix of a Kalman filter when the
availability of measurements is subject to random phenomena
such as lossy network links. If a certain non-overlapping
condition is satisfied, the distribution has a fractal nature,
and there exists a closed-form expression for the cdf, which
is a singular function. If the condition is not satisfied, deciding
whether the cdf is singular or not, even in the scalar case, is at
least as hard as some open problems in measure and number
theory.
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Fig. 1. The sample distribution of P can be visualized by letting Y =
P−1 = [α2, αβγ; αβγ, β2] and plotting it in the (α, β, γ) space. This
picture for the system A = [2, 0.5; 0, 1], Q = [2,−0.5;−0.5, 1], I =
[1, 0; 0, 1] suggests that the distribution has a fractal nature. The blue dots
are the samples, the black lines are the projection on the (β, γ) and (α, γ)
subspaces.
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(a) Varying Q: Q = 0; Q = 1; Q = 2; Q = 3
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(b) Varying the independent drop rate (α = 1 − d, β = d): d = 0.5;
d = 0.3; d = 0.1; d = 0.9
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(c) Varying the parameters of the Markov Chain: α = 0.5, β = 0.5;
α = 0.3, β = 0.3; α = 0.1, β = 0.1; α = 0.9, β = 0.9;

Fig. 2. The scalar case contains most of the complexity of the matrix case.
The figures show the cdf F (y) = P{Y < y} (the plots are normalized to

Y∞). The black plot is for the nominal system A = 1/
√

3, Q = 0, I = 1
and packet dropping governed by a Markov chain with transition matrix
T = [α, 1 − α; 1 − β, β], α = β = 0.5.
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I. INTRODUCTION

Consider the linear time-invariant dynamical system:

x(k + 1) = Ax(k) + Bω(k)

y(k) = Cx(k) + v(k)

where the sequences ω(k), v(k) are white Gaussian with

zero mean and covariance matrix equal to the identity. If

the initial estimate of the state is Gaussian, the conditional

distribution of the state given all previous measurements is

still Gaussian. The Kalman filter computes this distribution

exactly by propagating a mean and a covariance matrix P(k).
Under the assumption that (A,B) is stabilizable and (A,C)
is detectable, the covariance P(k) converges to a unique

value P∞ from any initial value P(0). If some measurements

are missing (for example, because measures are sent over an

unreliable network), then the Kalman filter is still the correct

estimator, provided that only the prediction update is done

when a packet is missing [1]. If there is some statistical

description about the loss of measurements in time, then it

makes sense to consider the stationary distribution of P(k).
This distribution exists if the sequence of packet drops has

certain ergodic properties; see [2] for an extensive discussion

of existence of the stationary random variable P.

Once it is ascertained that the stationary distribution

exists, it is of interest to describe its properties. Sinopoli

et al. [1] proved that, for independent packet drops, there is

a critical value dc of the packet drop rate d such that, for

d > dc, E{P} is unbounded. This is of theoretical interest,

e.g., in LQG control. The actual knowledge of dc is less

useful, because a filter operating in conditions of d close

to dc would have arbitrarily high expected covariance not

matching the underlying physical process. Of more interest

is the computation of an upper bound for E{P}, which [1]

shows can be numerically computed as the fixed point of a

certain modified algebraic Riccati equation. Other works that

improved on such results are [3], [4], [5].

Shi et al. [6] considered this problem from another point

of view. Recognizing that the unboundedness of E{P} de-

pends on zero-probability events, they proposed that a better

characterization of the performance must take into account

the whole distribution of P. In particular, they derived upper

and lower bounds for P({P � M}) for any matrix M, in the

case of an invertible matrix C; in [7], the limitation on C is

removed. The present paper improves on this line of research

by describing the whole distribution of P and giving closed-

form expressions for P({P � M}) in some special cases.
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The parametrization used in this paper is the inverse of

covariances, also known as information matrices. Let P be

the set of positive semidefinite matrices and let P∗ ⊂ P be

the set of positive definite matrices. Let Y , P−1, I ,
CT C � 0 and Q , BBT � 0. Then the update functions

for Y in the case a packet is received (g) and in the case it

is not (h) can be written as follows:

g : Y 7→ (AY−1AT + Q)−1 + I (1)

h : Y 7→ (AY−1AT + Q)−1 (2)

The advantages in using this formulation are that equations

have a particularly simple expression; in particular, the

difference between h and g is a constant term not depending

on the current Y, and that the distribution has support

in the bounded set {Y | 0 � Y � P−1
∞ }. Of course,

this is absolutely not the preferred form one might use in

an actual implementation, as g and h contain two matrix

inversions the size of the state. Note also that, because of the

matrix inversions, they are formally defined on P∗; however,

they can be extended by continuity on P (in particular,

h(0) = 0 and g(0) = I). In the following, “h” and “g”

refer to such extensions. The assumption throughout the

paper is that (A,B) is controllable and (A,C) is detectable.

The additional assumption with respect to the literature is

that A is invertible; this is reasonable for a discrete-time

linear system obtained by the discretization of a continuous-

time system. The packet dropping process is parametrized

in the form of a probability measure M on the packet

dropping sequences, and there are no requirements on it,

except that it must induce a stationary distribution for P

(see the discussion in [2]). Some of the results in the paper

rely on the following non-overlapping condition (NOC):

Condition 1: (Non-overlapping condition)

h
(

P−1
∞

)

≺ g (0) (3)

This paper shows that, if the NOC is satisfied, then the

resulting distribution of Y, and hence the distribution of P,

has a fractal nature, in the sense that P({Y � M}) is a

singular function in M. It is also possible to give a closed-

form expression for P({Y � M}) for any matrix M. If the

NOC is not satisfied, then, even in the scalar case, deciding

whether the distribution is singular or not is equivalent to

some open problems in number theory. In that case, iterative

algorithms will be discussed.

It is worth noting that the NOC is a relatively strong

assumption as it implies that I ≻ 0. This follows from (3)

by noting that it is equivalent to (AP∞AT +Q)−1 ≺ I . In

turn, I = CT C ≻ 0 implies that C has full rank.

This paper tries to give a good intuition about the proper-

ties of the distribution of P. Previous work used arguments

which were essentially analytic and algebraic (Riccati equa-

tions, eigenvalues, limits, etc.); here the focus is on topologi-

cal and geometric arguments. Section II introduces a number

of mathematical preliminaries. Section II analyzes informally

the scalar case, that presents most of the complexity of the

full case. Section IV discusses the same arguments in a more

precise way for the generic matrix case.

II. MATHEMATICAL PRELIMINARIES

In the words of Benoît Mandelbrot, fractals are the first

mathematical objects that “capture the idea of scale-invariant

roughness” [8]. There is no precise definition of “fractal”:

the word describes different phenomena with common prop-

erties, such as self-similarity and a fractional dimension

(typically, they have Hausdorff dimension greater than its

topological dimension). Fractals are studied through many

tools, including topology, measure theory, and symbolic

spaces; the rest of the section describes the relevant tools

needed in the paper. A good reference text for the theory is

[9], while [10] is a very nice introduction.

A. Symbolic spaces

A symbolic space {0, 1, . . . , n}N is the set of all infinite

sequences over an ordered alphabet {0, 1, . . . , n}. On this

space, define the following metric: d(x, y) = 2−k where k =
max{m : xi = yi for i < m} is the index of the digit where

the two sequences first differ. Let the topology be generated

by this metric. The open sets are sets of sequences which

have a common prefix p; these sets are commonly called

“cylinders” and indicated as [p]. Let ⊳ be the lexicographical

order on {0, . . . , n}N: x ⊳ y if the two sequences x and y
disagree for the first time at index i and xi < yi. Note that

this is a strict total order: if x 6= y, either x⊳y or y⊳x. Let “·”
indicate the composition operator; frequently the subsequent

proofs use notations like x = p · 1 · t to mean that x is

composed by a (finite) prefix p, the digit 1, and a tail t.
The symbol “m” will refer to the infinite repetition of the

digit m.

This formalism allows to use generic hidden Markov

model for modeling packet drops. Rather than writing formu-

las for each case, the assumption is that there is some prob-

ability measure M defined on the cylinders of {0, 1}N. Intu-

itively, the notation M([011]) indicates the probability that

the last three events were: drop, received, received. The fol-

lowing is an explicit definition of M in the case of a Markov

chain. Assume the transition matrix is T =
(

α 1−α
1−β β

)

. Then

M([m0 · · ·mk]) = p(mk)
∏k−1

i=0 p(mi|mi+1), and for the

single probabilities, p(a) = (T∞)a,a, and p(a|b) = Ta,b.

B. Rényi β-expansions [11], [12]

Proposition 1: Choose a base β > 1. Every real number

x ∈ [0, β) can be represented as a power series x =
∑∞

i=0 biβ
−i, with bi ∈ {0, 1, . . . , ⌊β⌋}N. The representation

is unique for β ≥ 2 (save for the usual identifications of the

kind 0.9 = 1), while for β < 2 almost every x has infinitely

many representations. The “greedy” algorithm for obtaining

the digit expansion is:

Dβ : [0, β) → {0, 1, . . . , ⌊β⌋}N

x 7→ ⌊x⌋ · Dβ (β(x − ⌊x⌋)) (4)

C. Singular functions

Definition 1: A function s(x) : [a, b] → R is called a

singular function if 1) s(x) is continuous, non decreasing

on [a, b], and s(a) < s(b); and 2) there exists a set S of
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But note that
∑

bi2
−i ≤ ∑

mi2
−i if and only if b E m.

Hence the cdf at y can be found by considering the measure

of a certain set on the symbolic space:

F (y) = M({b | b E D2(I−1y)}) (10)

This is the main concept used in the paper: to find the cdf

in the space of Y one must somehow go back to the space

of sequences, where the measure M, describing the packet

drops, is defined. Evaluating (10) is easy once the set {0, 1}N

is arranged in a tree (Fig 3a), starting from the root which

symbolizes the empty string. To compute M({b | b E m}),
start at the root of the tree, and compute the sum of the

probabilities associated to the strings to the “left” of m. For

each digit mi = 1, add the probability of the corresponding

cylinder on the left. Assuming independent packet drops, the

probability associated to the cylinder [m0,m1, . . . ,mi−1, 0]
is d

∏i−1
j=0 d(1−mj)(1−d)mj . The overall closed-form expres-

sion for F (y) is

F (y) = F

(

I
∞
∑

i=0

mi

2i

)

=

∞
∑

i=0

mid

i−1
∏

j=0

d(1−mj)(1 − d)mj

2) The case A2 = 3, Q = 0: Before going on to the case

of generic A, it is instructive to consider the case A =
√

3
to build up the intuition, and because in the case d = 1/2,

F is a scaled and translated version of the Cantor function

in (5). The map ϕ is now ϕ : b 7→ I
∑∞

i=0 bi3
−i. For

evaluating F (y), consider the 3-expansion m = D3(x), with

m ∈ {0, 1, 2}N. Rewrite (9) as

F (y) = F

(

I
∞
∑

i=0

mi

3i

)

= M
({

b |
∞
∑

i=0

bi

3i
≤

∞
∑

i=0

mi

3i

})

Now it is clear that there are two different symbolic spaces

being considered: b belongs to {0, 1}N while m belongs to

{0, 1, 2}N. Nevertheless, b can be considered an element of

{0, 1, 2}N via the standard inclusion mapping i. Formally,

F (y) = i∗M({b | b E D3(I−1y)})

{x |x ⊳ 101 · · · }

0

1

0 1

(a)

{x |x ⊳ [102]}

≥ 2

≥ 2
1

0

0

(b)

Fig. 3. Elements of symbolic spaces can be represented by the branches
of an infinite tree whose root is the empty string. The lexicographical order
“⊳” indicates branches “on the left” of a particular path. Hence to evaluate
the probability of the event {x |x⊳y} one walks down the path indicated by
y and computes the sum of the probability mass associated to the branches
on the left as indicated by the measure M (see Section III-B). In (a), the
measure M is given on {0, 1}N and also y belongs to {0, 1}N. In (b),
x belongs to a larger set {0, 1, 2, . . . , n}N. In this case, M is zero on
cylinders containing “2” or higher digits, therefore the counting can stop at
the first ≥ 2 digit of x.

where now i∗M is the push-forward of the measure M to

{0, 1, 2}N.

The same reasoning with the tree can be repeated, with

the difference that it represents {0, 1, 2}N, and the branches

containing a 2 have zero weight. For each digit of m, the

case analysis is as follows: if mi = 0, there are no strings

on the left; if mi = 1, there is, as before, a branch whose

weight is d; if mi = 2, there are two branches on the left,

with a weight d + (1 − d) = 1. Moreover, the computation

can be stopped at the first “2” digit, because there are no

possible branches corresponding to the set {0, 1}N below it.

In formulas:

F

(

I
∞
∑

i=0

mi

3i

)

=

mi=2
∑

i=0

g(mi)

i−1
∏

j=0

d(1−mj)(1− d)mj (11)

g(mi) =











0 mi = 0

d mi = 1

1 mi = 2

(12)

Proposition 3: For A2 = 3, I > 0, Q = 0, d = 1/2, the

cdf for Y is a scaled version of the Cantor function:

F (y) = C

(

I−1 2

3
y

)

Proof: Recall that the definition of the Cantor function

that we introduced is defined only on the points in the Cantor

set. Let z ∈ [0, 1] be a point in the Cantor set; one has to

show that C(z) = F
(

3
2Iz

)

. According to (11), write 3
2Iz

as I∑mi3
−i, with m being a ternary expansion of (3/2)z.

Let q be the base-3 representation of z. Multiplying z by 3

means shifting the digits of q one place to left. Division by

2 can be carried on digit-by-digit as well: because z is the

Cantor set, there are no 1s in the expansion: a 0 remains a 0, a

2 becomes a 1. Hence mi = qi+1/2: note there are no 2 digits

in m. Now notice that for d = 1/2, d(1−mj)(1−d)mj = 1/2,

and (11) is simplified as follows:

F

(

3

2
Iz

)

= F

(

I
∞
∑

i=0

mi

3i

)

=

∞
∑

i=0

g(mi)
1

2i

Because there are only 0 and 1 digits in the expansion, the

sum goes up to infinity. Also, (12) can be simplified as

g(mi) = mi/2. Finally:

F

(

3

2
Iz

)

=

∞
∑

i=0

mi

2

1

2i
=

∞
∑

i=0

qi+1

4

1

2i
=

∞
∑

j=1

qj/2

2j
= C(y)

Note 1: The previous result implies that the stationary

distribution of Y has support in a Cantor-like set, which is a

set of Lebesgue measure 0. Note, however, that for all finite

times k, the value of Y (k) depends on the initial conditions

of the filter, and thus can assume values outside the Cantor-

like set.

3) The case A2 > 2, Q = 0: It is easy to generalize the

previous reasoning for every A2 > 2, by using a β-expansion

(Proposition 1) and β = A2. The tree will now have ⌊β⌋+1
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h

0 Y∞g(0)h(Y∞)

g

(a) NOC in the scalar case (b) cdf if NOC holds

h(Y∞)0 Y∞

g h

g(0)

(c) NOC violation (d) cdf if NOC violated

Fig. 4. For a scalar system, the NOC is satisfied if and only if the images of h and g do not intersect, as in (a). In that case, the density is a fractal and
the cdf is a singular function, as shown in (b). If the NOC is not satisfied, as in (c), then the density may be non-fractal. The lightly-colored graphs in
(b) and (d) are the first iterations of the numerical computation of F (y) according to the fixed-point method discussed in Section (III-C), while the black
plot is the sample cdf.

branches, and the formula (11) is generalized as follows:

F (y) =

mi≥2
∑

i=0

g(mi)

i−1
∏

j=0

d(1−mj)(1 − d)mj (13)

with m = Dβ(I−1y), β = A2, and

g(mi) =











0 mi = 0

d mi = 1

1 mi ∈ [2, ⌊β⌋]
(14)

With this definition, it is easy to show that F is a singular

function. F is continuous because Dβ is continuous; and

Proposition 4: For A2 > 2, F is differentiable almost

anywhere with derivative 0.

Proof: Pick a point at random and consider its β-

expansion. Almost all points have a digit s ≥ 2 in their

expansion, and a 1 somewhere after that. Hence the typical

point x has representation p1 ·s ·p2 ·1 ·p3. Now consider the

points xa and xb with representation p1 ·s ·0 and p1 ·s · ⌊β⌋;

obviously, xa < x < xb. In such interval, F is constant,

because the iteration of the formula for F stops at the digit s.

Hence it is differentiable at x with vanishing derivative.

C. General case: numerical computation

In the case of independent packet drops, it is possible

to compute the cdf F (y) numerically, by computing the

fixed point of (6). An example of the iteration is shown in

Fig. 4b–4d. It is easy to show convergence in norm of such

iterations, however, they cannot be converted in a closed-

form expression, and, in general, they do not provide much

intuition about the properties of the distribution.

IV. THE MATRIX CASE

The goal of this section is to obtain a closed-form ex-

pression for P(Y ≺ Z), for any matrix Z, in the case that

the NOC holds. This is equivalent to the case A2 > 2 in

the previous section. Of course, everything is suddenly more

complicated and the presentation must be technical to be

precise; hopefully, the previous section helped with providing

the necessary intuition.

This section deals with several spaces and various trans-

formations between them. P∗ is considered as a metric

space with the Riemannian distance, and as a lattice induced

by the partial order ≻. The space {0, 1}N is still used

for representing the packet dropping sequences, with the

adequate measure M defined on its cylinders. Define also

the space {0, 1}N

∗ as {0, 1}N with the sequences which end

with an infinite number of 0s or 1s removed: these are the

allowed sequences. Also the space {0, 1, 2}N appears in a

support role. The maps that will be defined on these spaces

are summarized in the following figure.

P∗, d
D{0, 1, 2}N

i ϕ
E

HMM

P, ≺

{0, 1}N

∗ , d, ⊳, M

R(ϕ)

The first step is defining the metric properties of P∗.

Lemma 1: Let d(Y1,Y2) be the Riemannian distance on

P∗, defined as d(Y1,Y2) =
[
∑n

i=1 log2(λi)
]1/2

, with λi

being the eigenvalues of the matrix Y1Y
−1
2 . Then:

1) (P∗,d) is a complete metric space.

2) d is invariant to conjugacy. For any invertible matrix

A:

d(AY1A
T ,AY2A

T ) = d(Y1,Y2)

3) d is invariant to inversion:

d(Y−1
1 ,Y−1

2 ) = d(Y1,Y2)

4) For any two matrices Y1, Y2 in P∗, and for any Q ∈
P,

d(Y1 + Q,Y2 + Q) ≤ α

α + β
d(Y1,Y2)

where α = max{‖Y1‖2 , ‖Y2‖2} and β =
inf{〈Qx, x〉 ; ‖x‖2 = 1}.

These properties should convince you that the Rieman-

nian distance is the natural one to consider: considering

information matrices instead of covariances maintains the

same distance. Now look back at the equations (1)-(2): h
and g are compositions of three operations: 1) conjugation

through A; 2) inversion; and 3) addition of Q and I . These

are all natural operations on P∗ (while the subtraction in the

algebraic Riccati equation is not an operation on P∗) and the

Riemannian distance is invariant to two of them.

The addition of noise (Q) or information (I) is what

makes h and g contractions. But notice h and g are strict

contractions only if Q ≻ 0 and I ≻ 0. However, it is

possible to prove the following:

3810



Lemma 2: If A ∈ R
n×n is invertible and (A,B) is

controllable, there exists k ≤ n such that any iterated

composition of the functions h, g of length at least k is a

strict contraction mapping.

Proof: See Proposition 1.3 and the case (ii) of Theorem

1.7 in [2]. The step k is the minimum integer such that

[B | AB | . . . | Ak−1B ] is full rank.

Given this lemma, it is possible to show, using Proposition 2,

that there exists an invariant measure in the case of indepen-

dent packet drops.

Proposition 5: If A is invertible and (A,B) is control-

lable, there exists a unique stationary measure for Y (and P).

Proof: Define a set of 2k functions corresponding to the

possible compositions of g, h of length k, with corresponding

probabilities. By Lemma 2, these functions are contractions,

therefore they constitute a contracting IFS in the complete

metric space (P∗,d). By Proposition 2 this IFS generates a

unique stationary measure.

The uniqueness case in case of arbitrary Hidden Markov

Models requires more general theorems than Proposition 2

and a construction for which there is no space here; note,

however, that the closed-form for the measure in Theorem 1

below is also a constructive proof of uniqueness.

As already pointed out by [2], considering these contrac-

tion properties leads to elementary proofs for the conver-

gence of the regular Kalman filter (one just needs to note

that gn is a contraction).

Towards the computation of the cdf of the stationary

distribution, define the function ϕ that takes the infinite ar-

rival sequence as input and produces the current information

matrix; ϕ is the analogous of (7).

Definition 3: Define the function ϕ : {0, 1}N

∗ → P∗ as
{

ϕ(0 · s) = h(ϕ(s))

ϕ(1 · s) = g(ϕ(s))
(15)

It might seem fishy to define a function in such a recursive

way. However, this definition is well-posed in the sense that

there exists only one ϕ which satisfies these two conditions,

according to the String Model theorem in [10] (the same

construction of the 2k mappings used in the proof of Propo-

sition 5 must be used). The same source proves the following.

Lemma 3: ϕ is continuous.

The next step is defining the inverse of the function ϕ. This

is the matrix analogous of a β-expansion (compare Proposi-

tion 1). From now on, assume that the NOC holds.

Definition 4: Let R(ϕ) ⊂ P∗ be the image of ϕ. Let

Y∞ /∈ R(ϕ) be the fixed point of g, and let Y0 /∈ R(ϕ)
be the fixed point of h.

Lemma 4: For every Y ∈ R(ϕ), Y ≻ Y0 and Y ≺ Y∞.

Either Y ≻ g(Y0) or Y ≺ h(Y∞) .

Definition 5: Define the function E : R(ϕ) → {0, 1}N as

E : Y 7→
{

0 · E(h−1(Y)) Y ≺ h(Y∞)

1 · E(g−1(Y)) Y ≻ g(Y0)

Note that this definition is well posed, as for every Y ∈
R(ϕ), either Y ≺ g(Y0) xor Y ≻ h(Y∞).

Proposition 6: E is continuous.

Proof: E is continuous if the preimage of open sets are

open sets. Open sets for {0, 1}N are the cylinders: consider

for example the cylinder c = [010]. The preimage of c is

the set of Y such that Y ≺ g(Y0), h−1(Y) ≻ h(Y∞),
g−1 · h−1(Y) ≺ g(Y0). That is, E−1(c) is the intersection

of a finite number (equal to the length of the cylinder) of

open sets, and therefore is open.

Proposition 7: E ◦ ϕ = Id

Proof: Assume x ∈ {0, 1}N such that x = 0·s. Assume

by contradiction that E(ϕ(0 · s)) = 1 · t. If E assigned the

first digit 1, then ϕ(0·s) = h(ϕ(s)) ≻ h(Y∞) which implies

ϕ(s) ≻ Y∞ (contradiction). A similar reasoning with 0 and 1
exchanged allows to conclude that x and E(ϕ(x)) agree on

the first digit: E(ϕ(d · r)) = d ·E(ϕ(r)). By induction, they

agree on the whole sequence.

Proposition 8: R(ϕ) is totally disconnected and nowhere

dense.

Proof: The previous three propositions imply that R(ϕ)
is homeomorphic to {0, 1}N

∗ which is a subset of the Cantor

set which is totally disconnected and nowhere dense. Note

however that R(ϕ) is not closed as it lacks accumulation

points such as Y∞ and Y0.

The following propositions establish that the lexicographi-

cal order on the arrival sequences is compatible with the

Loewner order on matrices through the mapping ϕ.

Proposition 9: For all x, y ∈ {0, 1}N

∗ :

x ⊳ y ⇔ ϕ(x) ≺ ϕ(y)

Proof: (⇒) Assume that x ⊳ y: then x = p ·
0 · q and y = p · 1 · r. Then (ϕ(x) ≺ ϕ(y)) ⇔
(

ϕ−1
(p) ◦ ϕ(x) ≺ ϕ−1

(p) ◦ ϕ(y)
)

⇔ (ϕ(0 · q) ≺ ϕ(1 · r)) ⇔
(h(ϕ(q)) ≺ g(ϕ(r))) which is always true due to the NOC.

(⇐) Note that ϕ(x) ≺ ϕ(y) implies x 6= y. Because “⊳”

is a strict total order, either x ⊳ y or y ⊳ x. But the latter

would imply (given the first part of this proposition) that

ϕ(x) ≻ ϕ(y) which would be a contradiction.

Proposition 10: “≺” is a strict total order on R(ϕ).
Proof: Apply Proposition 9 after noticing that each

couple of elements Y1 6= Y2 in R(ϕ) can be written as

ϕ(x) and ϕ(y) with x = E(Y1) and y = E(Y2).
The consequence of ≺ being a strict total order is that every

Y ∈ R(ϕ) is comparable with every other; hence P({Y ≺
Y}) + P({Y ≻ Y}) = 1, and therefore this is a way to

easily describe the cdf in a multi-dimensional space (and in

a coordinate-free manner). At this point, all would be ready

for writing a closed form expression for P({Y ≺ Y}), with

Y ∈ R(ϕ). This is skipped and the following propositions

go towards an expression for P({Y ≺ Z}), with Z possibly

not in R(ϕ).
Definition 6: Define the function D : P → {0, 1, 2}N as

D : Y 7→











2 · 0 Y ≻ Y∞

1 · D(g-1(Y)) ¬(Y ≻ Y∞) ∧ (Y � g(Y0))

0 · D(h-1(Y)) ¬(Y ≻ Y∞) ∧ ¬(Y � g(Y0))
(16)

The following trivial lemmas are stated without proof:
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Lemma 5: The restriction of D to R(ϕ) is equal1 to E.

Lemma 6: D ◦ ϕ = Id

Lemma 7: If Z /∈ R(ϕ), then D(Z) = p ·2 ·0 for some p.

The following is generalization of Proposition 9 to

{0, 1, 2}N and D.

Proposition 11: For Y ∈ R(ϕ) and Z ∈ P:

D(Y) ⊳ D(Z) ⇔ Y ≺ Z

Proof: (⇐) Assume Y ≺ Z. Note that D(Y) 6= D(Z)
because the latter contains at least a 2 (by Lemma 7).

Because ⊳ is a strict total order on {0, 1, 2}N, to show

D(Y) ⊳ D(Z) it is sufficient to assume D(Y) ⊲ D(Z) and

arrive at a contradiction. If D(Y) ⊲ D(Z) , then D(Y) =
p · 1 · r (because Y ∈ R(ϕ), D(Y) cannot contain any 2
by Lemma 5) and D(Z) = p · 0 · s for some p, r, s. Let

Y′ = ϕ−1
(p)(Y) and Z′ = ϕ−1

(p)(Z). Then D(Y′) = 1 · r and

D(Z′) = 0 · s. From the analysis of (16) one concludes that

Y′ � g(Y0) and ¬(Z � g(Y0)), but the assumption Y ≺ Z

leads to a contradiction. (⇒) Assume D(Y) ⊳ D(Z) such

that D(Y) = p · 0 · r and D(Z) = p · 1 · r. Similarly as

before, let Y′ = ϕ−1
(p)(Y) and Z′ = ϕ−1

(p)(Z). Because D

assigns a 0 for the first digit of Y′, then ¬(Y′ � g(Y0)).
Because Y′ ∈ R(ϕ) (this is a necessary condition), by

Lemma 4 Y′ ≺ h(Y∞). Because D assigns a 1 to Z′,

Z′ � g(Y0) ≻ h(Y∞) ≻ Y′ which implies the thesis.

Theorem 1: For any matrix Z ∈ P,

P ({Y ≺ Z}) = i∗M ({x | x ⊳ D(Z)}) ,

which, by letting m = D(Z), can be computed as follows:

P ({Y ≺ Z}) =

∞
∑

i=0











0 mi = 0

M([m0:i−1 · 0]) mi = 1

M([m0:i−1]) mi = 2

(17)

Moreover, P (Y ≺ Z) is a singular function of Z.

Proof: The proof builds on the previous results:

P ({Y ≺ Z}) , P ({x | ϕ(x) ≺ Z})
{Prop. 11 ⇒} = P ({x | D(ϕ(x)) ⊳ D(Z)})
{Lemma 6 ⇒} = P ({x | x ⊳ D(Z)})

= i∗M ({x | x ⊳ D(Z)})

P (Y ≺ Z) is a singular function because R(ϕ) is a totally

disconnected set (Proposition 8). The final expression in

terms of M can be found by a generalization of the tree-

walking reasoning used for deriving (13).

This result takes into account arbitrary generation models

for the packet drops. Note also that, if one wants to compute

P ({Y ≺ Z}), it is not necessary to compute all the digits of

m = D(Z): for example, in the Bernoulli case, it is easy to

see that (17) has exponential convergence in the number of

digits, and the recursive function D (equation (16)) can be

used to compute only the digits which are needed.

1E was introduced as an intermediate step because it was expressed with
open sets and that was convenient for the proofs of Propositions 6–7.

V. CONCLUSIONS AND FUTURE WORK

This paper provided a geometric analysis of the stationary

distribution of the covariance for the Kalman filter with

intermittent observations, from a geometric point of view. If a

certain non-overlapping condition (NOC) holds, the support

of the stationary distribution of the a posteriori covariance

is a one-dimensional fractal curve residing in the space

of positive semidefinite matrices, and provided a means to

compute the cumulative distribution function in closed form,

improving on previous work that only provided upper and

lower bounds. The NOC depends only on the parameters

of the system (A, I , Q) and not on the statistics of the

observation availability (the measure M). It is a fairly strong

assumption as it implies that C has full rank. Future work

consists in trying to relax the NOC, perhaps by considering

the weaker condition that the images of {Y | 0 � Y � P−1
∞ }

through g and h are disjoint.
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