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Abstract— This paper describes a design methodology for
force balance sensors and applies it to the design of a tunneling
accelerometer. A controller based on feedback from estimated
states is a natural basis for the design. It provides a controller
with a rich choice of design methods. The feedback gains can
be used to tune the motion of the mass but they do not influence
the sensor transfer function that is uniquely given by the filter
gains. Since low currents and small distances are measured,
noise is an important factor. The main contributions are thermal
noise from the air molecules hitting the mass, Johnson-Nyquist
noise in the input resistor of the transimpedance amplifier,
and tunneling noise. The effects of noise are analyzed giving
fundamental limitations for the achievable resolution. The
properties of the system are illustrated by simulations and
experiments.

I. INTRODUCTION

Force balance is a principle that has been used to improve

the performance of sensors for a long time [1]. Feedback

design is important because it is the key idea in force balance,

but signal processing is also important because the major

problem is to obtain a good estimate of a physical quantity.

In this paper we will discuss the design of force balance

systems. It is shown that such systems can be designed

based on a standard configuration with state feedback and an

observer. The main idea is to make a mathematical model

where the unknown force is a state, and the best estimate

is then simply obtained from the observer. An interesting

feature of the problem is that the sensor transfer function

and the variance of the estimate only depend on the observer

gains. A designer thus has considerable freedom in choosing

the feedback gains. These results are applied to the design

of an accelerometer with feedback from a tunneling sensor.

Although considerable work has been done on the control

of tunneling accelerometers in the past, most either did not

incorporate uncertainty in the design [2], or have used com-

plicated methods resulting in high order controllers [3], [4].

The force balance control approach used in this paper allows

for the design of a simple, robust and low order controller

that is both effective and easily implemented. The paper

presents analysis, simulation, and practical experiments.
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II. MODELING AND SYSTEM DESIGN

We assume that the sensor can be modeled by a linear

system
dx

dt
= Ax + B(u + w) y = Cx, (1)

where x is the state variable, w is the force that we want

to measure, u is the control signal, and y is the error signal

that we try to keep small. In the model we have assumed that

the control signal enters at the same place as the physical

variable. Intuitively, the control signal u will be close to the

unknown force −w if the output y is small. For simplicity

we have normalized u and w so that they have the same

units.

To have a complete model, we must also have a model for

the dynamics of the signal we want to measure. A simple

model is to assume that w is constant but unknown, hence

dw

dt
= 0. (2)

Augmenting the state x with w gives a standard linear model

described by the matrices

Aa =

[

A B
0 0

]

Ba =

[

B
0

]

Ca =
[

C 0
]

. (3)

A straight forward way to design the system is to use a

state feedback and a Kalman filter. The state w is naturally

not reachable (we cannot influence the external force), but it

is observable if the matrix A does not have an eigenvalue at

the origin. The control law then becomes

dx̂

dt
= Ax̂ + B(u + ŵ) + L(y − Cx̂)

dŵ

dt
= l(y − Cx̂) = l(y − ŷ)

u = −ŵ − Kx̂.

(4)

The controller transfer function is

H(s) =
l

s
− lC + K

s
[sI − A + BK + LC]−1L.

The controller always has an integral action. Also notice that

if K = 0, the controller reduces to

H(s) =
l

s
(1 − C[sI − A + LC]−1L).

This transfer function has poles at s = 0 and at the eigen-

values of A−LC and zeros at the eigenvalues of A, which

means that it can be interpreted as an integrator combined

with a notch filter that filters out the system dynamics.
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A. Sensor Resolution

Sensor resolution is given by the noise in the system

and the character of the variations in the physical variable.

Assuming that the disturbances can be captured by stochastic

models, we can determine the variance of the estimated

variable by using stochastic control techniques. Assuming

that the system and its environment are modeled by

dx = Aaxdt + Baudt + dv

dy = Caxdt + de,
(5)

where x is now the augmented state, Aa, Ba and Ca are

the augmented system matrices, and v and e are Wiener

processes with incremental covariances Rxdt and Rydt. The

steady-state covariance of the best estimates is given by

AaP + PAT
a + Rx − PCT

a R−1

y CaP = 0, (6)

and the variance of the measured variable is then

σ2

ŵ = CwPCT
w , (7)

where Cw is the vector that picks out w from the augmented

state. Notice that the variance of the estimate does not depend

on the feedback gains.

The steady-state filter gains are given by

La =

[

L
l

]

= PCT
a R−1

y . (8)

B. Sensor Transfer Function

The sensor transfer function Gŵw(s) relates the estimate

ŵ of the physical quantity to its real value w. To find this

transfer function, we introduce x, x̃ = x − x̂, and ŵ. The

equation then becomes

Gŵw(s) =
[

0 1
]

[

sI − A + LC −B
−lC s

]

−1 [

B
0

]

=
lC(sI − A + LC)−1B

s + lC(sI − A + LC)−1B
.

(9)

Notice that the sensor transfer function Gŵw(s) depends on

the filter gains l and L but not on the feedback gains K.

This implies that we have considerable freedom in choosing

the feedback gains.

C. Design

There are many control theories that give a controller of

the form in (4), and there are many methods that can be

used to obtain the filter gains l and L and the feedback

gains K. Which method we choose depends on the particular

information available and the nature of the sensor. Noise

is often a fundamental limitation as illustrated by (7) and

it is then natural to apply stochastic control theory [5]. A

key difficulty is to obtain information about the nature of

variations in the physical quantity that we want to measure.

In other situations the key difficulty may be due to parameter

variations and it is then natural to use robust control theory

[6], [7], [8]. If the properties of the signal we want to measure

are not well known, a reasonable solution is to design the

instrument for a given bandwidth of the transfer function

Gŵw(s) shown in (9). The bandwidth can even be brought

to the front panel of the instrument as a user adjustable

parameter.

III. A TUNNELING ACCELEROMETER

We will now consider a specific case, namely a tunneling

accelerometer. Figure 1 shows the accelerometer chip which

is described in [9]. For our experiment the chip was pro-

TunnelingTunneling

tiptip
TunnelingTunneling

tiptip

Fig. 1. Picture of the accelerometer chip (right) and zoomed-in view of
the tunneling tip (left), from [9].

vided with improved electronics, where a new preamplifier

was built and interfaced with a National Instruments Com-

pactRIO platform.

A. Preamplifier

Since our goal was to measure a tunneling current on

the order of 2 nA with a minimum amount of noise and

over a large bandwidth of 5 kHz, we built a custom tran-

simpedance preamplifier. The preamplifier was built using

Texas Instruments OPA656 ultra-low noise op-amps and

was configured such that the input impedance of the first

stage was set to 10.2 MΩ while a voltage gain of 2 was

provided by the second stage. The preamplifier was built

on a custom printed circuit board and was housed in an

electromagnetically shielded box. Batteries were used to

power the preamplifier in order to keep the noise levels low.

Under test conditions, the preamplifier generated about 3 mV

of peak-to-peak noise. Figure 2 shows a block level diagram

of the preamplifier. The “bias” input is used to provide a

constant bias for the tunneling junction.

Voltage Amplifier

10.2e6 x

Bias

Output Voltage
(y)

Tunneling Tip 2 x

Transimpedance Amplifier

Fig. 2. Block diagram of the preamplifier.

B. Accelerometer System

Figure 3 shows a block diagram of the accelerometer

system.

There are four blocks representing the comb-drive actua-

tor, the mass system, the tunneling tip and the amplifier. The
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Fig. 3. Block diagram of the accelerometer system.

input u is the control signal and the output y is the equivalent

output voltage from the tunneling tip.

It is straight forward to model the system. The essential

nonlinearities are in the comb-drive actuator and the tunnel-

ing tip. Most coefficients can be obtained from physics, while

the resonant frequency ω0 and the Q value can be obtained

by simple experiments. Sensor noise characteristics can also

be obtained from physics. Tunneling is a very sensitive way

of measuring displacement, the resolution is a fraction of an

Ångström. Since the tunneling current is on the order of a

few nanoamperes, the design of the sensing amplifier is a

critical issue.

C. Modeling

Since the position of the mass is controlled accurately,

the control design can be done using linearized models. The

following model based on [9] will be used

Actuator: F = kau
Mass: mz̈ + cż + kz = F − mw + nth

Tunneling tip: I = ktz + nt

Amplifier: y = kv(RI + nR)
Acceleration: ẇ = nw,

where the variables denote deviations from reference values.

The actuator model is a static model which is obtained by

linearizing the nonlinear model. A standard mass-damper-

spring model is used for the mass system. The model for

the tunneling tip is also obtained by linearizing the nonlinear

model, where the tunneling gain kt depends on the tunneling

current. It is assumed that the amplifier for the tunneling

current has two stages. The first stage has an effective

feedback resistance R, and the second stage has a voltage

gain kv . The dynamics of the amplifier are neglected. The

main disturbances are the thermal noise nth acting on the

mass, the tunneling noise nt, and the resistor noise nR.

The characteristics of these noise sources are obtained from

physics which will be discussed later.

Comparing with the general model given by (1) we find

that the scaling of u is ka/m, where ka [N/V] is the actuator

gain. The parameter ka is essential for the calibration of the

sensor. Since the comb-drive actuator is nonlinear, it may be

worthwhile to introduce the nonlinear model for the actuator.

Modeling the variations of the quantity that we intend to

measure is a major issue. The model in (2) implies that the

acceleration is constant but unknown. A simple stochastic

model is to assume that it is a Wiener process, which can

be represented as (2) driven by white noise with the spectral

density nw. A more elaborate model would be to assume that

the spectral density or other characteristics of the acceleration

are known.

TABLE I

SYSTEM PARAMETERS

Boltzmann’s constant kB 1.38 × 10−23 J/K

Charge of electron q0 1.6 × 10−19 C
Temperature T 293 K

Mass m 4.917 µg
Resonant frequency f0 4.2 kHz

Q-value Q 10

Actuator gain ka 9.2 × 10−7 N/V
Tunneling gain kt 4 A/m

Preamp resistance R 10.2 MΩ
Voltage gain kv 2

The parameters of the system are based on the system in

[9]. The numerical values are given in Table I.

D. A Low Bandwidth Sensor

The complexity of the model depends on the requirements

of the system. We will start with the situation when a low

bandwidth system is needed. If the bandwidth of the system

is significantly smaller than the resonant frequency ω0, the

dynamics of the mass system can be neglected and the model

can be represented by the static model

y =
mks

k

(ka

m
u − w

)

=
ks

ω2

0

(ka

m
u − w

)

= Ca

(ka

m
u − w

)

,

(10)

where ks = kvktR. The state is the acceleration w that we

want to measure.

Comparing with (1), the system has a direct term because

the sensor dynamics were approximated by a static model.

The augmented system in (5) has one state and the incre-

mental covariances of v and e are given by

ry = 2ckBT
(kvktR

k

)2

+ q0I0(kvR)2 + 2kBTRk2

v

rx = rw.
(11)

Since Aa = 0 the Riccati equation in (6) reduces to

rx − PCT
a r−1

y CaP = 0,

which has the solution

P =
√

rxry/Ca. (12)

Since the only state is the disturbance state w we have La =
l, and the filter gain is La = PCT

a R−1

y =
√

rw/ry . The

controller that minimizes the fluctuation is given by

u =
m

ka

ŵ (13)

and the Kalman filter becomes

dŵ

dt
= La

(

y − Ca

(ka

m
u − ŵ

))

= ly, (14)

where the last equality follows from (13). The controller is

simply an integrating controller of the form

u =
m

ka

ŵ =
ml

ka

∫ t

0

y(τ)dτ. (15)
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The observer has the bandwidth

ωB = LaCa = Ca

√

rw

ry

=
ks

ω2

0

√

rw

ry

. (16)

Notice that rw/ry can be interpreted as a signal-to-noise

ratio. Equation (16) thus implies that the bandwidth of the

filter is proportional to the square root of the signal-to-noise

ratio.

The variance of the acceleration estimate is

P =

√
rwry

Ca

=
1

Ca

√

rw

ry

ry =
ωBry

C2
a

= Pth + Pt + PR

=
ωB

m2

(

2ckBT +
q0I0k

2

k2
t

+
2kBTk2

k2
t R

)

,

(17)

where Pth, Pt, and PR represent the contributions due to

thermal noise, tunneling noise and resistor noise, respec-

tively. The term corresponding to thermal noise is

Pth =
2ωBckBT

m2
=

2ωBω0kBT

mQ
. (18)

The ratios of the different noise sources are

PR

Pth

=
mω3

0
Q

k2
t R

(≈ 0.03)

Pt

PR

=
q0I0R

2kBT
(≈ 0.08),

where the numbers indicate that the major contribution is

due to the thermal noise.

It follows from (10) that the system transfer function is

G(s) = Ca = ks/ω
2

0
and (9) then gives the sensor transfer

function as

Gŵw(s) =
LaCa

s + LaCa

=
ωB

s + ωB

, (19)

where

ωB = LaCa =
kvktRm

k

√

rw

ry

,

if the dynamics of the mass system are neglected, and

Gŵw(s) =
LaCa

s
(

1 + c
k
s + m

k
s2

)

+ LaCa

=
ωBω2

0

s3 + 2ζ0ω0s2 + ω2

0
s + ωBω2

0

,

(20)

if the dynamics of the mass system are included.

It follows from the Routh-Hurwitz criterion that the system

is stable if ωB < 2ζ0ω0 = ω0/Q. The possible bandwidth is

ωB ≤ 2ζ0ω0

gm

=
ω0

gmQ
(21)

if we require a gain margin of gm.

Figure 4 shows the Bode plots of the transfer function

Gŵw(s) for ζ0 = 0.05 (Q = 10) and different ratios of

ωB/ω0.
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Fig. 4. Bode plots of the sensor transfer function Gŵw(s) for ζ0 = 0.05
(Q = 10) and ωB/ω0 = 0.002, 0.005, 0.01, 0.02, and 0.05.

IV. A HIGH BANDWIDTH SENSOR

The simple integrating controller given by (15) is not able

to provide an instrument bandwidth larger than ω0/(gmQ).
To obtain a high bandwidth system it is necessary to take

the mass dynamics into account. Assuming that all the noise

sources are white, we find that the system can be modeled as

a third-order stochastic differential equation. One state is the

unknown acceleration and the other states are the position

and the velocity of the mass. Choosing the state variables

x1 = z, x2 = ż the system matrices become

A =

[

0 1
−k/m −c/m

]

B =

[

0
1

]

C =
[

ks 0
]

D = 0,

(22)

where ks = kvktR and the control signal is scaled with

m/ka. It is assumed that the acceleration to be measured

is a Wiener process, and the incremental covariance of the

acceleration is rw dt [m2s4]. The disturbance acting on the

mass is thermal noise which is represented by a white

noise source with spectral density 4ckBT dt [N2/Hz], where

kB = 1.38 × 10−23 [J/K] is Boltzmann’s constant and T is

the absolute temperature. The Wiener process v representing

state noise has the incremental covariance Rx dt where

Rx = diag(0 , 2ckBT/m2, rw). (23)

The measurement noise in (22) is a combination of tunneling

noise and resistor noise. Tunneling noise is white with

the spectral density Φt = 2q0I0δ(t) [A2/Hz], where q0 =
1.6 × 10−19 [C] is the charge of the electron and I0 is the

tunneling current. The corresponding incremental covariance

is rt dt with rt = Φt/2 [A2s]. The tunneling current is

amplified by the gain Rkv , where R is the input resistance

in the first stage of the amplifier and kv is the gain of the

second stage. Resistor noise is modeled as Johnson-Nyquist

noise which has the spectral density 4kBTR [V2/Hz]. The

corresponding incremental covariance is rRδ(t) where rR =
2kBTR [V2s]. Resistor noise is amplified by the factor kv

in the second stage of the amplifier. Measurement noise is
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thus characterized by a Wiener process with the incremental

covariance Ry dt where

Ry = k2

v(rR + R2rt) = k2

v(2kBTR + R2q0I0). (24)

The augmented system is third-order and the controller is

given by (4) and the filter gains are given by (8). We have

G(s) =
[

ks 0
]

[

s + ksl1 −1
ksl2 + k/m s + c/m

]

−1 [

0
1

]

=
ks

s2 + s(ksl1 + c/m) + ks(l1c/m + l2) + k/m
,

and it follows from (9) that the sensor transfer function is

Gŵw(s) =
lks

a(s)
(25)

where

a(s) = s3 + s2(ksl1 + c/m)

+ s
(

ks(l1c/m + l2) + k/m
)

+ lks.

Notice that the system transfer function G(s) does not

depend on the feedback gain K.

To obtain a good frequency response we require that the

denomiantor a(s) in (25) to be

(s + αcωc)(s
2 + 2ζcωcs + ω2

c ).

The shape of the frequency response is given by the param-

eters αc and ζc and the bandwidth is given by ωc. The filter

gains then becomes

l =
αcω

3

c

kvktR
=

αcω
3

c

ks

l1 =
(αc + 2ζc)ωc − c/m

kvktR
=

(αc + 2ζc)ωc − 2ζ0ω0

ks

l2 =
(1 + 2αcζc)ω

2

c − k/m −
(

(αc + 2ζc)ωc − c/m
)

c/m

kvktR

=
(1 + 2αcζc)ω

2

c − ω2

0
− 2ζ0ω0((αc + 2ζc)ωc − 2ζ0ω0)

ks

,

(26)

where ω0 =
√

k/m and ζ0 = c/(2mω0). Notice that the

filter gain l increases with the third power of ωc and that

l1 and l2 approximately increases with the first and second

power of ωc, respectively.

Bode plots of the frequency response for different ratios

of ωc/ω0 are shown in Figure 5. A comparison with Figure 4

shows that there is a significant improvement.

The controller is given by

ka

m
u = −ŵ + ū = −ŵ − k1x̂1 − k2x̂2

dx̂1 = x̂2 dt + l1(dy − ksx̂1 dt)

dx̂2 = −(k/m)x̂1 dt − (c/m)x̂2 dt + ū dt

+ l2(dy − ksx̂1 dt)

dŵ = l(dy − ksx̂1 dt).

(27)

The sensor transfer function in (9) is determined by the filter

gains l, l1, and l2. The feedback gains k1 and k2 determine

how well the mass is kept to its center position. Their values
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Fig. 5. Bode plots of the sensor transfer function Gŵw(s) for ωc/ω0 =
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.

will not influence the sensor transfer function as long as

the deviations are so small that the linear approximation is

valid. There are many ways to determine the feedback gains

k1 and k2, using pole assignment, LQG or robust control.

In this particular case, with reasonable designs we found

that k1 is essentially zero and therefore we can simply set

it to zero. However k2 is crucial because it influences the

damping. After some adjustment of the gains, we found the

gains to be k1 = 0 and k2 = 3.69 × 104. These values

can be compared with the values of k/m = 6.96 × 108 and

c/m = 2.64 × 103.

A block diagram of the controller with the equations given

by (27) is shown in Figure 6.

m

ka

−
c

m

−
k

m

−k1

−k2

−ks

ū

ū

u

y

−ŵ

l1

l2

l

x̂1x̂2

Σ

Σ

Σ

ΣΣ
∫∫

∫

Fig. 6. Block diagram of the controller.

If the feedback gains are zero, we have ū = 0, and the

controller can be interpreted as a second-order notch filter

in cascade with an integrator. The notch filter attenuates the

resonant mode of the mass. The feedback gain k2 damps the

oscillatory mode and the gain k1 changes its frequency.

Step responses of the linearized model system without

noise are shown in Figure 7. The controller is based on a

high bandwidth given by the parameters ωc = ω0, αc =
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Fig. 7. Step response simulations. The left side shows results for ū = 0.
The upper plots show that the acceleration (blue solid) is well tracked by
the estimate (red dashed) even if the mass oscillates. The right side shows
a design with ū = −3.69 × 104x̂2. The oscillations of the mass are now
damped.

0.75 and ζc = 0.7. The filter gains are l = 1.69 × 105,

l1 = 6.63 × 10−4, and l2 = 7.21. The feedback gains are

k1 = 0 and k2 = 3.69 × 104.

A rate-limited step input having a rise time 5 ms and

an amplitude of 10 m/s2 was used in the simulation. This

input is similar to the one that we used in the experiments.

Notice that the response of the mass is highly oscillatory

for the case ū = 0. The oscillations do not appear in the

acceleration estimate because of the actions of the notch

filter. The oscillations can be damped by setting ū �= 0.

V. EXPERIMENTS

The control algorithm was implemented on a National

Instruments CompactRIO platform, which has a field-

programmable gate array (FPGA) and a PowerPC host pro-

cessor with plug-in cards for interfacing with the analog com-

ponents. The plug-in cards comprise of high bandwidth, 16-

bit analog-to-digital and digital-to-analog converters, which

communicate with the FPGA through dedicated communi-

cation interfaces. The FPGA and the host processor were

programmed through the LabVIEW software environment. In

our case, the real-time constraints of the control algorithm

required us to implement the control computations in the

FPGA. The host processor was used to store and display the

real-time data, which was received from the FPGA through

a direct memory access channel.

The output voltage of the transimpedance preamplifier was

sampled by the controller, running on the CompactRIO, to

generate the appropriate control action. The bandwidth of the

transimpedance preamplifier was adjusted to correspond to

the control loop bandwidth chosen for a given implementa-

tion. The gain of the preamplifier was chosen to correspond

to a 20 mV of DC output for a nanoampere of tunneling

current.

Fig. 8. Experimental set-up. The accelerometer and the CompactRIO are
mounted on the rate table. A wireless router connects to the CompactRIO
and sends all signals to the PC.

To test the system, it was placed on a rate table with com-

puter controlled velocity and acceleration. Figure 8 shows the

experimental set up. The CompactRIO was also placed on

the rate table and the signals were transferred to the computer

through a wireless router. The picture shows the preamplifier

box on the left and the compactRIO with the router on the

right. The preamplifier was built on a printed circuit board

using ultra-low noise op-amps and operated with batteries.

The accelerometer was mounted directly onto the printed

circuit board itself.

The control algorithm, which is a third-order Kalman

filter, was implemented on the FPGA using scaled fixed-

point arithmetic. For numerical reasons, a scaled version

of the Kalman filter was implemented where all the state

variables were scaled appropriately. In particular, the states

corresponding to estimated acceleration and displacement

were scaled to have the dimensions of voltages. A sampling

period of 25 µs was chosen based on the bandwidth of

the control loop and the preamplifier roll-off. Besides the

Kalman filter, a slow integrating stage with a small gain was

implemented to ensure that the mass would safely approach

the tunneling tip. A hysteresis loop was also used to switch

between the two stages of the controller (slow approach and

normal operation as the Kalman filter) when the appropriate

tunneling current was detected. It is important to note that

the hysteresis loop is only used to switch between the control

stages, therefore, at any given time, either the slow approach

(slow integrating stage) or the Kalman filter is active. When

the Kalman filter is active, hysteresis has no effect on the

dynamics of the system performance.

The accelerometer was initialized by giving a constant

setpoint of 40 mV for the output of the transimpedance

preamplifier. Figure 9 shows the control signal and the output

voltage of the preamplifier in the initialization phase. The
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Fig. 9. Initialization of the accelerometer. The upper curve shows the output
of the signal preamplifier y in [V], and the lower curve is the control signal
u in [V]. The setpoint of the controller is 40 mV, which corresponds to a
tunneling current of 2 nA. The time axis t is in seconds.

output voltage is initially small because tunneling does not

occur. The variations are due to resistor and amplifier noise.

The output voltage starts to increase as the mass approaches

the tip and tunneling begins. Simultaneously, the controller

gain l is increased and the controller starts to act. The

variations in the signal are dominated by the effects of the

motion caused by the air molecules hitting the mass. The

controller is able to keep the mass close to the desired

position. The peak-to-peak variations of the amplifier output

y is 18 mV corresponding to a standard deviation of 3 mV,

which is equivalent to a position deviation of 0.3 Å. The

accelerometer is initialized in such a way that the tip is

approximately 1 µm from the mass. The output voltage is

essentially the resistor noise because there is no tunneling.

The mass is made to move slowly towards the tip by using

a low value of the filter gain l. Notice the exponential

increase in the tunneling current which reflects the expo-

nential dependence of tunneling current on distance. When

tunneling starts, the gain l is switched to the design value

and the controller then keeps the output voltage constant. The

thermal motion of the mass is now sensed by the tunneling

current and the variations in the output signal are now larger.

Once the accelerometer was operational, a step input was

then applied by spinning the rate table at a constant rate.

Figure 10 shows the estimated acceleration and the control

signal. A signal corresponding to 10 m/s2 was commanded.

A change of 0.33 V in control voltage corresponded to about

10 m/s2 in estimated acceleration.

VI. CONCLUSIONS

A general approach for design of force balance sensors,

based on feedback from the states of an observer, is pre-

sented. Noise analysis is used to find the resolution of the

sensor and a feedback controller that gives a good frequency

response is designed. The controller implementation is car-

ried out on an FPGA. The results are applied to a tunneling

accelerometer and verified by experiments. The analysis is

based on a linear model. Since there are nonlinearities in

the actuator and the tunneling current, it may be useful
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Fig. 10. Response of the accelerometer to a sudden increase of the velocity
of the rate table. The upper curve shows the change in estimated acceleration
ŵ in [m/s2] relative to the setpoint. The setpoint value is achieved when
tunneling starts. The lower curve shows the control signal u in [V]. The
time axis t is in seconds.

to introduce compensation for these effects. The actuator

nonlinearity can be compensated by inverting the nonlinear-

ity through a square root function, which can be included

in the digital controller. The exponential characteristic of

the tunneling current can be compensated by building a

logarithmic preamplifier. Future work includes adding such

compensations and characterizing the device with the new

control system.
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