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Abstract

The problem of causal output tracking in the nonminimum

phase boost DC/DC power converter is studied. The ex-

tended method of stable system center (ESSC) is used for

generation of a bounded reference profile for the internal

state on the basis of given in real time output state refer-

ence profile. Sliding mode controller (SMC) is proposed

to track mentioned reference profiles, while converter pa-

rameters (load resistance and voltage source impedance),

which affect the internal dynamics, are identified in real

time, employing the idea of sliding mode parameter observer

(SMPO). A numerical simulation illustrates the efficiency of

the proposed control methodology in the presence of internal

uncertainties and external disturbances.

1. Introduction

Switched power DC/DC converters are used in a big

variety of real life applications [1–3], including generation

of a set of DC voltages from one DC power supply, hav-

ing all the converters been linked through the impedance of

the source battery [4, 5]. Not only a constant DC voltage,

but also given in real time commanded voltage profile of the

preserved polarity, can be generated using mentioned power

converters [4–6]. In the case of boost DC/DC converter, the

nonminimum phase [7–9] nature of the latter requires spe-

cial attention. In particular, direct regulating of the output

voltage results in unstable growing of the phase current and

finally causes damage of the converter. This issue has been

extensively studied in the last decade and many control meth-

ods have been proposed, for instance, an indirect control of

the output voltage in [3, 10], the method of stable system

centre (SSC) in [6, 11] and the method of designing dynamic

sliding surfaces in [4].

This work inherits the basic idea of [6], and addresses

direct output voltage control. A nonlinear dynamical model

of the converter in normal canonical form [7] is used to de-
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sign a control law. Squared output voltage is treated as the

system output, while the sum of squared input current and

squared output voltage is treated as unstable internal state.

A bounded reference profile for the unstable internal state is

generated online using the extended method of stable system

center (ESSC) [12–14].

The ESSC method allows finding a bounded particular

solution of an unstable linear differential equation. Consis-

tent use of such a method in the solution flow turns out the

original output tracking problem into the state tracking one.

For instance, the internal state reference profile is generated

online by feeding a given output voltage command through

the ESSC filter. The evaluation of such filter coefficients is

based upon the proposed higher-order sliding mode (HOSM)

parameter observer [15–17].

The contributions of this work can be summarized as

follows:

1. Causality of the output tracking is significantly im-

proved via allowing output reference profile being gen-

erated by unknown linear exogenous system of given

order;

2. The characteristic polynomial of that exogenous system

is identified online using HOSM parameter observer;

3. Internal impedance of the voltage source is included

into the converter model. It limits the top level of the

output voltage to be generated;

4. Load resistance and internal voltage source impedance

are identified online, employing sliding mode param-

eter observer. The obtained estimates are used in the

control law, allowing proper reaction to the change in

operational conditions.

The paper is organized as follows: Section 2 is dedi-

cated to the mathematical description of the converter, where

models in natural and normalized coordinates are presented.

The considered voltage tracking problem is formally stated

in Section 3. Sliding mode controller is designed (Section 4)

assuming availability of the internal state reference. Such

an assumption is fulfilled in Section 5, where the algorithm

for the internal state reference generation is presented. The

design of a sliding mode parameter observer for the im-

plicit estimation of the load resistance and the voltage source
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impedance, is covered in Section 6. A numerical simulation

(Section 7) illustrates the efficiency of the proposed control

methodology. The list of comprehensive conclusions (Sec-

tion 8) is followed by the Appendix where the ESSC method

is proven.

2. Model of the Boost DC/DC Converter

A boost DC/DC electric power converter (Fig. 1) can

be modeled according to the following system of nonlinear

differential equations:











L
d i

dτ
= −i r +E −V0 u

C
dV0

dτ
= − 1

R
V0 + iu

(1)

where u ∈ [0,1] is the control input; i is the inductor current

(available for measurement); V0 is the output voltage (avail-

able for measurement); L is a known input inductance; r is

an impedance of the DC voltage source; C is a known output

capacitance; R is an equivalent load resistance; τ is real time.

Figure 1. Boost DC/DC converter circuit

The model (1) is presented in natural coordinates, where

the input current and the output voltage are the model states.

This particular presentation of the plant model does not make

its nonminimum phase nature to show up. More convenient

presentation of the converter dynamics, from the control law

design standpoint, is to be used. Introduce a normalization

of the model parameters along with the new state vector,

which allows writing the model (1) in the normal canonical

form [7]:

d y

d t
= ẏ = − 2

γR

y+
√

y(η − y)+ v
√

y(η − y) (2a)

d η

d t
= η̇ = −2γr (η − y)+2

√
η − y− 2

γR

y (2b)

where

y =
1

E2
V 2

0 is the output state;

η =
1

E2
V 2

0 +
L

C E2
i2 is the internal state;

v ∈ [−1,1] is the “new” control, defined as v = 2u−1;

γr = r
√

C/L is the source quality factor;

γR = R
√

C/L is the load factor;

t =
τ√
LC

is the “new” (scaled) model time.

System (2) is presented in a form of input/output dynam-

ics (2a), and internal (forced zero) dynamics (2b). Due to

instability of the latter, the system is of nonminimum phase.

The internal dynamics (2b) appear to be presented as

highly nonlinear differential equation which does not allow

to apply the proposed methodology (ESSC method). The

linearization of the latter in a small vicinity of some operat-

ing point {y0,η0}T is proposed to overcome such an issue.

The idea is to present the nonlinear dynamics (2b) in the lin-

earized form

η̇ = Qη +K y+S, (3)

where piece-wise constant coefficients Q > 0, K, and S are

functions of γr, γR, y0, η0 and are assumed to be known.

Consider a small vicinity of the operating point, where

the linearized form (3) is valid (fairly presents nonlinear in-

ternal dynamics). The pair (y0,η0) is supposed to be a solu-

tion of the right-hand-side of (2b)

η0 = y0 +

(

1

2γr

−
√

1

4γ2
r

− y0

γr γR

)2

(4)

which is real, only if the solvability condition holds

1

4γ2
r

− y0

γr γR

≥0 ∴ y0 ≤
R

4r
(5)

The coefficients of the linearized internal dynamics,

given by (3), can now be evaluated as follows

Q = −2γr +
1√

η0 − y0
> 0, S =

√
η0 − y0,

K = 2γr −
2

γR

− 1√
η0 − y0

.

(6)

Remark 1 An uncertainty of the generally unknown param-

eters γr and γR may become a reason of significant reduction

of the linearization quality since they directly effect coeffi-

cients Q and K. This issue can be addressed by employing a

sliding mode parameter observer (SMPO), presented in Sec-

tion 6, which allows asymptotic reconstruction of γr and γR.

3. The Problem Formulation

The problem is in designing of a control law v(t), which

will provide causal output tracking of a causal commanded

(reference) output profile yc(t):

lim
t→∞

‖y(t)− yc(t)‖ = 0 (7)

in the presence of bounded uncertainties of converter param-

eters γr and γR, whose nominal values γr0
and γR0

are as-

sumed to be known.

Remark 2 Output reference profile yc(t) is assumed to be

generated by unknown linear exogenous system of given or-

der. Its characteristic polynomial is identified online and

then is used in the control law design.
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4. Sliding Mode Controller Design

The originally introduced problem of direct output volt-

age tracking is reduced to the conventional state tracking. In

other words, given reference profile yc is used twice: as a

desirable trajectory for the output state y, and as an input of

the ESSC filter which generates a bounded reference profile

ηc for the unstable internal state η (see Section 5 for details

on ESSC filter design).

Assume that profile ηc, satisfying the linear differential

equation (3), is known. A sliding mode control law, forcing

the asymptotic state tracking

lim
t→∞

‖y(t)− yc(t)‖ = 0, lim
t→∞

‖η(t)−ηc(t)‖ = 0

can now be designed. First of all, the two state tracking er-

rors are introduced

ey = yc − y, eη = ηc −η ,

and their dynamics are identified along the system trajectory

ėy = ẏc + 2
γR

y−
√

y(η − y)− v
√

y(η − y),

ėη = Qeη +K ey.
(8)

Introduce a sliding variable σ = ey + T eη , where the

design constant T ∈R is to be selected to provide a desirable

rate of compensated error stabilization in the sliding mode.

The σ -dynamics are identified as

σ̇ = ψ −bv,

ψ = ẏc +
2

γR

y−
√

y(η − y)+T Qeη +T K ey,

b =
√

y(η − y).

The traditional sliding mode control law [1, 2]

v = sign(σ) (9)

stabilizes σ at the origin in a finite time. In the sliding mode

(σ = 0), the following dynamics of a reduced order describes

the motion of the system

ėη = Qeη +K ey,

ey = −T eη .
(10)

The design constant T can now be selected to provide

a desirable eigenvalue placement of (Q−K T ), which is re-

sponsible for the compensated error stabilization rate.

Remark 3 Finite time stabilization of the sliding variable

σ guarantees, that the tracking errors (especially eη whose

dynamics are purely unstable due to Q > 0) will not diverge

tremendously during the reaching phase. Instead, they will

take some bounded values — starting point for asymptotic

convergence to the origin with the selected eigenvalue (Q−
K T ).

5. Generation of a Bounded Profile ηc

It was assumed for the purpose of the controller de-

sign, that bounded profile ηc satisfies the unstable differen-

tial equation (3), therefore, the generation process is equiva-

lent to the finding of a bounded particular solution of

η̇c = Qηc +K yc +S, (11)

The instability of (11) does not allow direct numerical inte-

gration. Instead, the extended method of stable system center

(ESSC) is to be employed to estimate/generate ηc.

5.1. The Extended Method of Stable System Center

The ESSC method allows estimating of a bounded par-

ticular solution of the unstable differential equation (11),

rewritten for the convenience as follows

η̇c = Qηc +θ , θ = K yc +S (12)

where Q > 0 and θ is a causal forcing term available for

measurement.

Remark 4 The ESSC method is designed (as presented be-

low) to handle MIMO problems where Q≡Q ∈ R
p×p is a

non-Hurwitz matrix while yc≡yc ∈ R
p and θ ∈ R

p are vec-

tors. The obvious reduction of the method to address the

mentioned SISO problem (p = 1) is trivial and is left uncov-

ered.

The basis for the ESSC method — the method of Stable

System Center (SSC) [9], assumes that the unstable differ-

ential equation (12) is forced by a causal (available in cur-

rent time only) term θ , which can be piece-wise modeled

by an LTI exogenous system with the known characteristic

polynomial. An extension, that turns out the SSC into the

ESSC, relaxes this assumption, and requires knowing only

the order of the mentioned exogenous system. A correspond-

ing characteristic polynomial is reconstructed online using a

HOSM-based parameter observer [17]. This innovation sig-

nificantly improves the causality of the problem. The devel-

opment of the proposed ESSC method is based on the fol-

lowing Lemma.

Lemma 1 (Polynomial Reconstruction) Given an LTI sys-

tem of known order k

ż = Az

θ = C z
(13)

where z ∈ R
k, θ ∈ R

p, k≥p so that:

i. the output θ available for measurement;

ii. the unknown matrices A∈R
k×k, C ∈R

p×k are supposed

to satisfy the observability condition:

M =
[

CT ,AT CT , . . . ,
(

Ak−1
)T

CT
]T

,

rank(M) = k, M ∈ R
pk×k.

(14)
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iii. the eigenvalues of the matrix A are located in the left

half of the complex plane or on the imaginary axis (non-

repeated).

then

a. there exists a constant matrix Ã, similar to the matrix A,

that satisfies an algebraic equation

γ(t) = Ãψ(t), (15)

where

ψ(t) = Dω1(t), γ(t) = Dω2(t),

ω1(t) =

[

θ T , θ̇ T , . . . ,
(

θ (k−1)
)T
]T

∈ R
pk,

ω2 = ω̇1,

and the vectors ω1(t), ω2(t) are obtained in real time

by differentiating the output θ(t) using HOSM differen-

tiator [15]. The arbitrary, but known design constant

matrix D ∈ R
k×pk is assumed to be of full rank, i.e.

rank(D) = k

b. the entries of the matrix Ã can be reconstructed as

Ã =

t
∫

t−k∆

det(Ψ(τ))Γ(τ)adj(Ψ(τ))dτ

t
∫

t−k∆

[det(Ψ(τ))]2 dτ

(16)

where

Ψ(t) =
[

ψ(t0) ψ(t1) . . . ψ(tk−1)
]

,
Γ(t) =

[

γ(t0) γ(t1) . . . γ(tk−1)
]

,
(17)

with ti = t − i∆, and ∆ > 0 is a constant time interval.

Proof : The proof is indirectly given in [12, 13] and is

sketched here for brevity.

1. Vector θ is differentiated (k + 1) times using HOSM

differentiator [15].

2. Auxiliary vectors ω1 and ω2 are constructed according

to (15).

3. An arbitrary constant matrix D ∈ R
k×pk of full rank is

introduced to provide nonsingularity of (DM). Vectors

γ and ψ can now be calculated according to the second

part of (15).

4. Matrix Ã is defined according to Ã = (DM)A(DM)−1.

5. Considering k consecutive measurements for each com-

ponent of vectors γ and ψ , the two auxiliary matrices Γ

and Ψ can be constructed according to (17).

6. Finally, the components of matrix Ã can be recon-

structed according to (16) as a solution of matrix al-

gebraical equation using the method of least square pa-

rameter estimation (LSPE).

�

Remark 5 Once the matrix Ã estimated, it is straightfor-

ward to identify its characteristic polynomial

Pk(λ ) = λ k + pk−1λ k−1 + · · ·+ p1λ + p0, (18)

which coincides with the one for A in equation (13) due to the

similarity of Ã and A. Eigenvalues of both matrices A and Ã

are considered to be located in the left half of the complex

plane or on the imaginary axis (non-repeated).

The remainder of the ESSC method development —

computing a bounded particular solution of the unstable dif-

ferential equation (12), is presented in the following Theo-

rem.

Theorem 1 (ESSC Method) Given the unstable differential

equation (12), driven by a causal signal θ , which is available

for measurement, and the following set of conditions

i. the matrix Q in (12) is nonsingular;

ii. the internal dynamics forcing term θ can be piece-wise

modeled as the output of a dynamical process given by

the unknown LTI system of differential equations (13)

of known order k

then, the estimate η̂c ∈ R
p for the internal state command

ηc ∈ R
p can be generated by a matrix differential equation

η̂
(k)
c +Ck−1 η̂

(k−1)
c + . . .+C1

˙̂ηc +C0 η̂c =

−
(

Pk−1 θ (k−1) + . . .+P1 θ̇ +P0 θ
) (19)

where the numbers C0,C1, . . . ,Ck−1 are chosen to provide de-

sired eigenvalue placement of convergence η̂c → ηc, and the

matrices Pk−1, . . . ,P1,P0 ∈ R
p×p are given by:

Pk−1 =
(

I+Ck−1 Q−1 + . . .+C0 Q−k
)

×

×
(

I+ pk−1 Q−1 + . . .+ p0 Q−k
)−1

− I

Pk−2 = Ck−2 Q−1 + . . .+C0 Q−(k−1) − (Pk−1 + I)×

×
(

pk−2 Q−1 + . . .+ p0 Q−(k−1)
)

...

P1 = C1 Q−1 +C0 Q−2 − (Pk−1 + I)×
×(p1 Q−1 + p0 Q−2)

P0 = C0 Q−1 − (Pk−1 + I) p0 Q−1

(20)

where the coefficients p0, p1, . . . , pk−1 of the characteristic

polynomial (18) are reconstructed based on Lemma 1.

Proof : The proof is given in [9].

�
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6. Sliding Mode Parameter Observer

The sliding mode parameter obserever is used to esti-

mate values of uncertain parameters γr and γR. Such val-

ues are then used for evaluation of the linearized internal dy-

namics’ coefficients Q and K as (6) in (3). The “hat” nota-

tion is introduced here to differentiate the estimates and the

real (existing) values, e.g. γ̂r stands for the estimate of γr.

That “hat”-noted estimations are to be used in (6) and there-

after instead of γr and γR respectively, making all following

derivations dependant on the output of SMPO.

Consider the original nonlinear dynamics of the con-

verter given in (2), where uncertain parameters γr and γR

are assumed to be piece-wise constants with known nominal

values γr0
and γR0

respectively.
Introduce a sliding mode observer dynamics:







˙̂y = − 2
γR0

ŷ+
√

y(η − y)+ v
√

y(η − y)+ µ1

˙̂η = −2γr0
(η̂ − ŷ)+2

√
η − y− 2

γR0

ŷ+ µ2

(21)

where ŷ, η̂ are the observer states, and µ = {µ1,µ2}T is a

vector injection term to be designed. Introduce an observa-

tion error:

ê = {êy, êη}T , êy = y− ŷ, êη = η − η̂ (22)

which dynamics are identified as follows

˙̂e =

[

ŷ 0

ŷ η̂ − ŷ

][

2/γR0

2γr0

]

−
[

y 0

y η − y

][

2/γR

2γr

]

−µ (23)

The injection term µ is proposed to be designed accord-

ing to unit vector control (UVC) approach [1, 2]:

µ = ρ
ê

‖ê‖ (24)

where design constant ρ > 0 should be selected big enough

to provide a finite time stabilization of the observation er-

ror e.

In the sliding mode (e = 0), which is established by in-

jection (24) in finite time, the following equality holds:

[

ŷ 0

ŷ η̂ − ŷ

][

2/γR0
−2/γR

2γr0
−2γr

]

= µeq (25)

where µeq is the equivalent injection that can be asymptoti-

cally reconstructed by entry-wise low-pass filtering (LPF) of

the discontinuous vector term µ:

µ̂eq j
= LPF(µ j), j = 1,2

Finally, estimates γ̂r and γ̂R can be reconstructed from

the solution of linear system (25):

γ̂R =
(

1
γR0

− z1
2

)−1

, γ̂r = γr0
− z2

2
,

[

z1

z2

]

=

[

ŷ 0

ŷ η̂ − ŷ

]−1

µ̂eq.

(26)

7. Numerical Simulations

A numerical simulation of the boost DC/DC converter

performance has been accomplished using VisSim1 simula-

tion software.

Boost converter model in the normal canonical form (2)

has been used for simulation purposes. Reference profile

yc is assumed to be constructed as sinusoidal signal of ar-

bitrary piece-wise magnitude and frequency, shifted by ar-

bitrary positive piece-wise constant DC level. Such level is

estimated by feeding signal yc through a low-pass filter, and

is used to calculate the operating point component y0. The

other component η0 is calculated according to (4).

7.1. Simulation details and plots

A 3rd order linear exogenous system can be used to de-

scribe the dynamics of yc profile, which yields the same 3rd

order of the ESSC filter.

For simulation purposes, output reference profile yc de-

fined as follows:

yc(t) =



















5+0.5 sin(3 t), t≤20

10, 20 < t≤60

10+ sin(1.5 t), 60 < t≤75

15+1.5 sin(5 t), t > 75

Piece-wise constant uncertain parameters γr and γR are

defined as:

γR =

{

2.53, t≤40

3.79, t > 40
, γr =

{

3.79×10−3, t≤40

2.53×10−3, t > 40

while the nominal values are known as γR0
= 3.16 and γr0

=
3.16×10−3 respectively.

Simulation plots are shown in Figs. 2–3.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

 

 

yc(t)

y(t)

Figure 2. Output state tracking performance

The two plots illustrate the output and internal state

tracking performance. There are number of brakes during

the tracking process, caused by abrupt change of either cir-

cuit parameters or tracking profile dynamics. Each break is

1VisSim User’s Guide, Version 7.0, Copyright 1990–2007 Visual Solu-

tions, Inc., 487 Groton Road, Westford, MA, 01886
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Figure 3. Internal state tracking performance

detected as a destruction of the sliding mode, and is followed

by the reconstruction phase, where all major coefficients are

recalculated and are used for further tracking.

7.2. Discussion

The output reference profile yc is selected to have both

DC and AC components, but having the preserved polarity.

This allows authors to illustrate the efficacy of the technique,

i.e. tracking of a causal output profile without breaking the

main condition of preserving DC character of the output sig-

nal.

8. Conclusions

The problem of causal output tracking for the nonmini-

mum phase boost DC/DC converter has been studied.

1. The direct causal output voltage tracking, i.e. y→yc as

time increases, is accomplished for the reference pro-

file yc, given in real time, in the presence of uncertain

impedance of the voltage source and equivalent resis-

tance of the load.

2. The solvability condition (5), which limits the highest

DC level of the converter output voltage, is derived.

3. Bounded reference profile for the unstable internal state

is generated online, employing the extended method of

stable system center.

4. The sliding mode control law is designed to asymptot-

ically stabilize the state tracking errors in the presence

of unmatched by control uncertain parameters.

5. Sliding mode parameter observer is designed to esti-

mate uncertain impedance of the voltage source and

equivalent resistance of the load. Obtained estimates

are used in the control law.

6. Numerical simulation confirms the efficiency of the

proposed control methodology.
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