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Abstract— The principal concerns in road safety are under-
standing and preventing risky situations. A close examination
of accident data reveals that losing the vehicle control is
responsible for a huge proportion of car accidents. Improving
vehicle stabilization is possible when vehicle parameters are
known. Unfortunately, some parameters like tire-road forces,
which have a major impact on vehicle dynamics, are difficult
to measure in a standard car. These data must therefore
be observed or estimated. This study presents an estimation
process for lateral load transfer and wheel-ground contact
normal forces. The proposed method is based on the dynamic
response of a vehicle instrumented with cheap, easy available
standard sensors. The estimation process is composed of two
parts: the main role of the first part is to estimate the oneside
lateral load transfer, while in the second part we compare linear
and nonlinear models for the estimation of vertical forces on
the four wheels. Performances are tested using an experimental
car in real driving situations. Experimental results show the
potentiel of the estimation method.

I. INTRODUCTION

Extensive research has shown that most of road accidents
occur as a result of driver error [1]. Most drivers have little
knowledge of dynamics, and so driver assistance systems
have an important role to play. On-board ADAS (Advanced
Driver Assistance Systems) control systems, require certain
input data concerning vehicle states and vehicle-road inter-
action. Some of these dynamic states like longitudinal ve-
locity, accelerations, yaw rate and suspension deflections are
easily measured using low cost sensors (ABS speed sensor,
accelerometers, gyrometers, . . . ). However, other essential
parameters, such as tire-road forces that governed vehicle
motion, are more difficult to measure because of technical,
physical and economic reasons. These data must therefore
be observed or estimated.
Knowledge of wheel-ground contact normal forces is es-
sential for improving transport security. These forces have
a primary influence on steering behavior, vehicle stability,
cornering stiffness and lateral tire forces. Moreover, on-
line measurement of vehicle tire forces in a moving vehicle
allows a better calculation of the Lateral Transfer Ratio
(LTR) parameter [2]. LTR is an indicator used to prevent
or forecast rollover situations.
Estimating the vertical tire load is generally considered a
difficult task. Variations in the vehicle’s mass, the position of
the center of gravity (cog), the road grade, road irregularities
and the load transfer increase the complexity of the problem.
In literature, several works have already been conducted in
order to calculate vertical tire/road forces. In [3], the author
presents a model for calculating vertical forces. Lechner’s

M. Doumiati, A. Victorino and A. Charara are with Heudi-
asyc Laboratory, UMR CNRS 6599, Université de Technologie de
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model respects the superposition principle, assuming inde-
pendent longitudinal and lateral acceleration contributions.
In [4], a study of a 14 DOF (Degree Of Freedom) vehicle
model is proposed where the dynamics of the roll center
are used to calculate vertical tire forces. In the work of
[5], the tire forces are modeled by coupling longitudinal
and lateral acceleration. Authors in [6] investigated the
application of the DEKF (Dual Extended Kalman Filter) for
estimating vertical forces. They concluded that the obtained
results differ from the reference data, the discrepancy being
attributable to the problem of the vehicle’s mass.
The goal of this work is to develop a new real-time estimation
process which use simple vehicle models and a certain num-
ber of valid measurements in order to estimate accurately the
wheel-ground contact vertical forces. For simplicity reasons,
vehicle models do not take into account pitch angle, road
bank angle and irregularities.
The proposed estimation process is seperated in two parts
that work in series. The first part estimates the one-side lat-
eral load transfer by using roll dynamics. The estimated value
will be considered as an essential measure for the second
part, guaranteeing observers convergency and observability.
The second part proposes and compares two observers for
the four vertical tire forces estimation, and serves to calculate
the LTR coefficient. Each part will be described in detail
in the following sections. By using cascaded observers, the
observability problems entailed by an inappropriate use of
the complete modeling equations are avoided enabling the
estimation process to be carried out in a simple and practical
way.
The remainder of the paper is organized as follows. In
sections 2 and 3, we describe in detail each of the observers
designed for estimation of lateral load transfer and normal
forces. Section 4 describes a method for identifying vehicle
mass. Section 5 presents an observability analysis. Section
6 presents the estimation method. Section 7 introduces the
importance of vertical forces for rollover calculations. In
section 8, observers results are discussed and compared to
real experimental data, and then in the final section we make
some concluding remarks regarding our study and future
perspectives.

II. PART I: LATERAL TRANSFER LOAD MODEL

The lateral load transfer model we have developed is
based on the vehicle’s roll dynamics. We use a roll plane
model including the roll angle θ, as shown in figure 1. This
model has a roll degree of freedom for the suspension that
connects the sprung and unsprung mass, and its sprung mass
is assumed to rotate about the roll center. During cornering,
the roll angle depends on the roll stiffness of the axle and
on the position of the roll center. In reality, the roll center
of the vehicle does not remain constant, but in this study
a stationary roll center is assumed in order to simplify the
model.
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According to the torque balance in the roll axis (the line
which passes through the roll centers of the front and
rear axles), the roll dynamics of the vehicle body can be
described by the following differential equation (for small
roll angle) [7]:

Ixxθ̈ + CRθ̇ + KRθ = msayhcr + mshcrgθ, (1)

where Ixx is the moment of inertia of the sprung mass ms

with respect to the roll axis, CR and KR denote respectively
the total damping and spring coefficients of the roll motion
of the vehicle system and hcr is the height of the sprung
mass about the roll axis, and g is the gravitational constant.
Summing the moments about the front and rear roll centers,
the simplified steady-sate equation for the lateral load trans-
fer applied to the left-hand side of the vehicle is given by
the dynamic relationship (2) [8]:

ef

ms ay

ms g
h

hf

roll angle

θ

hcr

Fzfl Fzfr

sprung mass

spring+damper

roll center 

Fig. 1. Roll dynamics (front view)
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where h is the height of the center of gravity (cog), hf

and hr are the heights of the front and rear roll centers, ef

and er the vehicle’s front and rear track, kf and kr the front
and rear roll stiffnesses, lr and lf the distances from the cog
to the front and rear axles respectively and l is the wheelbase
(l = lr + lf ) (see figure 2). We assume that the lateral load
transfer applied to the right-hand ∆Fzr is equal to −∆Fzl.
The lateral acceleration ay used in equations (1) and (2)
is generated at the cog. The accelerometer, however, is
unable to distinguish between the acceleration caused by
the vehicle’s motion on the one hand, and the gravitational
acceleration on the other. In fact the acceleration aym,
measured by the lateral accelerometer, is a combination
of the gravitational force and the vehicle acceleration as
represented in the following equation (for small roll angle):

aym = ay + gθ (3)

Measuring the roll angle requires additional sensors, which
makes it a difficult and costly operation. In this study we
consider that the roll angle can be calculated using relative
suspension sensors. During cornering on a smooth road, the

suspension is compressed on the outside and extended on the
inside of the vehicle. If we neglect pitch dynamic effects on
roll motion, the roll angle can be calculated by applying the
following equation based on the geometry of the roll motion
[7]:

θ =
(δfl − δfr + δrl − δrr)

(2ef)
−

mvaymh

kt

(4)

where δij (i represents the front(f) or the rear(r) and j
represents the left(l) or the right (r)) is the suspension
deflection (relative position of the wheel with respect to
the vehicle body at each corner ij), kt is the roll stiffness
resulting from tire stiffness and mv is the vehicle mass.

A. State-space representation-observer O1L

By combining the relations (1), (2) (3) and (4), a linear
state-space representation of the model described in the
previous section can be given. The state vector X is:

X =
[

∆Fzl ∆Fzr ay ȧy θ θ̇
]

. (5)

It is initialized as null vector. We assume that ȧy is repre-
sented using a non-descriptive model (äy = 0).
The observation vector Z is :

Z =
[

aym (∆Fzl + ∆Fzr) θ θ̇ ∆Fzl

]

(6)

where,

• aym: lateral acceleration measured by the accelerome-
ter;

• ∆Fzl + ∆Fzr: the sum of right and left transfer loads
is assumed to be zero at each instant;

• θ: roll angle calculated using equation (4);

• θ̇: roll rate measured directly by the gyrometer;
• ∆Fzl: left transfer load calculated from equation (2).

Consequently, the state matrix A and the output matrix H
are given as:

A =















0 0 0 a1 0 a2

0 0 0 −a1 0 −a2

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

0 0 ms
hcr

Ixx
0 msghcr−KR

Ixx

−CR

Ixx















,

where:

a1 = −2ms

l
(

lrhf

ef
+

lf hr

er
)

a2 = −2(
kf

ef
+ kr

er
)

(7)

.

H =











0 0 1 0 g 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0











The state vector X(t) will be estimated by applying a Linear
Kalman Filter (LKF) (see section VI).
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III. PART II: WHEEL GROUND VERTICAL CONTACT

FORCE MODEL

As a result of longitudinal and lateral accelerations, the
load distribution in a vehicle can significantly vary during
movement. It can be expressed by the vertical forces that act
on each of the four wheels. This section presents two models
for calculating vertical forces. The first is a nonlinear model
that takes into account longitudinal and lateral acceleration
coupling, while the second applies the superposition assump-
tion.

A. Nonlinear model

The force due to the longitudinal acceleration at the cog
causes a pitch torque which increases the rear axle load and
reduces the front axle load. In addition, during cornering the
lateral acceleration causes a roll torque which increases the
load on the outside and decreases it on the inside of the
vehicle [5].
The load distribution can be expressed by the vertical forces
that act on each of the four wheels (see figure 2). These
equations are:
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(8)

where ax is the longitudinal acceleration.
1) State-space representation-observer O2N : Using rela-

tions (8) and the estimated results from the second block,
a nonlinear state-space representation (nonlinear evolution
model and linear observation model) of the system described
in the section above can be given.
The vehicle state vector X is:

X = [Fzfl Fzfr Fzrl Fzrr ax ȧx ay ȧy] . (9)

It is initialized as follows:

X0 = [mflg mfrg mrlg mrrg 0 0 0 0] . (10)

where mij represents the quarter mass of the vehicle at
each corner and is calculated as presented in section IV.
The particular nonlinear function f = (f1, f2, . . . , f8)
representing the state equations is then given by:
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(11)

The measurement vector Z:

Z =
[

∆Fzl (Fzfl + Fzfr) ax ay

∑

Fij

]

, (12)

mv ax

ef

h

Fzfl Fzfr

m*=FzF /g

m*.g

m*.ay

FzF FzR

lf lr

mv g h

side view front view

Fig. 2. On the left side: load shifting during acceleration; on the right
side: wheel load shifting during cornering.

consists of the following components:

• ∆Fzl is provided by the observer O1L;
• Fzfl + Fzfr is calculated directly from (8);
• ax is measured using an accelerometer;
• ay is provided by the the observer O1L;
•

∑

Fij is assumed to be equal to mvg at each instant.

The observation function h = (h1, h2, . . . , h5) takes the
form:



















h1 = x1 − x2 + x3 − x4

h2 = x1 + x2

h3 = x5

h4 = x7

h5 = x1 + x2 + x3 + x4

(13)

The state vector X(t) will be estimated by applying an
Extended Kalman Filter (EKF) (see section VI).

B. Linear model

In this section a linear model that assumes the principle
of superposition is used for calculating vertical forces [3].
The principle of superposition states that the total of a series
of effects considered concurrently is identical to the sum
of the individual effects considered individually. Therefore,
we can numerically add the changes in wheel loads resulting
from lateral and longitudinal load transfer in order to produce
loads that are valid for combined operational conditions. The
vertical forces are given as:

{

Fzfl,fr = mvg lr
2l
− mv

h
2l

ax ± mv
hlr
ef l

ay

Fzrl,rr = mvg
lf
2l

+ mv
h
2l

ax ± mv
hlf
erl

ay

(14)

1) State-space representation-observer O2L: Considering
equation (14) instead of equation (8), the system described
in section III-A.1 becomes linear. The evolution and obser-
vation matrices, respectively A and H , are given as:

A =

























0 0 0 0 0 −mvh
2l

0 −l2mvh
le1

0 0 0 0 0 −mvh
2l

0 l2mvh
le1

0 0 0 0 0 mvh
2l

0 −l1mvh
le2

0 0 0 0 0 mvh
2l

0 l1mvh
le2

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

























,
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Fig. 3. Linear suspension of a quarter car-model neglecting tire dynamics.

H =











1 −1 1 −1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0











The state vector X(t) will be estimated by applying the
LKF.

IV. DETERMINING THE VEHICLE’S MASS

As described in sections II and III, the vehicle’s mass mv

is an important parameter in studying lateral load transfer and
vertical tire forces. Moreover, knowing the load distribution
when the vehicle is at rest is essential for initializing the
observers (III-A.1). This section deals with this problem and
presents a method for determining a vehicle’s mass.
Determining the mass of a vehicle is a problem seldom
discussed in the literature. For example, in [9], a recursive
least-squares method is developed for online estimation of a
vehicle’s mass. This method is unsuitable for our application
because it takes a considerable time to converge to the
real mass value. The objective of this section is to identify
the vehicle’s mass, by considering a quarter-car model, that
neglects the tire deflection (figure 3), and applying relative
position sensors. Nowadays, many controlled suspensions are
equipped with relative position sensors for measuring sus-
pension deflections δij . The suspension spring is loaded with
the corresponding sprung mass. The quarter mass meij (sum
of the sprung and unsprung masses) at each corner of the
empty vehicle is information provided by the manufacturer.
Given a conventional suspension without level regulation,
and assuming that it is functioning within its linear range, a
load variation in the sprung mass ∆msij changes the spring
deflection δij → δij + ∆ij where

∆msij =
ks∆ij

g
, (15)

∆ij is the spring deflection variation, ks the spring stiffness.
The total quarter mass mij and the total mass of the vehicle
mv are then calculated as follows:

{

mij = meij + ∆msij

mv =
∑

i,j mij
(16)

Then the static load (when the vehicle is at rest) applied
to each wheel is equal to mijg. Experimental tests, that
validate the presented identification method, are presented
in section VIII-B (see figure 5).

V. OBSERVABILITY

Observability is a measure of how well the internal states
of a system can be inferred from knowledge of its inputs and
external outputs. This property is often presented as a rank
condition on the observability matrix.

A. Linear system

The systems described in section II-A and III-B.1 are
observable. For each system, we have verified that the system
observability matrix O, defined in (17), has full rank:

O =
[

H HA HA2 ... HAn−1
]

= n, (17)

where n represents state-space vector dimension.

B. Nonlinear system

Using the nonlinear state space formulation of the system
described in section III-A.1, the observability definition is
local and uses the Lie derivative [10]. An observability
analysis of this system was undertaken in [11]. It has been
shown that the rank of the observability matrix during the
experimental test corresponded to the state vector.

VI. ESTIMATION METHODS

The aim of an observer or a virtual sensor is to estimate
a particular unmeasurable variable from available measure-
ments and a system model. This is an algorithm which
describes the movement of the unmeasurable variable by
means of statistical conclusions from the measured inputs
and outputs of the system. A simple example of an open
loop observer is the model given by relations (2), (4) and
(8). Because of the system-model mismatch (unmodelled
dynamics, parameter variations,. . . ) and the presence of
unknown, unmeasurable disturbances, the estimates obtained
from the open loop observer would deviate from the actual
values over time. In order to reduce the estimation error, at
least some of the measured outputs are compared to the same
variables estimated by the observer. The difference is fed
back into the observer after being multiplied by a gain matrix
K , and so we have a closed loop observer. All observers were
implemented in a first-order Euler approximation discrete
form. At each iteration, the state vector is first calculated
according to the evolution equation and then corrected online
with the measurement errors (innovation) and filter gain K
in a recursive prediction-correction mechanism. The gain is
calculated using the Kalman filter method [12], [13], where
the process and measurement noise vectors are assumed to
be white, zero mean and uncorrelated.

VII. ROLLOVER AVOIDANCE

One important feature of the online calculation of vertical
tire forces is rollover detection. This factor is recognized
as one of the most significant life-threatening factors in
car accidents. According to the statistics, nearly 33% of all
deaths from passenger vehicle crashes result from rollovers.
Several types of vehicle rollover propensity systems have
been introduced, in order to predict this phenomenon on
the basis of vehicle behavior. For instance, as a static roll
stability indicator, the static stability factor (SSF), which is
a ratio of the half track width to the height of vehicle’s center
of gravity, is commonly used to predict vehicle rollover. This
factor is used as a static threshold for predicting rollover. To
provide more realistic warnings, several dynamic approaches
have been suggested including the time-to-rollover (TTR)
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Wheel force 

transducers

Fig. 4. Experimental vehicle

metric [14] and the lateral transfer ratio (LTR). The rollover
index LTR, which is simply represented in equation (18),
is suggested as a convenient method for supervising the
vehicle’s dynamic roll behavior [2],

LTR =
Fzl − Fzr

Fzl + Fzr

=
∆Fzl

Fzl + Fzr

, (18)

where Fzl and Fzr are respectively vertical loads on the left
and right tires. The value of LTR varies from -1 at the lift-off
of the left wheel, tends towards 0 at no load transfer, and to
1 at the lift-off of the right wheel. A simplified steady-state
approximation of LTR in terms of lateral acceleration aym

and the cog height h is given as [15]:

LTR = 2
aymh

gem

, (19)

where aym is the lateral acceleration and em is the average
track width (em = (ef + er)/2). Rollover estimation based
on equation (19), developed in steady-state situations, is not
sufficient for detecting the rollover transient phase. The best
way to identify the LTR is by estimating vertical forces.
Subsequently, a direct precise measurement of the LTR can
be used as a reliable rollover warning, or as a switch for a
controller system [15].

VIII. EXPERIMENTAL RESULTS

A. Experimental car

The experimental vehicle shown in figure 4 is the
INRETS-MA (Institut National de la Recherche sur les
Transports et leur Sécurité - Département Mécanismes
d’Accidents) Laboratory’s test vehicle. It is a Peugeot 307
equipped with a number of sensors including accelerometers,
gyrometers, steering angle sensors, linear relative suspension
sensors, and Kistler wheel force transducers that currently
cost in the region of 100.000 e, for a 6-components mea-
surement system. These transducers measure in real time the
forces and moments acting at the wheel center. The sampling
frequency of the different sensors is 100Hz.

B. Validation of the vehicle’s weight identification method

In order to validate the proposed method for determining
the vehicle’s weight (see section IV), two experimental tests
were done. Five passengers were asked to sit in the car.
Measurements (vertical forces and suspension deflections)
were done with the car at rest, first with no passengers, then
with one, with two, and so on. Then measurements were
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Fig. 5. Load distribution in terms of number of passengers

performed as the passengers left the car one by one until
it was empty again. Disregarding suspension dynamics, we
assume that real mij are equal to Fzij/g, where the Fzij are
measured by the wheel force transducers. Figure 5 compares
real mij with those that were the identified (see section
IV). Although the identification method is simple, results
overall are acceptable. However, some differences appear
because of noise, model simplifications and the accuracy
of the suspension deflection sensors. As described below,
the identification method was applied in order to initialize
observers (see section III).

C. Test conditions

Test data from nominal as well as adverse driving condi-
tions were used to assess the performance of the observers
presented in sections II-A and III, in realistic driving situa-
tions. Among numerous experimental tests, we report lane-
change manoeuvre where the dynamic contributions play an
important role. Figure 6 presents the Peugeot’s trajectory,
its speed, steering angle and ”g-g” acceleration diagram
during the test. Acceleration diagrams show that large lateral
accelerations were obtained (absolute value up to 0.6g),
meaning that the experimental vehicle was put in a critical
driving situation.
The estimation process algorithm was written in C++ and
has been integrated into the laboratory car as a DLL (Dy-
namic Link Library) that functions according to the software
acquisition system.

D. Validation of observers

The observer results are presented in two forms: as
tables of normalized errors, and as figures comparing the
measurements and the estimations. The normalized error for
an estimation z is defined as:

ǫz = 100 ×
‖zobs − zmeasured‖

max(‖zmeasured‖)
(20)

where zobs is the variable calculated by the observer,
zmeasured is the measured variable and max(‖zmeasured‖) is
the absolute maximum value of the measured variable during
the test maneuver.
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Fig. 6. Experimental test: vehicle trajectory, speed, steering angle and
acceleration diagrams for the lane-change test
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Figure 7 presents the roll angle and the changes in the
roll rate during the trajectory. Figure 8 shows the one-side
lateral load transfer, while figure 9 and figure 10 show
vertical forces on the front and rear wheels. These figures
show that the observers are highly accurate with respect to
measurements. Some small differences during the trajectory
are to be noted. These might be explained by neglected
geometrical parameters such as camber angle. Tables I and II
present maximum absolute values, normalized mean errors
and normalized std for lateral transfer load, roll angle,
vertical forces and the LTR parameter. We can deduce that
for this test the performance of the observer is satisfactory,
with normalized error globaly less than 5%.

Finally, figure 11 compares the LTR obtained from
measured forces, estimated forces and the calculated LTR
according to equation (19). We deduce that the estimated
LTR fits the measured LTR well. Moreover, it is clear that
the calculated LTR is not able to give a good approximation
in the transient phase. Online calculation of the LTR is
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Fig. 8. Lateral transfer load.
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Fig. 9. Estimation of front vertical tire forces.
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Fig. 10. Estimation of rear vertical tire forces.
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Max ‖‖ Mean % Std %
∆Fzl 5635 (N) 2.83 2.15

θ 0.026 (rad) 5.5 0.83

TABLE I

OBSERVER O1L : MAXIMUM ABSOLUTE VALUES, NORMALIZED MEAN

ERRORS AND NORMALIZED STD.

X
X

X
X

XX
O2N

O2L Max ‖‖ Mean % Std %

Fzfl 6755 (N)
X

X
X

X
XX

2.83
2.9 X

X
X

X
XX

1.9
1.92

Fzfr 6008 (N)
P

P
P

PP
2.5

2.8 X
X

X
X

XX
1.93

2.36

Fzrl 5958 (N)
X

X
X

X
XX

2.15
2.23 X

X
X

X
XX

1.66
2.14

Fzrr 4948 (N)
X

X
X

X
XX

3.25
3.01 X

X
X

X
XX

2.37
2.27

LTR 0.48
X

X
X

X
XX

1.73
1.74 X

X
X

X
XX

1.33
1.34

TABLE II

OBSERVERS O2N AND O2L : MAXIMUM ABSOLUTE VALUES,

NORMALIZED MEAN ERRORS AND NORMALIZED STD.

essential for rollover avoidance; when LTR exceeds a set
value, the driver must be alerted in order to prevent a
dangerous situation, or an automatic control system must be
activated in order to avoid rollover.
Comparing O2L and O2N observers, we find that O2N is

more efficient, especially during the time interval [25s-30s].
This can be explained by the fact that during this time, heavy
demands are made on the vehicle, and the longitudinal/lateral
coupling dynamics become more significant than the super-
position principle. Consequently, observer O2N proves able
to work better than O2L.

IX. CONCLUSION

This paper has presented a new algorithm to estimate
lateral transfer load and vertical tire forces, regardless of the
tire model. Our study presents three observers (O1L, O2L and
O2N ) developed for this purpose and based on the Kalman
filter. Observer O1L is based on a roll dynamics model
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Fig. 11. Estimation of the LTR parameter.

and provides lateral load transfer estimation. Observers O2L

and O2N are derived respectively from linear and nonlinear
models. The linear model rests on the longitudinal and
lateral dynamics superposition principle, while the nonlinear
model proposes coupling these dynamics. The LTR rollover
index parameter was also calculated and discussed within the
context of estimating vertical wheel forces.
Experimental evaluations in real-time embedded estimation
processes yield good estimations close to the measurements.
However, we note that the observer O2N gives better results
when high longitudinal/lateral accelerations act simultane-
ously.
The potential of the estimation process demonstrates that
it may be possible to replace expensive dynamometric hub
sensors by software observers that can work in real-time
while the vehicle is in motion. This is one of the important
results of our work.
Although the identified mass tends toward the real mass
value, one of the weak points of this approach is the deter-
mination of the vehicle’s mass, which is highly dependent on
the sensitivity of the relative suspension sensors. Moreover,
the suspension model is considered linear, which does not
always correspond to reality.
Future studies will improve the vehicle mass identification
method, and take into account road irregularities and road
bank angle, which can significantly impact load transfer.
Moreover, the effect of normal tire load on the estimation
of lateral forces will be studied.

REFERENCES

[1] F. Aparicio et al, Discussion of a new adaptive speed control system
incorporating the geometric characteristics of the road, Int. J. Vehicle
Autonomous Systems, vol.3, No.1, pp.47-64, 2005.

[2] F. Boettiger, K. Hunt and R. Kamnik, Roll dynamics and lateral load
transfer estimation in articulated heavy freight vehicles, Proc.Instn
Mech. Engrs Vol. 217 Part D: J. Automobile Engineering, 2003.

[3] D. Lechner, Analyse du comportement dynamique des vehicules
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