
  

  

Abstract—In several multi-sensor temperature control 

applications the objective is to regulate the difference between 

the measurements while leaving wider tolerance to their 

absolute value. In this short note, the analysis of the uncertainty 

of the difference between two measurements due to sensor 

calibration error is analyzed. It is shown how a calibration by 

comparison method, which can be performed with out 

requesting expert calibration assistantship, can result in an 

important uncertainty reduction. 

I. INTRODUCTION 

EMPERATURE effects in industrial processes becomes 

more relevant as manufacturing scales becomes smaller. 

As a result, industry is continuously increasing the demand 

for precise temperature control. It is commonly found that 

temperature must be accurately homogenized while leaving 

broader tolerance to its absolute value. In this cases a 

common solution is to use multiple sensors and actuators to 

actively homogenize the temperature. Homogenized 

temperature means that the difference between the 

temperature at different points is small. In this paper the 

uncertainty on the difference between two temperature 

measurements is called differential uncertainty for short. 

Experiment designer could spend his efforts reducing 

random measurement errors below the required precision, 

however, calibration error of sensors will left a residual 

systematic error which can only be tackled by recalibrating 

the sensors. In this paper the analysis is limited to the effect 

of calibration error on differential uncertainty, all other 

uncertainty sources should be combined by following 

guidelines found in [1]. In general, the differential 

uncertainty is the addition of the uncertainty of each 

individual measurement if different sensors are used 

(uncorrelated calibration error). However, if only one sensor 

is used to perform both measurements (correlated calibration 

error) differential uncertainty is reduced. The extreme case is 

found if in both measurement the output of the sensor is 
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exactly the same, then the differential uncertainty vanishes, 

this is, the two points are known to be exactly at the same 

temperature. If the outputs of the sensor are slightly 

different, one should not add again the uncertainties as is 

done in [2], but should expect the uncertainty to remain 

small. A method to find a number for this uncertainty, based 

on the sensor response curve (model) and the Gauss-Markov 

estimation method is explained here together with an 

analysis of the effects that a calibration by comparison 

method would produce. The general solution of the problem 

for any kind of sensors and with additional details and 

examples can be found in [3]. 

II. DIFFERENTIAL UNCERTAINTY 

A. One sensor for both measurements 

A sensor model must be assumed: for thermistors this 

model is usually the Steinhart and Hart equation. Sensor 

model parameters are to be identified based on a calibrated 

sensor response in which N  pairs of the nominal 

temperature '
i

θ  and the output resistance 
i

R  of the sensor 

are listed together with the uncertainty 
i

u
θ

 on '
i

θ  due to 

uncertainty during calibration or construction. 

As it is well known, a Gauss-Markov method estimates the 

n  parameters [ ]1 n
p p=p �  of the function 

( ),f Rθ = p  assuming linear dependence on p , so each pair 

of values on the table is considered to be obtained as 

( )'
i i i

Rθ ε= +w p , (1)  

where p  represent the ‘true’ parameters of the sensor, to be 

estimated, and ε  is a normally distributed random variable 

with zero mean and variance 2

ε
σ  . This analysis assumes 

i
R  

is known without uncertainty (or as precisely as necessary). 

The data included in the table can be rearranged in matrix 

form as ( )' W= +y R p ε , where [ ]1
' ' ... '

T

N
θ θ=θ , 

[ ]1
...

T

N
R R=R , [ ]1

...
T

N
ε ε=ε , and 

2T
E Q  = εε  is the 

covariance matrix of ε . The estimation of p  minimizing the 

sum of the squares of the residuals 
i

v  defined as 

( )ˆ' ,
i i

v f Rθ= − p  is  

( )
1

2 2ˆ '
T T

W Q W W Q
−

− −
=p θ , (2) 

where the dependence of W  on R  is omitted for visual 

clarity. The Gauss-Markov estimation, under the 

assumptions previously mentioned, satisfies 
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( )( ) ( )
1

2 2

ˆ

ˆ ˆ
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E
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−

−

=

 − − = =
 

p p

p p p p
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The variance of a predicted temperature obtained from a 

resistance value 
1

R  using the model ( )1 1
ˆ ˆRθ = w p  is  

( ) ( )
2 2 2

1 1 1 1 1 1 1 1
ˆ ˆ TE Sθ θ − = − =

  
w p w p w w , (4) 

where ( )1 1
R =w w  for short. A second absolute 

measurement using the sensor but with  output resistance 
2

R , 

will have a variance obtained by a similar expression as (4) 

just changing subscript 1 by 2. The variance of the difference 

between both absolute measurements is  

( ) ( )2 2

2 1 2 1

T

d
Sσ = − −w w w w . (5) 

Notice that if 
1 2

R R= , then 
1 2

=w w , and 2

d
σ  is zero as 

expected.  

B. Two sensors, one for each measurement 

The general expression for the differential uncertainty 

using two different sensors (before recalibrating them by 

comparison) is obtained following the same procedure as in 

the previous section, the result is 
2 2 2T T

d k B k j A j
S Sσ = +v v w w , (6) 

where subscripts A  and B  denotes the sensor associated to 

each variable and 
k

w  has been replaced by 
k

v  to emphasize 

that the two sensors may have different model structure. 

Specifically, 
j

w  corresponds to sensor A model while 
k

v  

refers to that of sensor B. 

III. CALIBRATION BY COMPARISON 

Recalibrating sensor B by comparing its output with that 

of sensor A is done by exposing both to the same 

temperature 
i

θ  for 
C

N  different points. Each time both 

sensor are exposed to 
i

θ  the following equation must hold 

, 1,...,T T

i i A i B C
i Nθ = = =w p v p . (7) 

Only 
C B

N n=  equations like (7) must be obtained for 

solving 
B

p , where 
B

n  is the number of parameters of sensor 

B model and 
CV  is a square matrix built similarly as W . The 

estimator ˆ
B

p  is a random variable obtained as a linear 

transformation of another random variable ˆ
A

p . Defining 
1

C C
G V W

−
= , statistics of ˆ

B
p  are found to be 

{ } { }

( )( ){ }

E E

E 2

ˆ ˆ

ˆ ˆ

B A A A B

T T

B B B B A B

G G

GS G S

= = =

− − = =

p p p p p

p p p p
. (8) 

Finally the general solution for the variance of the error of 

a differential measurement 
k j

θ θ−  performed by using 

sensor B to measure 
k

θ  and sensor A to measure 
j

θ , after 

recalibrating sensor B by comparing its output with that of 

sensor A, is 
2 2 2T T T T T T

d j A j k A k j A k k A j
S GS G S GS Gσ = + − −w w v v w v v w . (9) 

Equation (9) must be evaluated for each particular case. 

However, if sensor A and sensor B are interchangeable 

sensors, then [ ] [ ]1 1
... ...

A ANB B BNB
x x x x≈ , 

C C
V W≈ , G I≈  and 

2 2 2

B A
S S S≈ = , converting (9) into (5). The latter means that 

differential uncertainty using interchangeable sensors, after 

recalibrating one of them by comparison, is approximately 

the same as if only one sensor were used. Not the pervious us 

true only if the effect of other sources of uncertainty such as 

resistance measurement and calibration well temperature 

homogeneity are negligible.  

IV. EXAMPLE 

Assume two interchangeable thermistors with calibration 

uncertainty of 100 Km
θ

σ = . Their response is simulated 

using the Steinhart and Hart [4] equation such that 

interchangeability is satisfied. Using manufacturer data and 

(9), differential uncertainty for different measurement 

gradients is plotted in figure 1, to be interpreted as follows: if 

the output of sensor A and sensor B indicates a gradient of 

20 K, the temperature difference between point A and point 

B is 20 K with an uncertainty due to calibration error of less 

than 20 mK. 
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Fig. 1. Simulated differential measurement uncertainty as a function of the 

size of the gradient for interchangeable thermistors after calibration by 

comparison 

V. CONCLUSION 

It has been shown how to find an estimation of the 

uncertainty for differential measurements after a calibration 

by comparison between sensors is performed. The results 

suggest that such a calibration may result useful in reducing 

the differential uncertainty and therefore may be considered 

as a useful procedure to be performed with out recalibrating 

sensors against more precise and expensive standards. 
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