
  

  

Abstract—In this work a novel Nonlinear Active Noise 
Control (NANC) scheme is proposed to deal with reference and 
error microphone saturation issues. Polynomial NARX models 
are used in the adaptive controller for enhanced model flexibi-
lity. A suitable model selection approach is used off-line to find 
an accurate and compact model structure for the adaptive 
controller. The controller parameters are successively updated 
with an appropriate adaptive algorithm based on the error 
gradient and on the residual noise. Some simulation 
experiments are provided to show the effectiveness of the 
proposed approach compared to existing alternatives.  

I. INTRODUCTION 
ECENT algorithmic and technologic advances in digital 
signal processing have fostered the research in the area 

of Active Noise Control (ANC), resulting in several success-
ful applications and theoretical developments [1]. Briefly, 
ANC exploits the principle of destructive interference to 
counteract an offending noise traveling on a primary acou-
stic path using a secondary acoustic source suitably gover-
ned by a controller. Both broad- and narrow-band, single- 
and multi-channel control approaches are documented in the 
literature, and various model identification and adaptive 
algorithms have been proposed in this context using 
different type of filters [2]. 

Most of the studies presented in the literature are concer-
ned with linear ANC, although there are several sources of 
nonlinearity that can affect the system. For example, the 
noise affecting the system may be a nonlinear deterministic, 
possibly chaotic, process [3]. The involved acoustic paths 
may also display a nonlinear behavior. For example, a com-
mon source of nonlinearity is due to high sound pressure 
causing distortion and saturation in some of the devices that 
make up the control equipment [4]. To effectively deal with 
these effects, the models and algorithms employed in ANC 
must be properly extended and rearranged. The term NANC 
(nonlinear ANC) collectively refers to adaptive nonlinear 
control schemes that address these issues [5].  

Various types of nonlinear filters have been studied in the 
NANC literature, such as truncated Volterra expansions [6], 
[7], radial basis functions [6], multi-layer artificial neural 
networks (MLANN) [4], [8], functional link artificial neural 
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networks (FLANN) using trigonometric functional expan-
sions [9] or piecewise linear functional expansions [10], 
adaptive bilinear filters [11], and general function expansion 
nonlinear filters [5]. The first issue with these filters is the 
development of suitable adaptation mechanisms able to deal 
with nonlinear models, since it is easy to show that classical 
methods such as the Filtered-X Least Mean Squares 
(FXLMS) approach [2] are not applicable to the nonlinear 
case without proper modifications. An even more critical 
issue is the model size which is typically high in the 
nonlinear case. This greatly affects both the computational 
load and the memory requirements of the adaptive scheme. 
Also, if large over-parameterized models are employed, in 
order to guarantee sufficient model flexibility, several 
known unwanted problems may arise, such as overfitting, 
parameter fluctuation and even model instability [12], [13]. 

This paper explores the use of a different nonlinear model 
class, namely the polynomial Nonlinear AutoRegressive 
models with eXogenous variables (NARX), which is well 
known for its flexibility and representation capabilities [14], 
[15]. Also, the linear-in-the-parameters structure allows the 
use of simple identification algorithms of the Least Squares 
(LS) family. What matters most for the NANC application is 
that several algorithms have been developed for the 
identification of NARX models which are greatly concerned 
with the selection of a suitable and compact model structure 
(see, e.g., [16], [17], [13]). A NANC scheme is here 
proposed based on the off-line structure identification of a 
NARX model and the on-line adaptive tuning of its 
parameters. The case of saturation nonlinearities acting both 
at the reference and the error microphone (see, e.g., [11], 
[18]), is here considered, as represented in Figure 1. 
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Fig. 1.  Block diagram of a NANC system in the presence of saturated 
reference and error signals. P and S denote the primary and secondary path, 
respectively, and C the controller. 

II. NONLINEAR ACTIVE NOISE CONTROL 
The use of a nonlinear controller has been proved to 
outperform linear ANC solutions if either the secondary path 
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is non-minimum phase or the primary path is nonlinear [6], 
[7]. The cited works employ a 2nd order truncated Volterra 
series for the controller structure: 

y(k) = ∑
m1=0

L−1
 w1(m1; k)x(k−m1) 

  + ∑
m1=0

L−1
  ∑

m2=m1

L−1
 w2(m1, m2; k) x(k−m1) x(k−m2) (1) 

where y(k) represents the output of the Volterra filter, and 
w1(m1; k) and w2(m1, m2; k) denote the (time-varying) 
coefficients of the linear and quadratic kernel, respectively. 

Notice that, since model (1) has a nonlinear Finite 
Impulse Response (FIR) structure, it admits only one fixed-
point, so that it is not suitable for modeling nonlinear 
systems with a more complex static behavior. Also, due to 
model size explosion, practical applications are limited to 
models of the 2nd order such as (1). Even so, since FIR 
models generally require a long window L of past terms to 
provide sufficient accuracy, this model typically has a large 
number of parameters to estimate (actually, it requires 
L2 + 3L + 1 terms). This greatly affects both the parameter 
estimation confidence and the robustness of the model, in 
terms of its generalization capabilities. Finally, as already 
mentioned, over-parameterization can be responsible for 
several unwanted dynamic effects [12], [13]. 

On the positive side, model (1) is a linear-in-the-parame-
ters model, so that classical adaptation algorithms used for 
FIR filters can still be applied with minor modifications. The 
so called Volterra FXLMS (VFXLMS) algorithm is used for 
model (1). This algorithm is based on a multi-channel 
structure for feedforward active noise control. The reference 
signal x(k) is separated in its linear and quadratic  
components, which are then fed to distinct controller blocks 
whose outputs are added to compose the overall control 
signal y(k). Assuming that the secondary path is linear the 
FXLMS can be applied correctly as long as each component 
of x(k) is independently filtered. 

In a similar framework, [9] proposed the use of FLANN 
filters using trigonometric bases, which can be updated 
using a Filtered-S Least Mean Squares (FSLMS) algorithm 
which exploits the particular model structure. An efficient 
filter-bank adaptation scheme in the frequency domain was 
also proposed for these nonlinear filters by the same 
research group [19]. Other types of elementary functions 
have been used with FLANN filters, such as piecewise-
linear expansions [10]. A filtered-x affine projection 
algorithm is also introduced in [10] for both the adaptive 
Volterra filter and the FLANN structures. 

Infinite-impulse response (IIR) type filters such as the 
output-error bilinear filter 

y(k) = ∑
i=0

L
 ai(k)x(k−i) + ∑

j=1

L
 bj(k)y(k−j) 

      + ∑
i=0

L
 ∑
j=1

L
 ci,j(k)x(k−i)y(k−j) (2) 

have been suggested [11] as an efficient alternative to 
Volterra models. A type of FXLMS approach is adopted 
also in this case, which assumes a linear secondary path and 
filters the gradient of the controller’s output with respect to 
its weights. Although in terms of L models (1) and (2) have 
the same number of parameters, it is shown in [11] that the 
bilinear model approach can achieve performances 
comparable to Volterra filters by using a shorter filter length 
L, i.e. less parameters.  

Few solutions have been proposed in the literature so far 
for the more general NANC problem with nonlinear secon-
dary path. In [4], [8], MLANN are used for this purpose. 
More recently, [5] developed an adaptive control algorithm 
for general function expansion nonlinear filters that works 
for both linear and nonlinear secondary paths. This 
algorithm is based on the so called virtual secondary path 
filter, which is related to the gradient of the secondary path. 
Notice, however, that the model class employed in [5] has 
still a substantially FIR structure, since the controller’s 
output is actually constructed as a linear combination of 
nonlinear functions of the input reference signal. As such, it 
still suffers from the model size problem. 

III. NARX MODELS 
Besides the different representation capabilities of the 
models used in the approaches described in Section II, the 
main limitation of those methods lies in the fact that they do 
not provide any form of structure optimization, so that 
largely over-parameterized models are invariantly used, with 
all the problems that this can cause. In this section, we 
introduce a different class of nonlinear models, namely the 
polynomial NARX models, which include both Volterra and 
bilinear models, and for which it is possible to devise a 
model selection scheme that generally yields sufficiently 
compact models to be efficiently used in a NANC system.  

Recursive input-output models are widely used in black-
box nonlinear model identification for their flexibility and 
representation capabilities (see, e.g., [20] for a comprehen-
sive review). In particular, NARX models [14], [15] have 
been extensively employed in applications. The 
deterministic NARX model is an input-output recursive 
model where the current output is given by: 

y(k) = f(y(k−1), ..., y(k−ny), x(k−1), ..., x(k−nx)), (3) 

where f(·) is a generic nonlinear function, x(·) and y(·) 
denote the input and output signals, respectively, and nx and 
ny are the maximum input and output lags. Several types of 
functional expansions can be used to describe f(·), one of the 
most common being the polynomial functional expansion 

y(k) = ∑
m=0

l
 ∑
p=0

m
 ∑
n1=1

ny

 … ∑
nm=1

nu

 cp,m−p(n1,...,nm)∏
i=1

p
 y(k−ni) ∏

h=p+1

m
 x(k−nh),

 (4) 
where l is the maximum degree of the polynomial 
expansion. Expression (4) is linear with respect to the 
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parameters to be estimated, so that Least Squares (LS) type 
algorithms can be used for model identification. 

Parameter identification is, however, the easiest part of 
the problem, model selection being generally the main 
concern, since the number of terms in the full expansion (4) 
grows rapidly with l, nx and ny, and comparably few terms 
are generally needed for successful modeling. The model 
size should be kept small, for model robustness and 
parameter estimation confidence, and to avoid the unwanted 
dynamical consequences of model redundancy [12], [13]. 

One of the most popular identification algorithms for 
NARX models is the Forward Regression Orthogonal 
Estimator (FROE) [16], which is based on the prediction 
error minimization approach and uses Orthogonal LS (OLS) 
to estimate the parameters, exploiting the orthogonalization 
to decouple the regressors. Briefly, at each iteration of the 
FROE the regressor that enhances most the prediction 
performance of the current model is included in it. 

An alternative to the OLS approach is given by the Fast 
Recursive Algorithm (FRA) developed in [17], which is also 
based on the PEM approach, but solves the LS problem 
recursively over the model order without requiring matrix 
decomposition and transformation. This algorithm is notable 
for the reduced complexity and the improved numerical 
stability it achieves with respect to the FROE. This makes it 
a good candidate for use in a NANC scheme.  

Several important drawbacks of the PEM approach for 
NARX identification have been discussed in the literature 
(see, e.g., [12], [13]), and the simulation error minimization 
(SEM) approach has been put forward for improved struc-
ture selection and model robustness. On this line, [13] intro-
duces the SEMP (SEM with Pruning) algorithm, which 
operates iteratively as the FROE, but rates candidate models 
based on their simulation performance. The iterative proce-
dure includes a pruning procedure to avoid model redundan-
cy. Notice that, since model simulation can only be compu-
ted iteratively, this approach is computationally intensive, 
although parameter identification is still performed with a 
LS approach for simplicity. Computational complexity can 
be somewhat reduced using cluster selection [21]. 

In view of the NANC application where the controller’s 
parameters are continually adjusted, allowing for a partial 
compensation of an imprecise initial model estimation, it is 
conjectured that the PEM-based NARX identification 
approaches could suffice for this type of application. Here, 
the SEMP method has been employed to provide an accurate 
reference model for comparison purposes. 

Remark that the envisaged model selection techniques are 
batch algorithms, so that to perform this task, a suitable set 
of data must be collected for the model selection procedure 
to process off-line. 

IV. METHODOLOGY DESCRIPTION 
The use of optimized NARX models can greatly enhance 
NANC applications. The main idea is to employ model 

selection in a first off-line stage to find a compact model 
structure for the NARX controller and then adapt its para-
meters on-line. With respect to other NANC approaches, 
this draws most of the computational load away from the 
adaptation task, which is critical since it has to work on-line, 
and transfers it to the model selection task, which can be 
performed off-line. The reduced complexity of the on-line 
adaptation is obviously beneficial in terms of hardware 
requirements and overall system performance, but it also 
allows a more flexible use of the model’s degrees of 
freedom that is generally expected to enhance its accuracy 
and robustness.  

A. Model selection 
To estimate the NARX model of the controller with any 

of the model selection procedures explained in the previous 
section, we need to formulate the controller’s model 
identification problem as a linear regression. This would be 
trivial if the desired controller output was available, since 
then we could use directly the linear regression (4). 
Unfortunately, the error is directly measurable at the output 
of the secondary path and not at the controller’s output. To 
estimate the desired controller’s output, a model inversion 
technique may be used. Notice that while the use of an 
inverse model of the secondary path is generally avoided in 
ANC systems to prevent the insertion of additional delays in 
the control chain, here the role of the inverse model is only 
functional to the off-line model structure selection of the 
controller and is not meant to interfere with the on-line 
execution of the adaptive ANC algorithm. The model 
selection task is based on the scheme depicted in Figure 2, 
which uses an inverse model of the secondary path to 
estimate y(k) from y’(k). 

 
y’(k) x̄(k)

d(k)

C y(k) S 

  Ŝ−1 
ey(k) 
− 

e(k)
− 

+

y°(k)
− 

 
Fig. 2.  Reconstruction of signal y(k) for use in the model selection phase. S 
denotes the secondary path, C the controller, Ŝ−1 the estimated inverse of the 
secondary path, and y°(k) the ‘reconstructed’ target controller output. 

A general inverse identification scheme (see Figure 3) can 
be applied, where the inverse model is fed with the error 
signal, while the secondary path is excited with a suitable 
artificially generated signal y(k), uncorrelated with d(k). 
Details on the identification algorithm depend on the 
particular model structure chosen for the inverse. The FROE 
or FRA algorithms might be used in the NARX case. Using 
this inverse model to obtain the ‘reconstructed’ target 
controller output y°(k), a dataset of {x̄(·), y°(k)} samples 
may be used for the controller’s model selection purpose, 
directly referring to the linear regression (4). 

Notice that model inversion is not always applicable, so 
that the suggested model identification scheme could turn 
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out to be a critical point of the overall method. Recall, 
however, that accurate inversion is only required in the 
disturbance frequency range, which can be quite circum-
scribed, especially in narrowband control applications. 
Observe also that, as will be seen in the simulation 
experiments section, the on-line adaptive algorithm that 
tunes the controller weights can partially compensate errors 
due to approximate inversion. 

 
+ 

− 
ŷ(k) y’(k) y(k) 

+d(k) 

−1 
− 

S   Ŝ−1 

 
Fig. 3.  Model identification scheme for the estimation of the inverse 
secondary path model. S denotes the secondary path, Ŝ−1 the estimated 
inverse of the secondary path. 

B. On-line adaptation of the controller’s parameters 
At the end of the model selection phase, the controller 

structure is fixed and an initial parameterization is available. 
At this stage an adaptive algorithm must be setup for 
continuous updating of the model parameters, to deal with 
unmodeled dynamics and time-variant phenomena. The 
algorithm discussed in the following is an adaptation to the 
NARX case of that employed in [5]. The objective of the 
adaptive algorithm is to minimize the instantaneous squared 
error using the steepest descent algorithm: 

ϑ(k+1) = ϑ(k) − 
µ
2 ⎝

⎛
⎠
⎞

⎪
⎪∂(e(k)2)

∂ϑ ϑ(k)

T

  

            = ϑ(k) + µ ⎝
⎛

⎠
⎞

⎪
⎪∂y’(k)

∂ϑ ϑ(k)

T

e(k).   (5) 

Assuming a deterministic NARX structure for both the 
controller (see equations (3-4)) and the secondary path: 

y’(k) = f(y’(k−1), ..., y’(k−ny’), y(k−1), ..., y(k−my)) 

   = ∑
m=0

l

 ∑
p=0

m
 ∑
n1=1

ny'

 … ∑
nm=1

my

 c’p,m−p(n1,...,nm)∏
i=1

p
 y’(k−ni) ∏

h=p+1

m
 y(k−nh), 

the gradient term ∂y’(k)/∂ϑ can be iteratively computed by 
means of the recursive nonlinear filter: 

yϑ’(k) = ∑
j=1

ny’

 
∂y’(k)

∂y’(k−j) yϑ’(k−j) + ∑
j=1

my

 
∂y’(k)
∂y(k−j) yϑ(k−j).  (6) 

where yϑ’(k) = 
∂y’(k)
∂ϑ(k) , yϑ(k) = 

∂y(k)
∂ϑ(k), and the approximations 

∂y’(k−j)
∂ϑ(k)  ≈ 

∂y’(k−j)
∂ϑ(k−j) and 

∂y(k−j)
∂ϑ(k)  ≈ 

∂y(k−j)
∂ϑ(k−j) have been used, 

assuming that the step size is sufficiently small to yield slow 
convergence [2]. The derivatives of y’(k) with respect to 
terms y’(k−j), j = 1, …, ny’, and y(k−j), j = 1, …, my, 
appearing in expression (6) can be computed as follows: 

∂y’(k)
∂y’(k−n̄) = ∑

m=0

l

 ∑
p=0

m
  ∑

j=1

p

  ∑
n1=1

ny

 … ∑
nj=n̄

 
n̄

 … ∑
nm=1

nu

 c’p,m−p(n1,…,n̄,…,nm) 

                  × ∏
i=1

p
 

i≠j

 y’(k−ni) ∏
h=p+1

m
 y(k−nh), 

∂y’(k)
∂y(k−n̄) = ∑

m=0

l

 ∑
p=0

m
  ∑

j=p+1

m

  ∑
n1=1

ny

 … ∑
nj=n̄

 
n̄

 … ∑
nm=1

nu

 c’p,m−p(n1,…,n̄,…,nm) 

                 × ∏
i=1

p
 y’(k−ni) ∏

h=p+1

m
 

h≠j

y(k−nh). 

Finally, the derivative yϑ̄(k) of y(k) with respect to a generic 
controller weight ϑ̄(k) = cp̄,m̄−p̄(n̄1,...,n̄m; k) can be computed 
recursively using the following nonlinear dynamic filter: 

yϑ̄(k) =∏
i=1

p̄
 y(k−n̄i) ∏

h=p̄+1

m̄
 x(k−n̄h) + ∑

m=0

l

 ∑
p=0

m
 ∑
n1=1

ny

 … ∑
nm=1

nu

 cp,m−p(n1,...,nm) 

           × ∑
j=1

p
 [yϑ̄(k−nj)∏

i=1

p
 

i≠j

 y(k−ni)] ∏
h=p+1

m
 x(k−nh),   (7) 

employing once again the approximation 
∂y(k−j)
∂ϑ(k)  ≈ 

∂y(k−j)
∂ϑ(k−j). 

Recursions (6) and (7) are particularly costly for on-line 
implementation, and some simplification is highly desired. 
A typical approximation in ANC systems is Feintuch’s 
assumption [2], [11]. This consists in neglecting the 
recursion based on the old output gradients, on the grounds 
that all derivatives of past outputs with respect to current 
weights are zero. With this simplification, expression (6) 
simplifies to 

yϑ’(k) = ∑
j=1

my

 
∂y’(k)
∂y(k−j) yϑ(k−j),  (8) 

and the dynamic filter (7) to 

yϑ̄(k) = ∏
i=1

p̄
 y(k−n̄i) ∏

h=p̄+1

m̄
 x(k−n̄h) (9) 

These more manageable expressions have been used in 
the following with satisfactory results.  

The developed adaptation algorithm is denoted Nonlinear 
Filtered-Gradient LMS (NFGLMS), since it involves 
filtering the gradient of the controller output with respect to 
its weights, instead of the reference signal. The NFGLMS 
algorithm is related to the FXLMS-based NANC algorithm 
presented in [5], in the way it employs the gradient 
information in the updating process, but the different assum-
ptions of the two methods lead to different solutions. More-
over, in [5] the idea is to keep a structure similar to the one 
of FXLMS, and the function expansion block is introduced 
to avoid the problems related to the use of the FXLMS algo-
rithm for nonlinear systems. On the contrary, the NFGLMS 
concentrates all nonlinearities in the adaptive filter. The 
proposed algorithm can also be envisaged as an extension of 
the output-error bilinear filter approach [11], in terms of the 
model structure and the filtering operations concerning the 
secondary path. 
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C. Comments on the algorithm’s complexity and usage 
The complexity of the the on-line adaptive phase scales 

with the number of model terms to be adapted, that is 
generally reduced to a minimum thanks to the selection 
process, so that the on-line adaptation and control effort is 
much lower than with the Volterra and bilinear model-based 
algorithms. 

As for model selection, a full analysis of the computatio-
nal complexity of the FRA is provided in [17]. Model 
selection gets increasingly intensive as the set of candidate 
terms grows larger, so that there is a trade-off between 
model flexibility and computational load. It is however 
important to note that such a stage is unavoidable for robust 
nonlinear identification to avoid the well-known drawbacks 
of over-parameterization.  

Besides, the active noise controller need not be idle 
during model selection. On the contrary, the last computed 
model structure should be employed for on-line adaptation 
and control until a new model structure is available, and 
model selection should be periodically repeated. The process 
could be started, e.g., using a simple linear FIR model and 
FXLMS. 

V. SIMULATION EXPERIMENTS 
In the following tests a multi-harmonic reference signal x(k), 
sum of three sine waves at the normalized frequencies of 
0.02, 0.04, and 0.08, is employed, with a sampling fre-
quency of 8000 Hz. The primary and secondary paths are 
modeled by two linear FIR filters (taken from [22]) with 
coefficients of the impulse response given by [0.0179 
0.1005 0.279 0.489 0.586 0.489 0.279 0.1005 0.0179] and 
[0.7756 0.5171 −0.362], respectively. The nonlinearity con-
sists in the saturation of the reference and/or the error 
microphone. Two levels of saturations are considered for the 
reference signal, namely “weak” and “strong”, obtained by 
setting the clipping threshold at 90% and 50% of the maxi-
mum signal value, respectively [11]. The error signal is 
either non saturated or weakly saturated with a 50% 
threshold [18]. Overall, three settings have been studied: 

WU) weakly saturated reference, unsaturated error, 
SU) strongly saturated reference, unsaturated error, 
SW) strongly saturated reference, weakly saturated error. 
The step size, or convergence factor, µ is chosen in order 

to guarantee stability and to ensure, at the same time, a 
sufficiently rapid convergence. Finally, perfect knowledge 
of the secondary path is assumed, i.e. Ŝ(z) = S(z), and the 
adaptive coefficients of the controller are initialized to zero. 

A. Test 1: setting WU 
The first test concerns setting WU. An inverse FIR filter 

of length Linv = 8 is used for the reconstruction of signal 
y(k), that is estimated using LMS with a step size µinv = 0.1, 
while an adaptive NARX filter of order L = 8 including 
quadratic terms is identified with the FRA algorithm for 8 
iterations. Finally, the weight update is performed with 

NFGLMS with a convergence factor of µ = 0.1. 
Apparently the model selection phase (see Figure 4) is 

capable of achieving significant noise reduction by itself 
(10−4 error amplitude), but the NFGLMS (after a brief 
transient) can still improve the performance by several 
orders of magnitude (10−8 error amplitude after 10000 
samples). The 8-parameter model identified by the FRA 
algorithm is reported in Table I. 
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Fig. 4.  Setting WU, residual noise with the proposed NANC scheme, after 
model selection (blue line) and during weight adaptation (red line). 

B. Test 2: setting SU 
Setting SU has been tested in the same experimental 

conditions. Although the error transient in the weight update 
phase is quite different to that of case WU (see Figure 5), 
convergence is finally achieved (10−6 error amplitude after 
10000 samples). As for the controller’s model structure (see 
Table I), some similarities may be noticed with the model 
obtained with setting WU. In particular, the first (and more 
important) selected terms are common to both models. 
Observe that these terms are linear, and may actually be 
explained as necessary for the description of the system 
itself (the first and secondary paths, the noise), while 
saturation effects are modeled by the nonlinear terms. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-3

 
Fig. 5.  Setting SU, residual noise with the proposed NANC scheme, after 
model selection (blue line) and during weight adaptation (red line). 

C. Test 3: setting SW 
Setting SW was tested, using LMS for the identification 

of the inverse with µinv = 0.1, and NFGLMS with µ = 0.01. 
The model identified by the FRA algorithm is reported in 
Table I. Both the model inversion and the weight update are 
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affected by error saturation since they heavily rely on the 
information conveyed by the error signal.  

The residual behavior (see Figure 6) shows that 
significant noise reduction can be achieved even in this case 
and that the NFGLMS can improve the results. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-3

 
Fig. 6.  Setting SW, residual noise with the proposed NANC scheme, after 
model selection (blue line) and during weight adaptation (red line). 

 
TABLE I  

FILTER MODELS ESTIMATED IN THE 3 TESTS (IN THE OFF-LINE PHASE) 
Test 1 Test 2 Test 3 

Regressors Par.s Regressors Par.s Regressors Par.s 
y(k−5)   0.0278 y(k−5)   0.0268 y(k−5)   0.3088 
u(k−4)   0.1137 u(k−4)   0.1812 u(k−4)   0.1776 
u(k−1) −0.0647 u(k−1) −0.1038 u(k−1) −0.0861 
y(k−3)u(k−8) −0.0323 u(k−3)u(k−4)   0.0578 u(k−3)u(k−4)   0.0680 
y(k−8)u(k−3)   0.2379 y(k−7)u(k−4)   0.0045 y(k−2)u(k−4)   0.0324 
y(k−4)y(k−6)   0.6724 u(k−3)2   0.0045 u(k−3)2   0.0280 
u(k−6)u(k−8) −0.0258 y(k−6)u(k−7)   0.1531 y(k−1)u(k−3)   0.1437 
y(k−8)u(k−1)   0.0418 y(k−5)y(k−8)   0.2933 y(k−6)u(k−7)   0.0148 

VI. CONCLUSIONS 
The problem of the presence of nonlinearities in real ANC 

systems has been faced focusing on the effects of saturation 
of the reference and error microphones. A novel NANC 
scheme has been proposed that generalizes the Volterra and 
bilinear filter-based FXLMS methods, and overcomes some 
limitations of those methods. The main idea is to identify a 
compact NARX model of the noise canceling controller, 
using well known model selection algorithms, suitably 
readapted to the ANC context. A filter gradient–based LMS 
algorithm is then employed for adaptive parameter tuning. 
Such algorithm has also the capability to partially compen-
sate for model structure errors left out by the previous stage. 

The proposed method has been tested on some realistic 
scenarios simulating saturation of the reference and error 
microphones, and has provided interesting results that 
outperform previously proposed techniques. Compared to 
these techniques, the presented one allows some additional 
degrees of freedom concerning the model selection scheme 
itself and its integration with the parameter update algo-
rithm, that may be tailored to the system’s characteristics 
and expected performance.  
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