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Abstract— In this paper, we propose an adaptive tracking
control of nonholonomic mobile robots considering actuator
dynamics. All parameters of robot kinematics, robot dynamics,
and actuator dynamics are assumed to be uncertain. For
the simple controller design, the dynamic surface control
methodology is applied and extended to multi-input multi-
output systems (i.e., mobile robots) that the number of inputs
and outputs is different. From the Lyapunov stability theory, we
derive adaptation laws and prove that all signals of a closed-
loop system are semi-globally uniformly ultimately bounded.
Finally, we perform compute simulations to demonstrate the
performance of the proposed controller.

I. INTRODUCTION

Over the past twenty years, the control of mobile robots

has been regarded as the attractive problem due to the

nature of nonholonomic constraints. Many efforts have been

devoted to the tracking control of nonholonomic mobile

robots [1]–[5]. However, most of the schemes have ignored

the dynamics coming from electric motors. Even if some

results were reported for mobile robots incorporating the

actuator dynamics [6], [7], all parametric uncertainties for

mobile robots were not considered at the actuator level.

This is because the controller design problem would become

extremely difficult as the complexity of the system dynamics

increases.

The backstepping technique has been widely used as

one of representative methods for controlling nonholonomic

mobile robots considering kinematics and dynamics [8]–

[10]. However, the backstepping design procedure has the

problem of “explosion of complexity” caused by the repeated

differentiations of virtual controllers. That is, the complexity

of controller grows drastically as the order n of the system

increases. Swaroop et al. [11] proposed a dynamic surface

control (DSC) technique to solve this problem by introducing

a first-order filtering of the synthesized virtual control law at

each step of the backstepping design procedure. The DSC

idea was extended to uncertain single-input single-output

(SISO) [12] and multi-input multi-output (MIMO) systems

[13]. Despite these efforts using the DSC technique, the DSC

method is still not applied to MIMO systems (i.e., mobile

robots) that have more degrees of freedom (DOFs) than the

number of inputs under nonholonomic constraints.
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Accordingly, we propose an adaptive tracking controller

for path tracking of uncertain nonholonomic mobile robots

considering actuator dynamics. It is assumed that all param-

eters of robot kinematics, robot dynamics, and actuator dy-

namics are uncertain. For the simple control system design,

we apply the DSC technique to nonholonomic electrically

driven mobile robots. The adaptive technique is used to

overcome all parametric uncertainties. Based on Lyapunov

stability theorem, we also prove that all of the signals in the

closed-loop system are semi-globally uniformly ultimately

bounded and the steady-state error can be made arbitrarily

small by adjusting the design parameters.

This paper is organized as follows. Section II introduces

simply the model of nonholonomic mobile robots incorpo-

rating actuator dynamics. In Section III, we propose a sim-

ple adaptive controller for nonholonomic electrically driven

mobile robots with parametric uncertainties, and analyze the

stability of the proposed control systems. Simulation results

are discussed in Section IV. Finally, Section V gives some

conclusions.

II. PROBLEM STATEMENT

We consider a mobile robot with two degrees of free-

dom. The kinematics and dynamics of nonholonomic mobile

robots are described by the following differential equations

[14]:

q̇ = J(q)z = 0.5r




cos θ cos θ
sin θ sin θ
R−1 −R−1




[
v1

v2

]
(1)

Mż + C(q̇)z + Dz = τ (2)

where q = [x y θ]T ∈ R
3; x, y are the coordinates of the

center of mass of the vehicle, and θ is the angle between

the heading direction and the x axis, z = [v1 v2]
T ∈ R

2;

v1 and v2 represent the angular velocities of right and left

wheels. R is the half of the width of the mobile robot and

r is the radius of the wheel,

M =

[
m11 m12

m12 m11

]
, C(q̇) = 0.5R−1r2mcd

[
0 θ̇

−θ̇ 0

]
,

D =

[
d11 0
0 d22

]
,

m11 =0.25R−2r2(mR2 + I) + Iw,

m12 =0.25R−2r2(mR2 − I)m = mc + 2mw,

I =mcd
2 + 2mwR2 + Ic + 2Im, τ = [τ1 τ2]

T .

In these expressions, d is the distance from the center of

mass Pc of the mobile robot to the middle point P0 between
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the right and left driving wheels. mc and mw are the mass

of the body and wheel with a motor, respectively. Ic, Iw,

and Im are the moment of inertia of the body about the

vertical axis through Pc, the wheel with a motor about the

wheel axis, and the wheel with a motor about the wheel

diameter, respectively. The positive terms dii, i = 1, 2, are

the damping coefficients. τ ∈ R
2 is the control torque applied

to the wheels of the robot.

Property 1: [15] The inertia matrix M is symmetric and

positive definite.

In addition, the dynamic model of dc motors can be repre-

sented as follows [6]:
{

τm = KT ia,

u = Raia + Lai̇a + KE θ̇m
(3)

where τm = [rm1
rm2

]T is the torque generated by dc

motor, KT = diag(kt1 , kt2) is the motor torque constant,

ia ∈ R
2 is the current, u ∈ R

2 is the input voltage, Ra =
diag(ra1

, ra2
) is the resistance, La = diag(la1

, la2
) is the

inductance, KE = diag(ke1
, ke2

) is the back electromotive

force coefficient, and θ̇m = [θ̇m1
θ̇m2

]T is the angular

velocity of the dc motor. Here, diag(·) denotes the diagonal

matrix.

The relationship between the dc motor and the mobile

robot wheel can be written as

nj =
θ̇mj

vj

=
τj

τmj

(4)

where nj , j = 1, 2, is the gear ratio. Using (4), the dynamic

model of dc motors (3) can be rewritten as
{

τ = NKT ia,

u = Raia + Lai̇a + NKEz.
(5)

where N = diag(n1, n2).
Assumption 1: All parameters of robot kinematics (1),

robot dynamics (2), and actuator dynamics (5) are constants

but unknown, and lie in a compact set.

Let us define the state variables as x1 = q, x2 = z, and

x3 = ia. Then, (1), (2), and (5) can be expressed in the

following state-space form:

ẋ1 = J(x1)x2 (6)

ẋ2 = M−1(−C(ẋ1)x2 − Dx2 + NKT x3) (7)

ẋ3 = L−1
a (u − Rax3 − NKEx2) (8)

where x1 = [x11 x12 x13]
T , x2 = [x21 x22]

T , and x3 =
[x31 x32]

T .

The control objective is to design a simple adaptive control

law u for nonholonomic electrically driven mobile robots (6)-

(8) to track the desired trajectory generated by the following

reference robot: 



ẋr = vr cos θr,
ẏr = vr sin θr,

θ̇r = ωr

(9)

where xr, yr, and θr are the position and orientation of

the reference robot. vr and ωr are the linear and angular

velocities of the reference robot, respectively.

Assumption 2: The reference signal zr = [vr ωr]
T is

bounded, and vr > 0.

Remark 1: In Assumption 2, vr > 0 means that this

paper is only focused on a simple controller design for the

trajectory tracking problem of mobile robots incorporating

actuator dynamics. That is, the case of vr = 0 is not

considered.

III. MAIN RESULTS

A. Adaptive Controller Design

In this section, we develop a simple control system for

nonholonomic electrically driven mobile robots. To design

the adaptive control system using the DSC technique, we

proceed step by step.

Step 1: Consider the robot kinematics (6). The first error

surface is defined as follows:



S11

S12

S̄13


 =




cos x13 sin x13 0
− sin x13 cos x13 0

0 0 1







xr − x11

yr − x12

θr − x13


 . (10)

Differentiating (10) yields





Ṡ11 = r
2R

(x21 − x22)S12 −
r
2 (x21 + x22) + vr cos S̄13

Ṡ12 = − r
2R

(x21 − x22)S11 + vr sin S̄13

˙̄S13 = ωr −
r

2R
(x21 − x22).

(11)

In the tracking error model (11), S12 can not be directly

controlled. To overcome this problem, we introduce an error

variable based on [16] as follows:

S13 = S̄13 + arctan(k1S12vr) (12)

where k1 is a positive constant. Using (12), ˙̄S13 in (11) is

transformed into

Ṡ13 = ωr −
r

2R
(x21 − x22)

(
1 +

k1vrS11

1 + (k1S12vr)2

)
+ α1(t)

(13)

where α1(t) = (k1v
2
r sin(S13 − arctan(k1S12vr)) +

k1S12v̇r)/(1 + (k1S12vr)
2).

Choose a virtual control law x̄2 as follows:

x̄2 = [x̄21 x̄22]
T = [h1 + h2 h1 − h2]

T (14)

where

h1 = â1vr cos(S13 − arctan(k1S12vr)) + k2S11

+
1

2
(k1vr)

4S3
11

h2 =

(
1 +

k1vrS11

1 + (k1S12vr)2

)
−1

×

(
â1α2(t)vrS12 + â2(ωr + α1(t)) + k3S13 +

1

2
S3

13

)

α2(t) =

∫ 1

0

cos

(
− arctan(k1S12vr) + ηS13

)
dη
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in which a1 = 1/r, a2 = R/r, k2 and k3 are positive

constants. âi is the estimate of ai, i = 1, 2. â1 and â2 are

updated as follows:

˙̂a1 =γ1vr

(
S11 cos(S13 − arctan(k1vrS12)) + α2(t)S12S13

)

− σ1γ1â1 (15)

˙̂a2 =γ2(ωr + α1(t))S13 − σ2γ2â2 (16)

with the initial estimates â1(0) = â2(0) = 0, the tuning

gains γ1, γ2 > 0, and small gains σ1, σ2 > 0 for the σ-

modification [17]. Then, to obtain a filtered virtual control

x2f = [x2f1
x2f2

]T , we pass x̄2 through a first-order filter

τ2ẋ2f + x2f = x̄2, x2f (0) = x̄2(0) (17)

with a time constant τ2 > 0.

Step 2: Consider the robot dynamics (7). Define the second

error surface S2 as

S2 = x2 − x2f . (18)

Then its derivative is

Ṡ2 = ẋ2 − ẋ2f

= M−1(−C(ẋ1)x2 − Dx2 + NKT x3) − ẋ2f . (19)

Choose a virtual control law x̄3 = [x̄31 x̄32]
T to drive

S2 → 0 as follows:

x̄3 = −k4S2 − Φ1Ŵ1 (20)

where k4 is a positive constant, Φ1W1 =
−(NKT )−1C(ẋ1)x2 − (NKT )−1Dx2 − (NKT )−1Mẋ2f ,

Ŵ1 is the estimate vector of the unknown parameter vector

W1 and it is updated by

˙̂
W1 = Γ1Φ

T
1 S2 − σ3Γ1Ŵ1 (21)

with the initial estimates Ŵ1(0) = 0, a tuning gain matrix

Γ1 > 0, and a small gain σ3 > 0. Here, Φ1 and W1 are

defined as in (22), shown at the top of the next page.

Then, x̄3 is passed through a first order filter with time

constant τ3 > 0 to obtain x3f = [x3f1
x3f2

]T ,

τ3ẋ3f + x3f = x̄3, x3f (0) = x̄3(0). (23)

Step 3: Consider the actuator dynamics (8). To design an

actual control input law u, we define the third error surface

S3 as

S3 = x3 − x3f . (24)

The time derivative of S3 is given by

Ṡ3 = ẋ3 − ẋ3f = L−1
a (u − Rax3 − NKEx2) − ẋ3f . (25)

We choose an actual control law u to derive S3 → 0 as

follows:

u = −k5S3 − Φ2Ŵ2 (26)

where k5 is a positive constant, Φ2W2 = −Rax3−NKEx2−
Laẋ3f . Ŵ2 is the estimate vector of the unknown parameter

vector W2, and is updated by

˙̂
W2 = Γ2Φ

T
2 S3 − σ4Γ2Ŵ2 (27)

with the initial estimates Ŵ2(0) = 0, a tuning gain matrix

Γ2 > 0, and a small gain σ4 > 0. Here, Φ2 and W2 are

defined as

Φ2 =

[
−x31 0 −x21 0 −ẋ3f1

0
0 −x32 0 −x22 0 −ẋ3f2

]

W2 =
[
ra1

ra2
n1ke1

n2ke2
la1

la2

]T

where ẋ3f1
= (x̄31 − x3f1

)/τ3 and ẋ3f2
= (x̄32 − x3f2

)/τ3.

Remark 2: Compared with [8]–[10] and [14] based on

the backstepping technique, the proposed controller for non-

holonomic mobile robots can overcome the “explosion of

complexity” problem by using the first-order filters. Thus,

the proposed controller based on the adaptive DSC technique

can be simpler than the adaptive backstepping controller.

B. Stability Analysis

In this section, we show that the all signals of the pro-

posed control system are semi-globally uniformly ultimately

bounded.

Define the boundary layer errors as

y2 = x2f − x̄2, (28)

y3 = x3f − x̄3. (29)

The estimate errors are defined as ãi = ai − âi, W̃i = Wi −
Ŵi, i = 1, 2. Then, the derivative of y2 and y3 are

ẏ2 = ẋ2f − ˙̄x2 = −
y2

τ2
+ Ξ1(S1, S2, y2, zr, â1, â2) (30)

ẏ3 = ẋ3f − ˙̄x3 = −
y3

τ3
+ Ξ2(S1, S2, S3, y2, y3, zr, Ŵ1)

(31)

where S1 = [S11 S12 S13]
T . Ξ1 and Ξ2 are defined as in

(32), shown at the top of the next page.

Consider the Lyapunov function candidate as follows:

V = V1 + V2 (33)

where

V1 =
1

2r
S2

11 +
1

2r
S2

12 +
R

2r
S2

13 +
1

2γ1
ã2
1 +

1

2γ2
ã2
2 (34)

V2 =
1

2

(
ST

2 (M−1NKT )−1S2 + ST
3 LaS3 + yT

2 y2 + yT
3 y3

+ W̃T
1 Γ−1

1 W̃1 + W̃T
2 Γ−1

2 W̃2

)
. (35)

Theorem 1: Consider the nonholonomic electrically

driven mobile robot (6)-(8) with parametric uncertainties

controlled by the adaptive control law (26). If the proposed

control system satisfies Assumptions 1-2 and the unknown

parameters a1, a2, W1, and W2 are trained by the adaptation

laws (15), (16), (21), and (27), respectively, then for any

initial conditions satisfying V (0) ≤ µ where µ is any
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



Φ1 =

[
−ẋ13x22 0 −x21 0 −ẋ2f1

−ẋ2f2
0 0

0 ẋ13x21 0 −x22 0 0 −ẋ2f2
−ẋ2f1

]
,

W1 =
[

r2mcd
2Rn1kt1

r2mcd
2Rn2kt2

d11

n1kt1

d22

n2kt2

m11

n1kt1

m12

n1kt1

m11

n2kt2

m12

n2kt2

]T

,

ẋ2f1
= (x̄21 − x2f1

)/τ2, ẋ2f2
= (x̄22 − x2f2

)/τ2.

(22)





Ξ1(S1, S2, y2, zr, â1, â2) = −

[
∂v
∂vr

v̇r + ∂v
∂S1

Ṡ1 + ∂v
∂â1

˙̂a1 + ∂w
∂zr

żr + ∂w
∂S1

Ṡ1 + ∂w
∂â1

˙̂a1 + ∂w
∂â2

˙̂a2
∂v
∂vr

v̇r + ∂v
∂S1

Ṡ1 + ∂v
∂â1

˙̂a1 −
∂w
∂zr

żr −
∂w
∂S1

Ṡ1 −
∂w
∂â1

˙̂a1 −
∂w
∂â2

˙̂a2

]
,

Ξ2(S1, S2, S3, y2, y3, zr, Ŵ1) = k4Ṡ2 + Φ̇1Ŵ1 + Φ1
˙̂

W 1.

(32)

positive constant, there exists a set of gains k1, . . . , k5,

τi+1, γi, Γi, and σj , where i = 1, 2 and j = 1, 2, 3, 4, such

that the error states are semi-globally uniformly ultimately

bounded and can be made arbitrarily small.

Proof: We first consider the Lyapunov function can-

didate V1. Noting that sin(S13 − arctan(k1vrS12)) =
− sin(arctan(k1S12vr)) + S13α2(t), the time derivative of

V1 along (11)−(16), (18), and (28) yields

V̇1 =
1

r
S11Ṡ11 +

1

r
S12Ṡ12 +

R

r
S13Ṡ13 −

1

γ1
ã1

˙̂a1 −
1

γ2
ã2

˙̂a2

= S11

[
−

x̄21 + x̄22

2
−

S21 + S22 + y21 + y22

2

+ a1vr cos(S13 − arctan(k1S12vr))

]

+ S13

[
a2(ωr + α1(t)) + a1vrα2(t)S12

−

(
1 +

k1vrS11

1 + (k1S12vr)2

)(
x̄21 − x̄22

2

)]

−

(
1 +

k1vrS11

1 + (k1S12vr)2

)(
S21 − S22 + y21 − y22

2

)
S13

−
1

r
S12vr sin(arctan(k1S12vr)) −

1

γ1
ã1

˙̂a1 −
1

γ2
ã2

˙̂a2

= −k2S
2
11 −

1

r
S12vr sin(arctan(k1S12vr)) − k3S

2
13

−
1

2
(k1vr)

4S4
11 −

1

2
S4

13 + σ1ã1â1 + σ2ã2â2

−

(
S21 + S22 + y21 + y22

2

)
S11

−

(
1 +

k1vrS11

1 + (k1S12vr)2

)(
S21 − S22 + y21 − y22

2

)
S13

(36)

Second, consider the Lyapunov function candidate V2.

Using (19), (20), (24), (25), (26), and (29), we can obtain

(M−1NKT )−1Ṡ2 = −k4S2 + y3 + S3 + Φ1W̃1 (37)

LaṠ3 = −k5S3 + Φ2W̃2 (38)

The time derivative of V2 along (30), (31), (37), and (38) is

given by

V̇2 =ST
2 (M−1NKT )−1Ṡ2 + ST

3 LaṠ3 + yT
2 ẏ2 + yT

3 ẏ3

− W̃T
1 Γ−1

1
˙̂

W 1 − W̃T
2 Γ−1

2
˙̂

W 2

=ST
2 (−k4S2 + S3 + y3 + Φ1W̃1) + ST

3 (−k5S3 + Φ2W̃2)

+ yT
2

(
−

y2

τ2
+ Ξ1

)
+ yT

3

(
−

y3

τ3
+ Ξ2

)

− W̃T
1 Γ−1

1
˙̂

W1 − W̃T
2 Γ−1

2
˙̂

W2. (39)

Substituting (21) and (27) into (39) yields

V̇2 = − k4‖S2‖
2 − k5‖S3‖

2 −
1

τ2
‖y2‖

2 −
1

τ3
‖y3‖

2

+ ST
2 S3 + ST

2 y3 + yT
2 Ξ1 + yT

3 Ξ2

+ σ3W̃
T
1 Ŵ1 + σ4W̃

T
2 Ŵ2 (40)

Finally, consider the Lyapunov function candidate V . Sub-

stituting (36) and (40) into the time derivative of V , we have

V̇ ≤ −k2S
2
11 −

1

r
S12vr sin(arctan(k1S12vr)) − k3S

2
13

−
1

2
(k1vr)

4S4
11 −

1

2
S4

13 − k4‖S2‖
2 − k5‖S3‖

2

−
1

τ2
‖y2‖

2 −
1

τ3
‖y3‖

2 + ‖S2‖‖S3‖ + ‖S2‖‖y3‖

+ ‖y2‖‖Ξ1‖ + ‖y3‖‖Ξ2‖ + σ1ã1â1 + σ2ã2â2

+ σ3W̃
T
1 Ŵ1 + σ4W̃

T
2 Ŵ2

+
1

2
(|S21| + |S22| + |y21| + |y22|)|S11|

+

∣∣∣∣1 +
k1vrS11

1 + (k1vrS12)2

∣∣∣∣
|S21| + |S22| + |y21| + |y22|

2
|S13|

Consider sets A1 := { 1
r
S2

11 + 1
r
S2

12 + R
r
S2

13 +
ST

2 (M−1NKT )−1S2 + yT
2 y2 + (1/γ1)ã

2
1 + (1/γ2)ã

2
2 ≤ 2µ}

and A2 := { 1
r
S2

11 + 1
r
S2

12 + R
r
S2

13 +ST
2 (M−1NKT )−1S2 +

ST
3 LaS3+

∑2
i=1(y

T
i+1yi+1 +(1/γi)ã

2
i )+W̃T

1 Γ−1
1 W̃1 ≤ 2µ}.

Since A1 and A2 are compact in R
9 and R

21, respectively,

there exist positive constants p1, p2 such that ‖Ξ1‖ ≤ p1 on

A1 and ‖Ξ2‖ ≤ p2 on A2. Using the fact

∣∣∣∣
k1vrS11

1+(k1vrS12)2

∣∣∣∣ ≤
|k1vrS11| and Young’s inequality (i.e., z1z2 ≤ 1

2z2
1 + 1

2z2
2),

we obtain

V̇ ≤− (k2 − 1)S2
11 −

1

r
S12vr sin(arctan(k1S12vr))

− (k3 − 1)S2
13 − (k4 −

7

4
)‖S2‖

2 − (k5 −
1

2
)‖S3‖

2
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− (
1

τ2
−

3

4
)‖y2‖

2 − (
1

τ3
−

1

2
)‖y3‖

2 +
‖y2‖

2‖Ξ1‖
2

2δ1

+
‖y3‖

2‖Ξ2‖
2

2δ2
+

δ1

2
+

δ2

2
+ σ1(|ã1|a1 − |ã1|

2)

+ σ2(|ã2|a2 − |ã2|
2) + σ3(‖W̃1‖‖W1‖ − ‖W̃1‖

2)

+ σ4(‖W̃2‖‖W2‖ − ‖W̃2‖
2)

where δ1 and δ2 denote positive constants. If we choose

k2 = 1 + k∗

2 , k3 = 1 + k∗

3 , k4 = (7/4) + k∗

4 , k5 =
(1/2) + k∗

5 , (1/τ2) = (3/4) + (p2
1/2δ1) + τ∗

2 , and (1/τ3) =
(1/2) + (p2

2/2δ2) + τ∗

3 , then

V̇ ≤− k∗

2S2
11 −

1

r
S12vr sin(arctan(k1S12vr)) − k∗

3S2
13

− k∗

4‖S2‖
2 − k∗

5‖S3‖
2 −

1

2
σ3‖W̃1‖

2 −
1

2
σ4‖W̃2‖

2 + ε

−

2∑

i=1

{
τ∗

i+1‖yi+1‖
2 +

1

2
σiã

2
i

+

(
1 −

‖Ξi‖
2

p2
i

)
p2

i ‖yi+1‖
2

2δi

}

≤− 2ζ(V − Vp) + ε (41)

where k∗

2 , k∗

3 , k∗

4 , k∗

5 > 0, τ∗

2 , τ∗

3 > 0, and ε = (δ1 +
δ2 + σ1a

2
1 + σ2a

2
2 + σ3‖W1‖

2 + σ4‖W2‖
2)/2, and Vp =

(1/2r)(S2
12 − S12vr sin(arctan(k1S12vr))). The constant ζ

is 0 < ζ < min[rk∗

2 , 1, r
R

k∗

3 ,Mmk∗

4 , 1
La,M

k∗

5 , τ∗

2 , τ∗

3 , (σ1

γ1)/2, (σ2γ2)/2, (σ3Γ1,m)/2, (σ4Γ2,m)/2] where Γi,m, i =
1, 2, and Mm are the minimum eigenvalues of Γj and

M−1NKT , respectively, and La,M is the maximum eigen-

value of La. Since S12vr sin(arctan(k1S12vr)) ≥ 0 for all

S12 and all t ≥ 0, (41) implies V̇ ≤ 0 on V = µ when

ζ > ε/2(µ − Vp). Therefore, V ≤ µ is an invariant set,

i.e., if V (0) ≤ µ, then V (t) ≤ µ for all t ≥ 0. Therefore,

we can prove all error signals in the closed-loop system

are semi-globally uniformly ultimately bounded. Besides, by

increasing the design parameter ζ, i.e., adjusting k∗

j , τ∗

2 , τ∗

3 ,

γ1, γ2, Γ1, Γ2, and σl (j = 1, . . . , 5, l = 1, . . . , 4), the errors

in the controlled closed-loop system can be made arbitrarily

small.

Remark 3: In this remark, we comment that h2 in (14) is

well defined for all t ≥ 0 [16]. For any k1, k2, k3 ≥ 0, con-

sider a set Ψ(k1, k2, k3) = {(S11, S12, S13, â1, â2) ∈ R
5 :

k1k2k3|S11| < 1}. Then, let Ω1 and Ω be sets given by Ω1 =
{(S11, S12, S13, â1, â2) ∈ R

5 : V1(t, S11, S12, S13, â1, â2)
< ̟, ∀t ≥ 0} and Ω = {V (t) ≤ µ, ∀t ≥ 0}
where 0 < ̟ ≤ µ is a largest constant such that Ω1 ⊂
Ψ(||k1||∞, ||k2||∞, ||k3||∞) ⊂ Ω. From (41), since S11, S12,

S13, â1, and â2 remain in an invariant set Ω, h2(t) is well

defined for all t ≥ 0.

Remark 4: In the adaptation laws (15), (16), (21), and

(27), a σ-modification [17] is used for preventing parameter

drift to infinity. We can also apply an e-modification [18]

and a projection operator method [19] in place of the σ-

modification.
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Fig. 1. Trajectory tracking result of the mobile robot.

IV. SIMULATIONS

In this section, we perform the simulation for the tracking

control of the nonholonomic electrically driven mobile robot

to demonstrate the validity of the proposed control method.

The physical parameters for the mobile robot are chosen

as R = 0.75, d = 0.3, r = 0.15,mc = 30,mw =
1, Ic = 15.625, Iw = 0.005, Im = 0.0025, and d11 =
d22 = 5. The parameters for the motor dynamics are chosen

as Ra = diag(1.6, 1.6), La = diag(0.048, 0.048),KE =
diag(0.19, 0.19),KT = diag(0.2613, 0.2613), and N =
diag(62.55, 62.55). In this simulation, we assume that all

of these parameters are unknown.

The controller parameters and adaptation gains for the

proposed control systems are chosen as k1 = 2, k2 =
2, k3 = 1, k4 = 1, k5 = 1, σi = 0.001, i = 1, . . . , 4, γ1 =
γ2 = 2, τ2 = τ3 = 0.01,Γ1 = diag(0.0001), and Γ2 =
diag(0.2, 0.2, 0.2, 0.2, 0.00001, 0.00001). The reference lin-

ear and angular velocity is given by vr = 1 m/s and ωr =
0.2 m/s. The initial postures for the reference robot and

the actual robot are (xr, yr, θr) = (2, 2, 0) and (x, y, θ) =
(2.5, 1, π/2), respectively. The simulation results are shown

in Figs. 1 and 2. Fig. 1 shows the tracking result. In Fig. 2(a),

the control is started at t = 0 and all state errors converge to

zero quickly in less than a few seconds. Fig. 2(b) shows the

boundedness of the control input. The estimates of unknown

parameters in the closed-loop system are shown in Figs. 2(c)-

(d).

V. CONCLUSIONS

In this paper, a simple adaptive controller for nonholo-

nomic electrically driven mobile robots with parametric un-

certainties has been proposed. The dynamics, the kinematics,

and the motor dynamics of mobile robots with parametric

uncertainties have been considered. The DSC technique has

been extended to design the controller for path tracking of

mobile robots including actuator dynamics, and the adaptive

control technique has been applied to deal with parametric

uncertainties. From the Lyapunov stability theory, we have
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Fig. 2. Simulation results (a) Tracking errors xe, ye, θe (b) Control inputs (c) Estimated parameters (solid : â1, dotted : â2) (d) Estimated parameters

(solid : ||Ŵ1||, dotted : ||Ŵ2||)

proved that all signals in the closed-loop system are semi-

globally uniformly ultimately bounded. Finally, from the

simulation results, it has been shown that the proposed

controller has good tracking performance and the robustness

against the parametric uncertainties.
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