
An Optimal Timing Approach to Controlling Multiple UAVs

X.C. Ding, M. Powers, M. Egerstedt, and R. Young

Abstract— In this paper we address the problem of having
a single operator control a team of unmanned aerial vehicles
(UAVs). This is achieved by having the team execute a leader-
follower coordinated behavior, where the leader is responsible
for the execution of the high-level mission. The operator
interacts with the system by selecting a leader and a decision
support mechanism is provided whereby the system computes
the best choice of leader in the current situation. This feedback
is obtained through a novel, receding horizon optimal timing
control that computes an on-line estimate as to the relative
merits of selecting different vehicles as leaders. The method
is implemented in a dynamic, 3D simulation environment,
illustrating the soundness of the proposed approach.

I. INTRODUCTION

One of the biggest challenges facing the successful deploy-

ment of unmanned aerial vehicles (UAVs) in unstructured

environments is the level of human involvement needed to

carry out the mission. In fact, control and coordination of

UAVs typically involve a many-to-one mode of operation in

that multiple operators are needed to control a single UAV.

The explicit purpose of this work is to invert this relationship,

i.e. to enable a single pilot to control and coordinate multiple

unmanned vehicles. This will enable pilots to operate UAV

teams much more effectively.

In this paper we envision a scenario in which the human

operator (the pilot) is flying along-side a team of UAVs

that are to execute a given task. The pilot must control

the team of UAVs while maintaining control of his own

plane, which implies that only a few modes of interaction

with the UAV team are feasible in order not to overload

the pilot with data and with decision tasks. We approach

this problem by essentially allowing the pilot to interact

with the UAV team along two basic modes of operation,

namely (1) autonomous leader-follower mode, and (2) pilot-

controlled leader-follower mode. In the first of these two

modes, one UAV is designated as the leader (by the pilot)

and its job is to ensure a proper execution of the overall

mission in an autonomous fashion. The remaining UAVs

will position themselves with respect to the leader UAV in

order to maintain a proper inter-agent separation. The pilot

can, while in the autonomous leader-follower mode, switch

between leader UAVs as well as transition to the other mode

Xu Chu Ding and Magnus Egerstedt are with the School of Electrical
and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332, USA. Email: {ding,magnus}@ece.gatech.edu

Matt Powers is with the College of Computing, Georgia
Institute of Technology, Atlanta, GA 30332, USA. Email:
mpowers@coc.gatech.edu

Ryan Young is with the Advanced Technology Center,
Rockwell Collins, Cedar Rapids, IA 52498, USA. Email:
syoung@rockwellcollins.com

of operation in which the pilot is directly controlling the

leader UAV. An example of what the coordinated behaviors

will look like is given in Figure 1, in which a three-vehicle

scenario is simulated in the Player/Gazebo 3D simulation

environment used to evaluate the proposed control and co-

ordination methodology.

Fig. 1. UAVs in Player/Gazebo 3D Simulation Environment.

The problem of controlling a collection of mobile agents

is not new, and a number of approaches have appeared

during the last decade. For instance, in [1],[2],[3] and [4],

a framework was established in which a tele-operator was

incorporated into the control system as a so-called motor

schema affecting the vehicles. In particular, the human oper-

ator was incorporated into the control system in two different

ways. The first way was one in which the tele-operator can

obtain total control of a single robot. The other way was

to use the human operator as a supervisor that modifies the

gains and parameters of existing control laws without taking

complete control of the vehicle. It should be noted that under

this approach, the operator produced the same schema for

all the robots in the network. A similar idea was pursued

in [7], where the effect of human supervisory control on

swarming networks was explored, where supervisory control

refers to the process of intermittently interacting with a

system in order to select modes of operation. Other work

in which humans were interacting with teams of mobile

robots included [11], in which an human-robot interaction

interface was produced for a large network of autonomous

mobile robots. In particular, a centralized user interface

was developed that collects data and sends command to

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrC07.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5374

the network. The internal state, local neighbor positioning,

and global robot positioning were displayed in the proposed

interface. The user was able to send a way-point through the

interface to a single robot to produce a velocity vector that

moved the robot to the way-point.

What is novel with the approach proposed is not that

a human operator is controlling an individual vehicle in

a semi-autonomous multi-vehicle setting, but the fact that

actable information is transmitted back to the operator in

term of the relative merit associated with different leader

selections. This merit is computed based on a fast optimal

timing control algorithm in which the cost associated with

switching between leaders can be established.

II. PROBLEM DESCRIPTION

The fundamental building block behind the proposed ap-

proach concerns what formations to use in a given situation.

For example, in [8], it is pointed out that the robots should

be spread out when navigating and exploring free-space,

while a more tight formation is preferred when negotiating

cluttered environments. In [5] this type of observation is

made concrete by proposing a hybrid control architecture in

which the robot team switches between different formations

as a reaction to environmental changes.

In this paper we will not focus on formations but rather on

leaders, i.e. the switching strategy will be based on selecting

leader UAVs to be under direct pilot control. Furthermore,

in the proposed pilot decision support framework, optimal

leader selection as well as the leader switching strategy

is provided as decision aid to the pilot. However, leader

selection will not be forced in the sense that they will not

occur autonomously. Instead the pilot will make the decision

as to what (if any) leader to control directly.

In the remainder of this section, we define the problem

that must be solved in order to successfully provide the pilot

with actable information in terms of what leader is most

beneficial in a given situation.

Switch-Time Optimization Problem

It is necessary to introduce some concepts and algorithms

involving the switch-time optimization problem (see for

example [10]). They are useful for developing optimal-

control based ranking algorithm that automatically quantifies

the impact of changing leaders.

Consider an autonomous hybrid dynamical system in the

form of:

ẋ = fαi
(x),t ∈ [τi−1,τi), i = 1,2, ...,N + 1, (1)

with a given time horizon τN+1 = T and initial condition x0 =
x(0) = x(τ0). The functions fαi

: R
n → R

n are continuous

differentiable and referred to as modal functions. In our case,

each modal function corresponds to a particular choice of

leader in the UAV network. τi is the time instant when the

mode transition is triggered and system switches from mode

i to mode i + 1. The sequence of mode {α1,α2, ...,αN+1}
is referred to as the mode sequence and is denoted by ᾱ .

Given the mode sequence of the system, we call the vector

τ̄ = [τ1,τ2, ...,τN]T the switching time vector. A valid switch-

ing time vector must follow the piecewise linear inequality

constraint: 0 = τ0 ≤ τ1 ≤ ...≤ τN ≤ τN+1 = T . The set of all

switching time vectors that satisfy this constraint is denoted

by Λ. Hence Λ := {τ̄ = [τ1, ...,τN]T : 0 = τ0 ≤ τ1 ≤ ...≤ τN ≤
τN+1 = T}.

Now that we have a way of characterizing how the system

undergoes transitions between different modes of operation,

we need to establish rules for selecting the different modes of

operation. And, for that we need a performance measure that

determines how well the task is being carried out. As such,

let L : R
n → R be a continuously differentiable function, the

cost function is defined by the following equation.

J =

∫ T

0
L(x)dt. (2)

The switch-time optimization problem is to optimize the cost

functional J over the switching time vector {ᾱ, τ̄}.

Numerous algorithms have been developed to address the

switch-time optimization problem. An example can be found

in [10]. Unfortunately, these algorithms are not feasible for

the pilot decision support framework under consideration

here. The main reason for this is that the time horizon over

which a mission is specified may be way too long to make

algorithms computationally feasible. In particular, since the

pilot is to be provided with information in real-time, a much

more focused and cheap computational algorithm must be

developed. This algorithm will be presented in the next

section.

III. REAL-TIME SWITCH-TIME OPTIMIZATION

In this section, we propose to only solve the optimization

problem over a smaller look ahead window, i.e. solve the

switch-time optimization problem over a receding horizon.

We first present our algorithms based on a general formula-

tion and then provide the algorithms needed to address the

leader-selection problem in real-time.

A. A Receding Horizon Approach

With the receding horizon approach, the cost function that

we wish to optimize over is no longer time-independent.

Instead, we use a cost-to-go function that is defined by a

sliding window. Let Ts denotes the length of the sliding

window, the cost-to-go function will be defined as :

J(t,x(t), τ̄) =

∫ t+Ts

t
L(x̃(s))ds. (3)

The instantaneous cost L is evaluated over the future (pred-

icated) state trajectory, denoted by x̃(s). The future state

trajectory starts at initial condition x̃(t) = x(t) for the time

horizon s ∈ [t,t +Ts], and it evolves according to (1) with the

switching time vector τ̄ .

The current and future trajectory is illustrated in Figure 2,

where the solid curve represents the past trajectory and the

dotted curve represents the future (or projected) trajectory. In

this paper we denote the problem of optimizing the cost-to-go

function at time t by Πt . The approach of this paper allows

the means to compute the trajectory of the switching time

5375

τ̄ t + Tst

x(t)

x̃(s)

x

x0

Ts

t0

Fig. 2. Current state and the state simulated into the future.

vector, such that it is an approximation of a local optimal

solution for the cost-to-go function at each time instant t.

This local optimal switching time vector is a function of

time t as well, and is defined as:

τ̄(t) = min
τ̄

J(t,x(t), τ̄),t ≥ t0, (4)

for an initial time t0. To compute trajectory τ̄(t), we develop

an iterative process so that it computes the solution for Πt+dt

assuming that the solution for Πt is available. In other words,

given τ̄(t), we wish to obtain ˙̄τ(t).

The real-time algorithm is divided into two phases. The

first phase of the algorithm is to re-compute the optimal

switching times so that τ̄(t0) is a local minimum for the

problem Πt0 . This computation must be performed on-line,

whenever the system trajectory is modified by the pilot input,

at which point the system clock is reset to t = 0. The time

horizon for the algorithm for the first phase is set to [0,T],
where T is selected so that it is large enough to enable the

convergence of the on-line algorithm. Once it converges, we

set t0 to be the current time, as well as picking a sliding

window length as Ts = T − t0, and the algorithm for the

second phase starts. The second phase updates τ̄(t) so that

it becomes an estimate of local minimum for the next time-

step.

The algorithm for the first phase is the on-line algorithm

proposed in [12]. We re-iterate the algorithm here without

the derivation and convergence analysis.

Algorithm 1: at each time t, do

Step 1. Compute h̃(t), defined as the projection of

−
(

∂ 2J
∂ τ̄2 (t, x̃(t), τ̄(t))

)−1
∂J
∂ τ̄ (t +∆t, x̃(t +∆t), τ̄(t)) onto the

feasible set Λ.

Step 2. Compute γ(t) := max{c ≤ 1 | τ̄(t) +
ch̃(t) is feasible}.

Step 3. Define h(t) := γ(t)h̃(t), and set τ̄(t + ∆t) =
τ̄(t)+ h(t).

The gradient ∂J
∂ τ̄ (t + ∆t, x̃(t + ∆t), τ̄(t)) is computed as

follows. First the future predicated state trajectory x̃(s) is

computed over the time interval s ∈ [t + ∆t,T] with the

switching time vector τ̄(t). Then a projected costate trajec-

tory is computed backward:

λ̇ (s) = −λ (s)
∂ fi+1

∂ x̃
−

∂L

∂ x̃
,s ∈ [τi,τi+1), i = N, ...,1, (5)

with the initial condition λ (τN+1) = 0. The gradient is then

determined by the following equation:

∂J

∂τi

= λ (τi)

(

fi(x̃(τi))− fi+1(x̃(τi))

)

. (6)

Note that only one forward-backward computation is needed

at each time instant. The above algorithm is executed at each

time-step until the update direction h(t) is below a predefined

bound, at which point we obtain a local minimum for Πt0 .

This concludes the first phase of the iterative process.

Then the goal becomes providing an iterative process

to update the switching times so that they remain locally

optimal to the sliding window at each time instant t. In the

continuous-time perspective, the goal is to establish the time

derivative of the optimal switching time vector τ̄(t) at time

t, namely ˙̄τ(t), so that optimality is conserved with respect

to the sliding window. In other words, we aim to compute
˙̄τ(t), so that if τ̄(t) is a solution point for Πt , then τ̄(t +dt)
computed by this continuous process

τ̄(t + dt) = τ̄(t)+ ˙̄τ(t)dt (7)

is a solution point for Πt+dt , and ∂J
∂ τ̄ (t + dt,x(t + dt), τ̄(t +

dt)) = 0..

Note that if we obtain the optimal switching time vector

τ̄(t) and substitute it in (3), then J(t,x(t), τ̄(t)) is locally

optimal and
∂J

∂ τ̄
(t,x(t), τ̄(t)) = 0, (8)

Since we wish to preserve optimality, it follows that the

optimal switching time trajectory τ̄(t) also satisfies:

d

dt

(∂J

∂ τ̄
(t,x(t), τ̄(t))

)

= 0. (9)

Using the fact (9), we present the following proposition:

Proposition 1

Given τ̄(t) as a local minimum for Πt and the second

derivative of J with respect to τ̄ is strictly positive. Then

the time derivative of τ̄(t) can be determined by:

˙̄τ(t) = −

(

∂ 2J

∂ τ̄2
(t,x(t), τ̄(t))

)−1

M(t, τ̄(t),x(t)), (10)

where M(t, τ̄(t),x(t)) is given by

M(t, τ̄(t),x(t)) = lim
dt→0

1

dt

∂J

∂ τ̄
(t + dt,x(t + dt), τ̄(t)).

The proof of this proposition uses the same reasoning as

in [9], hence the detail is omitted. Throughout this paper

we will make the explicit assumption that τ̄(t) is a local

minimum to Πt and hence that the Hessian is positive

definite, which in turn implies that (10) is well-defined. This

assumption may not always hold since extrema are known

to not always be continuous across system parameters.

5376

By relaxing the infinitesimal time interval dt to be a

finite interval ∆t, we obtain a discrete algorithm that is an

estimate of the continuous process (7). This algorithm can

be described as follows:

Algorithm 2: at each time t, do

Step 1. Compute h̃(t), defined as the projection of

−
(

∂ 2J
∂ τ̄2 (t, x̃(t), τ̄(t))

)−1
∂J
∂ τ̄ (t +∆t, x̃(t +∆t), τ̄(t)) onto the

feasible set Λ.

Note that the gradient formula is the same as (6),

however the state and costate trajectories are computed

over the time interval [t + ∆t,t + ∆t + Ts].
Step 2. Compute γ(t) := max{γ ≤ 1 | τ̄(t) +
γ h̃(t) is feasible}.

Step 3. Define h(t) := γ(t)h̃(t), and set τ̄(t + ∆t) =
τ̄(t)+ h(t).

The above algorithm is executed at each time instant, and

it is constructed so that the optimality of the switching times

is preserved. The difference between Algorithm 1 and Al-

gorithm 2 is the time horizon used to compute the gradients

and the Hessians ([t +∆t,T] versus [t +∆t,t +∆t +Ts]). After

an update, if a switching time is reduced to the current

time t, a switching is suggested from the optimal control

module to the pilot. If the pilot takes the suggestion and

switches to the corresponding mode, then the first switching

time is discarded from the switching time vector. If all

switchings have taken place and the switching time vector

becomes empty, the above algorithms can be restarted using

the operation of mode insertion described in [10].

B. Applications to a Three UAV Network

In this work, we consider a network of 3 UAVs flying

in a constant altitude, connected by communication links

to each other and to a remote human pilot using remote

piloting software. At any point in time, the pilot may select

one vehicle to act as a “leader”, navigating autonomously by

a predefined mission objective. The remaining UAVs act as

“followers”, falling into formation behind the leader. Thus,

in this UAV network, it is possible for the pilot to switch

between 3 distinct subsystems, each defined by designating

a different agent as the leader. Additionally, the pilot may, at

times, choose to remotely control the actions of the leader.

For instance, the pilot may want to further explore an area

of interest discovered during a routine mission, but not on

the predefined route.

Depending on the state of the UAV network and the mis-

sion objective, it may be advantageous for the pilot to choose

one UAV as the leader over another. To this end, optimal

switching times can be computed on-line using Algorithm 1

and 2, and fed-back to the pilot. This information is provided

to the pilot as a decision aid so that the pilot is advised to

switch leader vehicles at the appropriate time.

As stated above, the majority of a mission will be com-

pleted under autonomous control by a predefined mission

objective. To demonstrate how our algorithm computes the

optimal trajectory for the UAV network, and as an example

mission objective, consider a cost function that evaluates

progression towards completion of a surveillance mission.

One strategy for surveillance of an area is to plan a path at

configuration time through the area that maximizes coverage,

then drive the UAV network through the path. Using this

strategy, we construct a cost function that minimizes average

distance from the path to the network.

The problem can be formulated as follows: Given a C1

curve p(t), the cost function to be minimized is defined as the

average distance from the network to the curve. In this case,

the centroid of the network can be used. The UAV network

can be modelled as a set of holonomic robotic agents, where

the state of the network is defined as x = [xT
1 ,xT

2 ,xT
3]T and

xi ∈ R2 is the position of ith robot in the network. Next,

define a matrix C such that Cx(t) computes the centroid of

the network. The cost-to-go function can then be defined as:

J(t,x(t), τ̄) =

∫ t+Ts

t

1

2
||Cx̃(s)− p(s)||2ds. (11)

It should be remarked that the computational complexity

of the algorithm proposed in this paper scales linearly with

the number of UAVs in the team. However, the amount of

communication required may scale quadratically with the

number of UAVs.

IV. IMPLEMENTATION AND RESULTS

To demonstrate the practicality and effectiveness of the

algorithms presented in this document, the pilot decision

aid application described above was implemented in sim-

ulation. Care was taken to design a plausible demonstration,

including implementing a distributed multi-agent system ar-

chitecture, and developing within a third-party physical sim-

ulation environment. Three independent UAV agents were

implemented, plus a remote pilot interface through which

the calculated pilot feedback would be provided.

A. Implementation

Each robot in the simulation was implemented as an

independent agent, acting either as a leader robot or a

follower robot, according to input from the pilot. At any

given time, only one robot may act as a leader. The leader’s

task is to follow the a priori plan, or, if commanded to do

so by the human pilot, follow the pilot’s steering commands.

The follower robots act to maintain an appropriate distance

from the leader (a de-facto following strategy) and from

each other. Figure 3 depicts the internal information flow

within each robot. Since we do not force leader selection, the

information on which leader should be selected is computed

and displayed to the pilot through a pilot user interface.

The controllers used to control the UAVs are defined as

follows: Assume the leader is l ∈ {1,2,3}. We define the

dynamics of the subsystem as ẋ = fl(x), where l = 1,2,3 as:

ẋl(t) = p(t)− xl(t)

ẋi(t) = ∑
j 6=i

(||xi(t)− x j(t)||− k)(x j(t)− xi(t)),

i = {1,2,3}\{l}.

5377

Fig. 3. Data flow architecture for each UAV agent.

This is a simple proportional compensator that drives the

leader agent to the desired path, and executes weighted

consensus dynamics on the follower agents so that each

follower agent maintains a set distance of k with other agents.

The result of this controller is a triangular formation, and the

UAV team is shepherd by the leader vehicle.

As mentioned above, the pilot may choose to take remote

control of the leader robot. In this mode of operation, the

controllers of the UAV network can be described as follows.

ẋl(t) = v(t)

ẋi(t) = ∑
j 6=i

(||xi(t)− x j(t)||− k)(x j(t)− xi(t)),

i = {1,2,3}\{l},

where v(t) is the control input supplied by the pilot.

B. Results

The system was tested in the open source Player/Gazebo

simulation environment [6]. A hardware model for a UAV

was implemented within Gazebo’s open software environ-

ment. A fixed-wing aircraft was modelled, with 6 degrees of

freedom, as shown in Figure 1. Furthermore, a graphical user

interface was designed for input from the pilot and feedback

for the pilot. The interface displays the global positions of

the UAVs, the role (leader or follower) each UAV is currently

playing (by coloring the respective UAV’s icon), and the

leader as suggested by the optimization algorithm (again, by

coloring the respective UAV’s icon). The pilot may choose

a UAV to act as the leader by clicking on the icon of the

desired agent. The pilot may also remotely control the leader

by using a virtual joystick provided in the lower right-hand

corner of the interface.

Demonstrations of the above described system were or-

ganized to highlight 3 features. The ability of the pilot to

designate a new leader for the formation was demonstrated.

Then, the affordance for the pilot to remotely control the

leader UAV and then return the formation to autonomous

control was demonstrated. Finally, the decision support is

provided for the pilot each time the UAV network is recon-

figured, or controlled manually by the pilot. Figures 4 and 5

demonstrate the capabilities of the above described system.

Figure 4 demonstrates the pilot’s ability to designate a

leader UAV from the team of UAVs. Figure 4(a) depicts the

pilot interface showing a team of 3 UAVs navigating along a

predefined route. The designated leader is in front (colored

red), while the other two UAVs follow behind (colored

green). The pilot selects one of the two follower UAVs to

become the new leader. The optimal control module suggests

to switch back to the agent in front, which is marked in black

as shown in Figure 4(b). This decision aid was not taken, and

the selected UAV moves to take its place at the front of the

formation, while the former leader moves to take its new

place as a follower in the formation. Figure 4(c) shows the

new formation with the newly designated leader in the front

of the team.

The affordance for the pilot to manually navigate the

leader UAV is demonstrated by Figure 5. Figure 5(a) shows

the formation of UAVs following their commanded route.

An area of interest to the pilot (marked by the red polygon)

is to the northwest of the formation. To explore the area

of interest, the pilot uses the virtual joystick (shown in the

bottom right corner of the interface) to pilot the leader UAV,

as shown in Figure 5(b). The UAV under the pilot’s control

is marked blue. The other two UAVs continue to operate

autonomously, albeit as followers. In this manner, the pilot

is essentially in remote control of the entire formation. Once

the pilot is satisfied with the exploration achieved, the leader

UAV is returned to autonomous operation. Figure 5(c) shows

the fully autonomous formation returning to it mission. Note

that the a suggestion was indicated by the optimal control

module to switch to a follower agent while returning to the

mission.

V. CONCLUSION

In this document, we report on our findings pertaining to

pilot decision support for multiple unmanned aerial vehicles.

In particular, we let the pilot interact with the system by

selecting which of the agents should take on the role of a

leader and a novel decision support feedback mechanism

is provided. This feedback mechanism gives the operator

access to the relative merits of selecting different vehicles as

leaders, based on a novel, receding horizon approach to real-

time optimal timing control for hybrid systems. Simulations

in a realistic 3D environment support the soundness of the

proposed approach.

REFERENCES

[1] R.C. Arkin. Motor Schema-Based Mobile Robot Navigation. Interna-

tional Journal of Robotics Research, Vol.8 No. 4. August 1989, pp
92-112

[2] R.C. Arkin, Cooperation without communication: Multiagent schema-
based robot navigation. Journal of Robotic Systems, April 1992.

[3] R.C. Arkin. Reactive control as a substrate for telerobotic systems.
Aerospace and Electronic Systems Magazine, IEEE Volume 6, Issue
6, June 1991 Page(s):24-31

[4] R.C. Arkin and K. Ali. Integration of reactive and telerobotic control
in multi- agent robotic systems. From animals to animats 3: Proc.

Third International Conference on Simulation of Adaptive Behavior,
pages 473-478, 1994.

[5] H. Axelsson, A. Muhammad, and M. Egerstedt. Autonomous For-
mation Switching for Multiple, Mobile Robots. IFAC Conference on

Analysis and Design of Hybrid Systems, Sant-Malo, Brittany, France,
June 2003.

5378

(a) The formation of UAVs follow the planned path.

(b) The pilot chooses a new leader.

(c) The new leader takes its position at the front of the formation.

Fig. 4. Demonstration of the pilot designating a new leader for the
formation of UAVs.

[6] T.H.J. Collett, B.A. MacDonald, and B.P. Gerkey. ”Player 2.0: Toward
a Practical Robot Programming Framework”. In Proceedings of the

Australasian Conference on Robotics and Automation (ACRA 2005),
Sydney, Australia, December 2005.

[7] M.L. Cummings. Human Supervisory Control of Swarming Networks,
2nd Annual Swarming: Autonomous Intelligent Networked Systems

Conference, June 2004.

[8] J.P. Desai, J. Ostrowski, and V. Kumar. Controlling Formations of
Multiple Mobile Robots. Proceedings of the 1998 IEEE International

Conference on Robotics and Automation, May 1998.

[9] M. Egerstedt, S. Azuma, and Y. Wardi. Optimal Timing Control of
Switched Linear Systems Based on Partial Information. Nonlinear

Analysis: Theory, Methods & Applications, 2006.

[10] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-Time Opti-
mization for Switched-Mode Dynamical Systems. IEEE Trans. on

(a) The UAVs move along the planned path. An area of interest to
the pilot lies to the northwest of the formation.

(b) The pilot remote controls the leader to the area of interest.

(c) The pilot returns the leader to autonomous control. The forma-
tion moves back to the planned path.

Fig. 5. Demonstration of the pilot exploring an area of interest by remote
controlling the leader UAV.

Automatic Control, Vol. AC-51, pp. 110-115, 2006.
[11] J. McLurkin, et. al. Speaking Swarmish: Human-Robot Interface

Design for Large Swarms of Autonomous Mobile Robots, AAAI Spring

Symposium, March 28, 2006
[12] Y. Wardi, X. Ding, M. Egerstedt, and S. Azuma. On-Line Optimization

of Switched-Mode Systems: Algorithms and Convergence Properties.
IEEE Conference on Decision and Control, New Orleans, LA, Dec.

2007.

5379

