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Abstract— This paper is concerned with set-point sevo prob-
lems by P·SPR·D control and P·I·SPR·D control of affine
nonlinear system which is of multi input and multi output.
P·SPR·D control consists of proportional (P) action + strict
positive real (SPR) action + derivative (D) action. Such control
can asymptotically stabilize the affine nonlinear system being
passive. Stability analysis of P·SPR·D control and P·I·SPR·D
control is made, based on the passivity theory and LaSalle’s
invariance principle. The effectiveness of the proposed method
is demonstrated by the simulation results for an elastic joint
robot arm and TORA model.

I. INTRODUCTION

This paper investigates a PID-like control scheme for

affine nonlinear systems. In regard to stabilizing control

of affine nonlinear systems, there exist many studies as

passivity theory [3, 4, 8, 9, 10], exact linearization [5], back

stepping method [6, 10], passivity based design of cascaded

system [13], etc. But PID control has not been used so much

except for the Lagrangian systems like robot manipulators[1].

PID control for dissipative systems is discussed in Ref. [2]
considerably.

We study stability analysis of P·SPR·D control imitating

PID control for the affine nonlinear systems, based on the

passivity theory and LaSalle’s invariance principle[7]. (SPR is

a short for strict positive real.) When the P·SPR·D controller

is applied to a plant possessing the Kalman-Yakubovich-

Popov (K.Y.P) property[3,4,10], we can prove that the closed-

loop system becomes asymptotically stable by the P·SPR·D
control, applying the passivity theory and LaSalle’s theorem.

Based on the same approach, P·I·SPR·D control is also

proposed to apply for more general cases.

Stabilizability by PID control is augmented by adding

the SPR to PD or PID in parallel. This is guessed from

the passivity theorem of interconnected systems. Note that

the SPR element in the structured controller is effective for

improvement of transient response, while the I element works

for steady state performance.

Section 2 describes the P·SPR·D control generally. Section

3 investigates regulation problem for the affine nonlinear

system by the P·SPR·D control. Sections 4 and 5 are devoted

for a set-point servo problem by the P·SPR·D control and

P·I·SPR·D one, respectively. Section 6 investigates P·SPR·D
control of an elastic joint robot arm and TORA medel. The

simulation results are shown to demonstrate the effectiveness

of the P·SPR·D control.
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II. P·SPR·D CONTROL OF AFFINE NONLINEAR SYSTEM

Let us consider an affine nonlinear system

ẋ = f(x) + G(x)u (1)

y = h(x) (2)

where x ∈ Rn, u ∈ Rr, y ∈ Rm are the state vector, the

control input and the measurable output, respectively. We

assume that system (1),(2) is stabilizable.

When the desired value is y = y∗, PID control for a set-

point servo problem is given as

u = KP (y∗ − y) + KI

∫ t

0

(y∗ − y)dt − KDẏ + m0 (3)

where KP ∈ Rr×m, KI ∈ Rr×m, KD ∈ Rr×m are

gain matrices corresponding to proportional, integral and

derivative actions, respectively. m0 is the so-called manual

reset quantity.

Introducing here a new state equation (an integlator)

ξ̇ = y∗ − y (4)

the PID control (3) can be represented as

u = KP (y∗ − y) + KIξ − KDẏ + m0 (5)

Now at the equilibrium that output y is kept y∗, the

following relation must be satisfied.

0 = f (xe) + G(xe)u

y∗ = h(xe)

Since there exist (n+ m) equations and (n+ r) variables,

when r ≥ m, we can set (r − m) state variables xeN as an

arbitrary value x∗
eN . But the remained state variables xeB

and u are dependently detemined. Put such an equilibrium

as x∗ =

[
x∗

eN

xeB(x∗
eN , y∗)

]
, u∗ = u(x∗

eN , y∗).

Now consider the cascaded system of subsystem Σp and

subsystem Σs :

Σp : ẋ = f(x) + G(x)u (6)

y = h(x) (7)

Σs : ξ̇ = Dξ + q(y, x), D < 0 (8)

Here D is a negative definite matrix and Σs is strict positive

real (SPR). Further, q(y, x) is properly set depending on the

problem. And consider a feedback controller

u = KP (y∗ − y) + KSξ − KDẏ + m0 (9)

where KS ∈ Rr×m is a gain matrix for the SPR action. We

call the control law (9) with (8) the P·SPR·D control law.
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Generally speaking, stability of the closed-loop system

(6)∼(9) cannot be analyzed except applying Lyapunov’s

theorem for an individual plant. But we can prove asymptot-

ical stability for the regulation problem and/or the set-point

servo problem of passive affine nonlinear systems, applying

LaSalle’s invariance principle, as mentioned below.

III. P·SPR·D CONTROL FOR REGULATION PROBLEM

In this section we study on the regulation problem of

affine nonlinear system. Consider the cascaded system of

subsystem Σp and subsystem Σs :

Σp : ẋ = f(x) + G(x)u (10)

y = h(x) (11)

Σs : ξ̇ = Dξ − y, D < 0 (12)

Here D is asssumed to be a negative definite diagonal matrix.

Since we discuss on a control scheme based on the

passivity, we assume that system (10),(11) is passive with

respect to m-dimensional input u ∈ Rm and output y ∈
Rm. Then, taking a semi-positive definite storage function

as W (x) ≥ 0, W (0) = 0, the so-called K-Y-P property

holds[3,4,10].

Wx(x)f (x) ≤ 0 (13)

Wx(x)G(x) = yT (14)

[Definition 1] Nonlinear system (10),(11) is zero state

detectable , if x(t) → 0 as t → ∞ when u(t) = 0, y(t) =
0 ∀t ≥ 0 . Furthermore, it is x∗-state detectable, if

x(t) → x∗ as t → ∞ when u(t) = u∗, y(t) = y∗ ∀t ≥ 0 .

First the following is well known[5,10].

⌈ Assume that system (10),(11) with r = m is passive

and zero state detectable. Then the output feedback control

u = −KP y aymptotically stabilizes an equilibrium point

xe = 0, where KP ∈ Rm×m is a positive definite matrix.

⌋

However, we investigate below the P·SPR·D control by

which performance improvement is expected.

[Theorem 1] Suppose that the cascaded system (10)∼(12)

of subsystems Σp and Σs satisfies :

Assumption (a) Subsystem Σp is passive.

Assumption (b) Subsystem Σs is asymptotically stable as

y = 0.

Then, if the system Σp is zero state detectable with respect

to the output y, the P·SPR·D control

u = −KP y + KSξ − KDẏ (15)

asymptotically stabilizes the closed-loop system of cascaded

system of Σp and Σs at the equilibrium point (xe, ξe) =
(0,0), provided that KP and KS are positive definite ma-

trices and KD is semi-positive definite one and KSD < 0.

(Proof) For the overall system consider a Lyapunov func-

tion candidate (semi-positive definite function)

V (x, ξ) = W (x) +
1

2
ξT KSξ +

1

2
yT KDy ≥ 0 (16)

Take a time derivative of V (x, ξ) along (10) and (12) and

use (13),(14),(15) to get

V̇ (x, ξ)

= Wx(x)ẋ + ξT KS ξ̇ + yT KDẏ

= Wx(x){f(x) + G(x)u} + ξT KS(Dξ − y) + yT KDẏ

= Wx(x)f(x) + Wx(x)G(x)(−KP y + KSξ − KDẏ)

+ ξT KS (Dξ − y) + yT KDẏ

≤ yT (−KPy + KSξ − KDẏ)

+ ξT KSDξ − ξT KSy + yT KDẏ

= −yT KP y + ξT KSDξ ≤ 0 (17)

Accordingly, Lyapunov’s stability theorem cannot be ap-

plied, as V (x, ξ) is semi-positive definite and V̇ (x, ξ) is

semi-negative definite. So we apply LaSalle’s invariance

principle[7] to prove that the overall system is asymptotically

stable at the equilibrium (xe, ξe) = (0,0) .

Now let Ωc = {(x, ξ)|V (x, ξ) ≤ c} and suppose Ωc is

bounded and V̇ (x, ξ) ≤ 0 in Ωc (c is a positive number such

that V̇ (x, ξ) ≤ 0). Here define ΩE as a set of all points of

Ωc satisfying V̇ (x, ξ) = 0 and put

ΩE =
{
(x, ξ) | V̇ (x, ξ) = 0, (x, ξ) ∈ Ωc

}

Since KP > 0, KSD < 0 from the condition of the

theorem, V̇ (x, ξ) = 0 holds from (17) only when ξ =
0, y = 0, that is,

ΩE = {(x, ξ) | ξ = 0, y = 0, (x, ξ) ∈ Ωc}

But when ξ = 0, y = 0, one has u = 0 from (15). Thus it

holds in ΩE that

ΩE = {(x, ξ) | ξ = 0, ẋ = f(x), y = 0, (x, ξ) ∈ Ωc} (18)

Subsystem Σp is zero state detectable from the condition

of the theorem. Therefore, by the definition of zero state

detectability, ẋ = f(x), y = h(x) = 0 implies that

x(t) → 0 as t → ∞ in ΩE . Consequently, (x, ξ) satisfying

V̇ (x, ξ) = 0 consists of only a point (x, ξ) = (0,0).
Namely, letting ΩM be the largest invariance set in ΩE ,

ΩM consists of only the equilibrium point (xe, ξe) = (0,0).
Thus, by LaSalle’s invariance principle[7], all trajectories in

Ωc converge to ΩM as t → ∞, that is, converge to the

equilibrium (xe, ξe) = (0,0). Q.E.D

By the way, static state feedback control law may be

obtained by the passivity based design[10,13] of the cascaded

system also. Generally speaking, however, the control law

using a storage function is complex. An advantage of the

P·SPR·D control is of output feedback with simple structure.

IV. P·SPR·D CONTROL FOR SET-POINT SERVO PROBLEM

We study a set-point servo problem of affine nonlinear

system.

Most passive systems consist of Lagrangian systems like

mechanical systems. In that case hypothetical output y is

generally taken as velocity of generalized coordinates. In

many cases, however, actual controlled output and/or mea-

surable output are position that is an integral of velocity y.
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We suppose y ∈ Rm and u ∈ Rm, since we consider

the set-point servo problem of passive systems. Such a set-

point servo problem is formulated with the SPR element as

follows.

Σp : ẋ = f (x) + G(x)u, x(0) = x0 (19)

y = h(x) (20)

ż = y, z(0) = 0 (21)

Σs : ξ̇ = Dξ + (z∗ − z) − y, ξ(0) = 0, D < 0 (22)

u = KP (z∗ − z) + KSξ − KDy + m0 (23)

where z∗ is the desired value of position z which is an

integral of velocity y. In case of the set-point servo problem

the desired value of velocity y∗ is zero. m0 is the so-called

manual reset quantity. We suppose all KP ∈ Rm×m, KS ∈
Rm×m, KD ∈ Rm×m be positive definite matrices.

In particular, let us call a control scheme (21)∼(23) the

P·SPR·D control in regard to position.

[Theorem 2] Assume that system (19),(20) be passive and

x∗-state detectable. Then the closed-loop system (19)∼(23)

of affine nonlinear system with P·SPR·D control is asymp-

totically stable at the equilibrium (xe, ze, ξe) = (x∗, z∗,0),
provided that m0 = u∗ and positive definite matrices

KP , KS, KD and negative definite diagonal D are appro-

priately chosen. Here x∗ and u∗ are the equilibrium state

and the control input corresponding to the desired controlled

output z∗.

(Proof) At the equilibrium at which the controlled output

z is kept z∗, the following relation must be satisfied.

0 = f (xe) + G(xe)u

z∗ = h̃(xe)

where z = h̃(x) denotes the actual controlled output. Thus,

in order that z becomes z∗, xe and u must be x∗ and u∗

corresponding to z∗, as mentioned in Section 2.

Meanwhile, since an equilibrium of system (19)∼(22)

must satisfy

0 = f(xe) + G(xe){KP (z∗ − ze) + KSξe − KDye + u∗}

0 = ye

0 = Dξe + (z∗ − ze) − ye,

it follows that (xe = x∗, ze = z∗, ξe = 0) is an

equilibrium point with ye = h(xe) = 0.

Now let us consider a Lyapunov function candidate

V (x, z, ξ) = W (x) − u∗T z

+
1

2

[
(z∗ − z)

ξ

]T
[
KP − K K

K
T

KS − K

][
(z∗ − z)

ξ

]
(24)

where W (x) is a storage function and KP −K > 0, KS −

K > 0 and

[
KP − K K

K
T

KS − K

]
is a positive definite

matrix. The first term in the right-hand side of (24) is a

semi-positive definite function. Since the second term plus

the third one is a quadrtic function of

[
(z∗ − z)

ξ

]
whose

quadratic term is with the positive definite matrix, it has the

minimum. Hence, V (x, z, ξ) is a function bounded below.

Next calculate its time derivative along (19),(21),(22) with

the use of K-Y-P property (13),(14) to get

V̇ (x, z, ξ)

= Wx(x){f(x) + G(x)u} − u∗T y

+

[
(z∗ − z)

ξ

]T
[
KP − K K

K
T

KS − K

][
−ż

ξ̇

]

≤ yT u − u∗T y +

[
(z∗ − z)

ξ

]T
[
KP − K K

K
T

KS − K

]

×

[
−y

Dξ + (z∗ − z) − y

]

= yT (KP (z∗ − z) + KSξ − KDy + u∗) − u∗T y

+

[
(z∗ − z)

ξ

]T

×



−(KP − K)y + KDξ + K(z∗ − z) − Ky

−K
T
y + (KS − K)Dξ + (KS − K)(z∗ − z)

−(KS − K)y




= yT {KP (z∗ − z) + KSξ − KDy + u∗} − u∗T y

+

[
(z∗ − z)

ξ

]T[
K KD

KS − K (KS − K)D

][
(z∗ − z)

ξ

]

−(z∗ − z)T KP y − ξT KSy

= −yT KDy +

[
(z∗ − z)

ξ

]T[
K KD

KS − K (KS − K)D

]

×

[
(z∗ − z)

ξ

]
(25)

Here we try to make
[

K KD

KS − K (KS − K)D

]

be negative definite. For that purpose, set K < 0, KS−K =
(KD)T and D < −I such that we have KS = (I +D)K >

0. Then the above matrix becomes
[

K KD

(KD)T DKD

]

Since the (1,1) element and the (2,2) element are K <

0, DKD < 0, respectively, we can choose K < 0 and

D < 0 such that the above matrix becomes negative definite.

Consequently, V̇ (x, z, ξ) becomes semi-negative definite,

and it follows that the P·SPR·D control is stable in the sense

of Lyapunov, but it is unknown if asymptotically stable. So

we apply LaSalle’s invariance principle.

Let Ωc = {(x, z, ξ) | V (x, z, ξ) ≤ c} and suppose Ωc is

bounded and V̇ (x, z, ξ) ≤ 0 in Ωc (c is a positive number

such that V̇ (x, z, ξ) ≤ 0). Here define ΩE as a set of all

points of Ωc satisfying V̇ (x, z, ξ) = 0 and put

ΩE = {(x, z, ξ) | V̇ (x, z, ξ) = 0, (x, z, ξ) ∈ Ωc} (26)

From (25) (x, z, ξ) satisfying V̇ (x, z, ξ) = 0 is given as

y = 0, z∗−z = 0, ξ = 0. But at that time we have u = u∗
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from (23) and by x∗-state detectability, we obtain

ΩE = {(x, z, ξ)|x = x∗, z = z∗, ξ = 0, (x, z, ξ) ∈ Ωc}

(27)

Accordingly, we know from (19),(21),(22) that (x, z, ξ)
in ΩE consists of only the equilibrium point (xe, ze, ξe) =
(x∗, z∗,0) for u = u∗. Thus the largest invariance set

ΩM in ΩE consists of the equilibrium point (xe, ze, ξe) =
(x∗, z∗,0). Therefore, by LaSalle’s invariance principle all

trajectories in Ωc converge to ΩM as t → ∞. Thus,

(x∗, z∗,0) is aymptotically stable and z converges to z∗.

Q.E.D

[Corollary 1] If system (19),(20) is the Euler-Lagrange

system, Theorem 2 holds without the assumption of x∗-state

detectability.

[Remark 1] A theorem corresponding to the above Corol-

lary 1 has been proved in Refs. [11,12] in cases of an

inverted pendulum and robot manipulators not being zero

state detectable.

[Remark 2] When m0 = u∗ cannot be calculated or

is not available, one may adopt P·SPR·D+I control, where

KI

∫ t

0
(z∗ − z)dt is substituted for m0.

V. P·I·SPR·D CONTROL FOR SET-POINT SERVO

PROBLEM

When output y is not always velocity of generalized co-

ordinates, we can consider the following P·I·SPR·D control.

Such a set-point servo problem is formulated with the SPR

element as follows.

Σp : ẋ = f(x) + G(x)u, x(0) = x0 (28)

y = h(x) (29)

ż = y∗ − y, z(0) = 0 (30)

Σs : ξ̇ = Dξ + z + (y∗ − y), ξ(0) = 0, D < 0 (31)

u = KP (y∗ − y) + KIz + KSξ − KDẏ (32)

where y∗ is the desired value of output y. We suppose all

KP ∈ Rm×m, KI ∈ Rm×m, KS ∈ Rm×m, KD ∈ Rm×m

be positive definite matrices.

In particular, let us call a control scheme (30)∼(32) the

P·I·SPR·D control in regard to position.

[Theorem 3] Assume that system (28),(29) be passive and

x∗-state detectable. Then the closed-loop system (28)∼(32)

of affine nonlinear system with P·I·SPR·D control is asymp-

totically stable at the equilibrium (xe, ze, ξe) = (x∗, z∗, ξ∗),
provided that positive definite matrices KP , KI , KS , KD

and negative definite diagonal D are appropriately chosen.

Here x∗, z∗, ξ∗ are the desired equilibrium state correspond-

ing to the desired output y∗ and control u∗.

(Proof) At the equilibrium of system (28),(29), the fol-

lowing relation must be satisfied.

0 = f (xe) + G(xe)u

y∗ = h(xe)

Thus, in order that y becomes y∗, xe and u must be x∗ and

u∗, as mentioned in Section 2.

Meanwhile, since an equilibrium of system (28)∼(31)

must satisfy

0 = f(xe) + G(xe){KP (y∗ − ye) + KIze + KSξe

− KDẏe}

0 = y∗ − ye

0 = Dξe + ze + (y∗ − ye)

ye = h(xe)

it follows that xe = x∗, ye = y∗, ze = z∗, ξe = ξ∗,

where z∗ and ξ∗ must satisfy KIz
∗ + KSξ∗ = u∗, 0 =

Dξ∗ + z∗. Hence we have z∗ = −D(−KID + KS)−1u∗

and ξ
∗ = (−KID + KS)−1u∗.

Now let us consider a Lyapunov function candidate

V (x, z, ξ) = W (x) − y∗T

∫ t

0

udt

+
1

2
(y∗ − y)T KD(y∗ − y)

+
1

2

[
(z − z∗)
(ξ − ξ∗)

]T
[
KI − K K

K
T

KS − K

][
(z − z∗)
(ξ − ξ∗)

]

−

[
z∗

ξ∗

]T[
K KD

KS − K (KS − K)D

]∫ t

0

[
(z − z∗)
(ξ − ξ∗)

]
dt

+(z∗T KI + ξ∗T KS)

∫ t

0

(y∗ − y)dt (33)

where W (x) is a storage function and KI − K > 0, KS −

K > 0 and

[
KI − K K

K
T

KS − K

]
is a positive definite matrix.

Thus, we can show that V (x, z, ξ) is a function bounded

below, as well as in Theorem 2.

Next calculate its time derivative along (28),(30)∼(32)

with the use of K-Y-P property (13),(14) to get

V̇ (x, z, ξ)

= Wx(x){f(x) + G(x)u} − y∗T u − (y∗ − y)T KDẏ

+

[
(z − z∗)
(ξ − ξ∗)

]T
[
KI − K K

K
T

KS − K

][
ż

ξ̇

]

−

[
z∗

ξ∗

]T[
K KD

KS − K (KS − K)D

][
(z − z∗)
(ξ − ξ∗)

]

+(z∗T KI + ξ∗T KS)(y∗ − y)

≤ yT u − y∗T u − (y∗ − y)T KDẏ

+

[
(z − ξ∗)
(ξ − ξ∗)

]T
[
KI − K K

K
T

KS − K

][
y∗ − y

Dξ + z + (y∗ − y)

]

−

[
z∗

ξ∗

]T[
K KD

KS − K (KS − K)D

][
(z − z∗)
(ξ − ξ∗)

]

+(z∗T KI + ξ∗T KS)(y∗ − y)

= −(y∗ − y)T {KP (y∗ − y) + KIz + KSξ − KDẏ}

−(y∗ − y)T KDẏ +

[
(z − z∗)
(ξ − ξ∗)

]T

×
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


(KI − K)(y∗ − y) + KDξ + Kz + K(y∗ − y)

K
T
(y∗ − y) + (KS − K)Dξ + (KS − K)z

+(KS − K)(y∗ − y)





−

[
z∗

ξ∗

]T[
K KD

KS − K (KS − K)D

][
(z − z∗)
(ξ − ξ∗)

]

+(z∗T KI + ξ
∗T

KS)(y∗ − y)

= −(y∗ − y)T {KP (y∗ − y) + KIz + KSξ − KDẏ}

−(y∗ − y)T KDẏ

+

[
(z − z∗)
(ξ − ξ∗)

]T{[
K KD

KS − K (KS − K)D

][
z

ξ

]

+

[
KI(y

∗ − y)
KS(y∗ − y)

]}

−

[
z∗

ξ∗

]T[
K KD

KS − K (KS − K)D

][
(z − z∗)
(ξ − ξ∗)

]

+(z∗T KI + ξ∗T KS)(y∗ − y)

= −(y∗ − y)T {KP (y∗ − y) + KIz + KSξ − KDẏ}

−(y∗ − y)T KDẏ

+

[
(z − z∗)
(ξ − ξ∗)

]T[
K KD

KS − K (KS − K)D

][
(z − z∗)
(ξ − ξ∗)

]

+

[
(z − z∗)
(ξ − ξ∗)

]T[
KI(y

∗ − y)
KS(y∗ − y)

]

+(z∗T KI + ξ∗T KS)(y∗ − y)

= −(y∗ − y)T KP (y∗ − y)

+

[
(z − z∗)
(ξ − ξ∗)

]T[
K KD

KS − K (KS − K)D

][
(z − z∗)
(ξ − ξ∗)

]
(34)

Here we try to make

[
K KD

KS − K (KS − K)D

]

be negative definite. For that purpose, set K < 0, KS−K =
(KD)T and D < −I such that we have KS = (I +D)K >

0. Then the above matrix becomes
[

K KD

(KD)T DKD

]

Since the (1,1) element and the (2,2) element are K <

0, DKD < 0, respectively, we can choose K < 0 and

D < 0 such that the above matrix becomes negative definite.

Consequently, V̇ (x, z, ξ) becomes semi-negative definite,

and it follows that the P·I·SPR·D control is stable in the sense

of Lyapunov, but it is unknown if asymptotically stable.

Let Ωc = {(x, z, ξ) | V (x, z, ξ) ≤ c} and suppose Ωc is

bounded and V̇ (x, z, ξ) ≤ 0 in Ωc (c is a positive number

such that V̇ (x, z, ξ) ≤ 0). Here define ΩE as a set of all

points of Ωc satisfying V̇ (x, z, ξ) = 0 and put

ΩE = {(x, z, ξ) | V̇ (x, z, ξ) = 0, (x, z, ξ) ∈ Ωc} (35)

From (34) (x, z, ξ) satisfying V̇ (x, z, ξ) = 0 is given

as y = y∗, z = z∗, ξ = ξ∗. But at that time we have

u = KZz∗ + KSξ∗ = u∗ from (32). Then by x∗-state

k

link

rotor

q2
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τ
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detectability of system (28),(29), we get

ΩE = {(x, z, ξ)|x = x∗, z = z∗, ξ = ξ∗, (x, z, ξ) ∈ Ωc}

(36)

Accordingly, we know from (28),(30),(31) that (x, z, ξ)
in ΩE consists of only the equilibrium point (xe, ze, ξe) =
(x∗, z∗, ξ∗) for u = u∗. Thus the largest invariance set

ΩM in ΩE consists of the equilibrium point (xe, ze, ξe) =
(x∗, z∗, ξ

∗). Therefore, by LaSalle’s invariance principle

all trajectories in Ωc converge to ΩM as t → ∞. Thus,

(x∗, z∗, ξ∗) is aymptotically stable. Q.E.D

VI. SIMULATION

A. Elastic Joint Robot Arm

A robot manipulator (1-link manipulator) with an elastic

joint, depicted in Fig.1, can be modeled as[2,8].

J1q̈1 + mgl sin q1 = k(q2 − q1) (37)

J2q̈2 = k(q2 − q1) + τ (38)

where q1 and q2 are the angles of the link and the rotor schaft

and τ is the control torque given by the rotor. J1, J2 are the

moment of inertia, m, l are the mass and the length of the

link, and k is the elasticity coefficient of a spring.

System (19), letting x = (q1, q̇1, q2, q̇2)
T , is expressed by

a state equation as follows.

ẋ1 = x2 (39a)

ẋ2 = −
mgl

J1
sinx1 +

k

J1
(x3 − x1) (39b)

ẋ3 = x4 (39c)

ẋ4 =
k

J2
(x1 − x3) +

1

J2
τ (39d)

This system can be shown to be passive with respect to

input τ and output x4 = q̇2
[2] (i.e., dissipative with respect

to supply rate τ q̇2.) Hence it is passive with respect to input

u =

[
0
τ

]
and output y =

[
x2

x4

]
.

Now if the desired equilibrium is x1e = x∗
1, x3e = x∗

3, it

holds from (39b) that x3e = x∗
3 = mgl

k
sin x∗

1 + x∗
1. Namely,

x∗
3 is a function of x∗

1. And the corresponding τ∗ becomes

τ∗ = k(x∗
3 − x∗

1) = mgl sinx∗
1 from (39d).
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Fig.2 Elastic Joint Robot Arm (Regulation Problem)
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Fig.3 Elastic Joint Robot Arm (Set-Point Servo Problem)

Letting the desired value as (x∗
1, x

∗
3) = (q∗1 , q∗3) and

applying Theorem 2, we solve a set-point servo problem.

Since

y =

[
x2

x4

]
, z =

[
x1

x3

]
, z∗ =

[
x∗

1

x∗
3

]

in the elastic joint robot arm, the SPR element becomes
[

ξ̇1

ξ̇2

]
= D

[
ξ1

ξ2

]
+

[
x∗

1 − x1

x∗
3 − x3

]
−

[
x2

x4

]

Then the control input is given from (23) as

u = KP

[
x∗

1 − x1

x∗
3 − x3

]
+ KS

[
ξ1

ξ2

]
− KD

[
x2

x4

]
+

[
0
τ∗

]

m

x

θ

M τ

f

k

J

l

Fig.4 TORA Model

Further, as y = 0, z = z∗, ξ = 0, we have u = u∗ =
(0, τ∗)T from (23). But, when the desired equilibrium is

given as xe = x∗ = (z∗1 , y∗
1 .z∗2 , y∗

2)T = (z∗1 , 0, z∗2 , 0)T ,

we have τ = τ∗ = k(x∗
3 − x∗

1). Consequently, (x, z, ξ) in

ΩE consists of only the desired equilibrium (xe, ze, ξe) =
(x∗, z∗,0) for u = u∗ = (0, τ∗)T . Therefore, one can apply

LaSalle’s invariance principle without the assumption of x∗-

state detectability and Theorem 2 holds.

Under the above preparetion, we take J1 = J2 = m =
l = 1, k = 10, g = 9.804, and set controller parameters as

D =

[
−1 0
0 −1

]
, KP =

[
∗ ∗

500 300

]
,

KS =

[
∗ ∗
1 1

]
, KD =

[
∗ ∗

100 10

]

The simulation results of regulation problem for initial

condition x(0) = (2, 0, 2.892, 0) is shown in Fig.2. And the

simulation results of a set-point servo problem for (q∗1 , q∗2) =
(2, 2.892) and x(0) = 0 is shown in Fig.3. Very good

performance is obtained in both cases.

B. TORA Model

Let us consider TORA model[10] shown in Fig.4, which is

well known as a bench mark problem for nonlinear control.

In the figure, x denotes the transitional position, θ the

angular position of the proof mass, and τ denotes the control

torque applied to the proof mass.

By letting the state vector x
△
= (x, ẋ, θ, θ̇)T , TORA model

is represented with a state equation

ẋ1 = x2 (40a)

ẋ2 =
−x1 + ǫx2

4 sin x3

1 − ǫ2 cos2 x3
−

ǫ cosx3

1 − ǫ2 cos2 x3
τ (40b)

ẋ3 = x4 (40c)

ẋ4 =
ǫ cos2 x3(x1 − ǫx2

4 sin x3)

1 − ǫ2 cos2 x3
+

1

1 − ǫ2 cos2 x3
τ (40d)

This system is clearly underactuated, and passive with respect

to input τ and output x4 = θ̇ (namely, dissipative with

respect to suply rate τ θ̇) (see Ref. [8]). Thus, it is passive

with respect to input u =

[
0
τ

]
and output y =

[
x2

x4

]
.

Now letting the desired value as

[
x∗

1

x∗
3

]
=

[
x∗

θ∗

]
=

[
0
0

]
and applying Theorem 2, let us solve a set-point servo
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Fig.5 TORA Model

problem. Since

y =

[
x2

x4

]
, z =

[
x1

x3

]
, z∗ =

[
x∗

1

x∗
3

]
=

[
0
0

]

for the TORA model, the SPR element (22) becomes

[
ξ̇1

ξ̇2

]
= D

[
ξ1

ξ2

]
−

[
x1

x3

]
−

[
x2

x4

]

and the control input is given from (23) as

u = −KP

[
x1

x3

]
+ KS

[
ξ1

ξ2

]
− KD

[
x2

x4

]
+

[
0
τ∗

]

Further, as y = 0, z = z∗, ξ = 0, we have u = u∗ =
(0, τ∗)T from (23).

For the TORA model, however, when the desired value is

given as (x∗
1, x

∗
3) = (x∗, θ∗) = (0, 0), we have xe = x∗ = 0

and τ∗ = 0 at the equilibrium. Consequently, (x, z, ξ) in

ΩE consists of only the desired equilibrium (xe, ze, ξe) =
(x∗, z∗,0) = (0,0,0). Therefore , we can apply LaSalle’s

invariance principle without the assumption of zero state

detectability and Theorem 2 holds.

Under the above preparetion, we set ǫ = 0.1 and contoller

parameters as

D =

[
−1 0
0 −1

]
, KP =

[
∗ ∗
1 8

]
,

KS =

[
∗ ∗
2 2

]
, KD =

[
∗ ∗
6 2

]
,

Fig.5 shows the simulation results with initial condition

(x(0), ẋ(0), θ(0), θ̇(0)) = (3, 0, 1, 0). The simulation results

showed always accurate convergence to the origin, starting

from a faraway initial state, oscillating though.

VII. CONCLUSION

Based on the passivity theory and LaSalle’s invariance

principle, we first studied the regulation problem for the

affine nonlinear system by the P·SPR·D control. Next we

investigated the set-point servo problem by the P·SPR·D
control and P·I·SPR·D control.

The P·SPR·D and the P·I·SPR·D control are new general

control schemes of output feedback and the use of SPR

element as a part of the controller possesses an advantage

from a passivity-based design point of view.

It was confirmed that stability of the closed-loop system

and the convergence speed could be improved by the SPR

element considerably. Besides, for the design of P·SPR·D
control, the storage function W (x) is not necessary to be

known explicitly, although various existing design meth-

ods [5,6,9,10,13] require W (x) concretely.

Implementation of a controller with the SPR element is

not difficult by a digital processor.

REFERENCES

[1] S.Arimoto, Control Theory of Nonlinear Mechanical Systems : A
Passivity-based and Circuit Theoretic Approach, Oxford Univ. Press,
1996

[2] B.Brogliato, R.Lozano, B.Maschke, O.Egeland, Dissipative systems
Analysis and Control-Theory and Applications-, Springer-Verlag, 2007

[3] C.I.Byrnes, A.Isidori and J.C.Willems, Passivity, Feedback Equiva-
lence, and the Global Stabilization of Minimum Phase Nonlinear
Systems, IEEE Trans. Autmat. Contr., Vol.AC36, No.11, 1991

[4] D.J.Hill and P.J.Moylan, Stability Results for Nonlinear Feedback
Systems, IEEE Trans. on Automatic Control, Vol.13, 377/382, 1977

[5] A.Isidori, Nonlinear Control Systems, 3rd ed., Springer-Verlag, 1995
[6] H.K.Khalil, NonlinearSystems, 3rd ed., Preuficl Hall, 2002
[7] J.LaSalle and S.Lefschetz, Stability by Liapunov’s Direct Method,

Academic Press, 1961
[8] R.Ortega, A.Loria, P.J.Nicklasson, H.Shira-Ramirez, Passivity-based

Control of Euler-Lagrange Systems, Springer-Verlag, 1998
[9] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear

Control, 2nd ed., Springer-Verlag, 2000
[10] R.Sepulchre, M.Jankovic and P.V.Kokotovic, Constructive Nonlinear

Control, Springer-Verlag, 1997
[11] K.Shimizu, P·SPR·D Control of Affine Nonlinear System and its

Application to Inverted Pendulum-Stability Theory Based on Passivity-
, Trans. SICE, Vol.44, No.7, 575/582, 2008 (in Japanese)

[12] K.Shimizu, P·SPR·D Control for Affine Nonlinear System and
Robot Manipulators-Stability Analysis Based on K-Y-P Property and
LaSalle’s Invariance Principle-, Proceedings of 47th IEEE Conference
on Decision and Control, pp.4326-4331, Cancun, Mexico, 2008

[13] T.Shin, Review No.11, Basis for Passivity Based Design, J. of SICE,
Vol.43, No.5, 447/453, 2004

4686


