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Abstract— In a dynamic decentralized control problem,
a common information state supplied to each of the De-
cision Makers leads to a tractable dynamic programming
recursion. However, communication requirements for such
conditions require exchange of very large data noiselessly,
hence these assumptions are generally impractical. We
present a weaker notion of nestedness, which we term
as stochastic nestedness, which is characterized by a
sequence of Markov chain conditions. It is shown that if

the information structure is stochastically nested, then an
optimization problem is tractable, and in particular for
LQG problems, the team optimal solution is linear, despite
the lack of deterministic nestedness or partial nestedness.
One other contribution of this paper is that, by regarding
the multiple decision makers as a single decision maker
and using Witsenhausen’s equivalent model for discrete-
stochastic control, it is shown that the common state
required need not consist of observations and it suffices
to share beliefs on the state and control actions; a pattern
we refer to as k-stage belief sharing pattern. We evaluate a
precise expression for the minimum amount of information
required to achieve such an information pattern for k = 1.
The information exchange needed is generally strictly less
than the information exchange needed for deterministic
nestedness and is zero whenever stochastic nestedness
applies.

I. INTRODUCTION

In a decentralized system, different information is

available to different decision makers who act on a

system towards a common goal as in team problems or

towards a variety of goals as in multi-criteria optimiza-

tion problems. Such problems are challenging since the

information patterns determining which agent has access

to what information and the influence of her actions, can

fall into the categories such that the generation of the

optimal control laws can be very difficult, and of very

high complexity.

We now proceed to make the decentralized system

considered in this paper precise.
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A. Decentralized System Model

Let X be a space in which elements of a random

sequence, {xt, t ∈ Z+∪{0}} live in. Let Y
i, be another

space for i = 1, 2, . . . , L and let an observation channel

Ci be defined as a stochastic kernel on X × Y
i, such

that for every x ∈ X, p(.|x) is a probability distribution

on the (Borel) sigma-algebra σ(Yi) and for every A ∈
σ(Yi), p(A|.) is a function of x. We will mostly be

concerned with cases when X and Y
i are either finite sets

or are finite-dimensional real vector spaces. Let there

be L decision makers, {DMi, i = 1, 2, . . . , L}. Let a

Decision Maker (DM) DMi be located at one end of

an observation channel Ci, with inputs xt generated as

yi
t ∈ Y

i at the channel output. We refer to a policy

Πi as a sequence of control functions which are causal

such that the action of DMi at time t, ui
t, under Πi is

a causal function of its local information, that is, it is a

measurable mapping with respect to the sigma-algebra

generated by

Ii
t = {yi

t, Z
i
t ; y

i
[0,t−1], u

i
[0,t−1], Z

i
[0,t−1]} t ≥ 1,

Ii
0 = {yi

0, Z
i
0},

to U
i, with the notation for t ≥ 1, yi

[0,t−1] = {yi
s, 0 ≤

s ≤ t − 1}. Here Zi
t denotes the additional information

that can be supplied to DMi at time t. Let DMi have a

policy Πi and under this policy generate control actions

{ui
t, t ≥ 0}, ui

t ∈ U
i, and let a dynamical system

and observation channels be described by the following

discrete-time equations:

xt+1 = f(xt, u
1
t , u

2
t , . . . , u

L
t , wt),

yi
t = gi(xt, v

i
t),

for some measurable functions f, {gi}, with {wt} in-

dependent, identical, white system noise process and

{vi
t, i = 1, 2, . . . , L} be disturbance processes. The

disturbance processes might be correlated, but are in-

dependent of the system noise process.

Let X
T =

∏T−1
t=0 X be the T−product space of X. For

the above setup, under a sequence of control policies
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{Π1, Π2, . . . ,ΠL}, we define an Information-Control

Structure (ICS) as a probability space

(XT ×

T−1
∏

t=0

L
∏

k=1

Y
k ×

T−1
∏

t=0

L
∏

k=1

U
k, σ(.), P )

Here, P is the probability measure on the (Borel) sigma-

algebra σ(XT ×
∏T−1

i=0

∏L

k=1 Y
k ×

∏T−1
i=0

∏L

k=1 U
k).

Information Patterns determine the sub-fields for all

decision makers and time stages σ(Ii
t ) ⊂ σ(XT ×

∏T−1
i=0

∏L

k=1 Y
k ×

∏T−1
i=0

∏L

k=1 U
k). Hence, the control

actions are measurable on the sub-fields, which are

characterized by Ii
t for all DMs, through the term Zi

t . In

other words, an Information Pattern determines what the

control action can depend on, inducing an information-

control structure. With the above formulation, let the

objective of the decision makers be the minimization of

EΠ1,Π2,,...,ΠL

x0
[

T−1
∑

i=0

c(xt, u
1
t , u

2
t , . . . , u

L
t )],

over all policies Π1, Π2, . . . ,ΠL, with initial condition

x0. Here, EΠ1,Π2,,...,ΠL

x0
[] denotes the expectation over

all sample paths with initial state given by x0 under

policies {Π1, Π2, . . . ,ΠL}. For a general vector q, let

q denote {q1, q2 . . . , qL}. Let Π = {Π1, Π2, . . . ,ΠL}
denote the ensemble of policies. Under an ensemble

of policies Π and a given information pattern, with an

initial condition x0, the attained performance index is

Jx0(Π) = EΠ

x0
[

T−1
∑

i=0

c(xt,ut)]

B. Relevant Literature and Information Patterns

It has been almost customary to categorize informa-

tion structures as follows (see [3], [6], [10]). Please see

[15] for a detailed review of the literature:

Centralized Information Structure: Here, all DMs

have the same information regarding the current value

of the state. Here Zi
t = {yt} for all decision makers and

time stages.

Quasi-Classical Information Structure: Whenever a

dynamic programming recursion with a fixed complexity

per time stage is possible, the information structure is

said to have a quasi-classical pattern.

We say the information available at DMi is nested in

that of DMj at time t, if σ(Ii
t ) ⊂ σ(Ij

t ). Nestedness,

as we will observe in the development of the paper, has

very important implications. It was observed by Radner

[9] that a static LQG team problem with a non-nested

information structure admits an optimal solution which

is linear.

Partially Nested Information Structure: An informa-

tion structure is partially nested, if whenever the control

actions of a DMi affects the observations of another

decision maker DMj , the information available at DMi

is known noiselessly by the affected decision maker, that

is: Z
j
t = {yi

t, if DMi → DMj}. Here the notation

DMi → DMj denotes the fact that the actions of DMi

affects the information at DMj .

Non-classical Information Structures: An information

pattern which is not nested or partially nested is a

non-classical information pattern. The one-step delayed

control sharing pattern Zi
t = ut−1 is one such example.

Other information structures include the ones induced

by the n-step delayed information pattern with Zi
t =

{yt−n,ut−n}. Such a pattern does not lead to a sepa-

ration property for n ≥ 2. Here, by separation we mean

that the conditional probability measure on a sufficient

time in the past and the received observations thereafter

are sufficient statistics for the generation of optimal

control laws. Studies of this information pattern with

separation results are reported in [1] and [7]. A related

information pattern is the n-step periodic information

sharing pattern studied by Yoshikawa [14] and Ooi et al

[8] with Zi
t consisting of y[t−k−(t mod k),t−(t mod k)],

and u[t−k−(t mod k),t−(t mod k)], where k ∈ Z+ de-

notes the period of information sharing. This pattern ad-

mits a separation structure for the generation of optimal

control laws. We will discuss this pattern further in the

paper, and provide an alternative derivation of the main

results presented in [8] via Witsenhausen’s equivalent

model for discrete-stochastic control [13].

When the information structures are non-nested, con-

trollers might choose to communicate via their control

actions, that is might wish to pursue signaling. Three

types of signaling can occur: signaling what the belief

(that is, the conditional probability measure) on the state

of the system is, signaling what the belief on the other

agents controls are and signaling what the agent’s own

future control actions will be. These are all distinct

issues and affect the classes of problems that we will

discuss in the remainder of the paper.

II. STOCHASTICALLY NESTED INFORMATION

STRUCTURE

In this section we will present a class of informa-

tion patterns, which is non-classical, yet its related

optimization problems admit tractable recursions and

when applied to LQG problems, leads to the optimality

of linear policies. First, we discuss why nestedness is

important for team decision problems. Consider a two-

controller system evolving in R
n with the following
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description:

xt+1 = Axt + B1u1
t + B2u2

t + wt

y1
t = C1xt + v1

t , y2
t = C2xt + v2

t ,

with w, v1, v2 zero-mean, i.i.d. disturbances. For

ρ1, ρ2 > 0, let the goal be the minimization of

J = E

[( 1
∑

t=0

||xt||
2
2 + ρ1||u

1
t ||

2
2 + ρ2||u

2
t ||

2
2

)

+ ||x2||
2
2

]

,

over the control policies of the form: ui
t =

µi
t(y

i
[0,t]), i = 1, 2, t = 0, 1. For a two-stage problem,

the cost is in general no-longer quadratic in the action

of the controllers acting in the first stage t = 0: This is

because these actions might affect the estimation quality

of the other controllers in the second stage, if one DM

can signal information to the other DM in one stage. We

note that this condition is equivalent to C1AlB2 6= 0 or

C2AlB1 6= 0 ([?], Lemma 3.1), with l + 1 denoting the

delay in signaling, with l = 0 in the problem considered.

Hence, it is not immediate whether the cost function is

jointly convex in the control policies, and as such finding

a fixed point in the optimal policies does not necessarily

lead to the conclusion that such policies are optimal.

Under the one-step delayed information structure case,

or the partially nested case, this ceases to be true; there

is no need for signaling, since all of the information that

can be signaled is already available at the DMs that can

be signaled. Thus, the cost is convex in both the second

stage controls and the first stage ones; in particular,

under any policy for the controls in the first stage,

the second stage controls are linear and independent of

an estimation error or improvement caused by control

actions applied at the first stage.

A. Stochastic Nestedness

Before proceeding further, we introduce a related no-

tion: Consider three random variables A, B, C in some

common probability space. If A and C are conditionally

independent given B, we say that A ↔ B ↔ C

form a Markov chain, and it follows that P (A|B, C) =
P (A|B).

Definition 2.1: For measurable functions f, gi, i ∈
{1, 2, . . . , L}, consider a system described by

xt+1 = f(xt, ut, wt),

yi
t = gi(xt, v

i
t), i ∈ {1, 2, . . . , L}

Under the decentralized model description of Section I-

A: If whenever DMi → DMj , it follows that:

x0 ↔ y
j
0 ↔ yi

0

forms a Markov chain, I
j
t = {yj

[0,t], u
i
[0,T−1]}, and

yi
t = ht(y

i
0), where ht is a deterministic function for

t ∈ {0, 1, . . . , T − 1}, then the information structure is

stochastically nested.

Theorem 2.1: Under the decentralized system de-

scription of Section I-A, let ut =
[

u1
t u2

t . . . uL
t

]T

and Q ≥ 0, R > 0. Consider an optimization prob-

lem with the objective to be minimized as: J =
E[

∑T−1
t=0 xT

t Qxt + uT
t Rut], with the system dynamics:

xt+1 = Axt +
L

∑

j=1

Bju
j
t + wt ,

yi
t = Cixt + vi

t , 1 ≤ i ≤ L, (1)

where x0, wt, v
i
t are Gaussian and the disturbances and

the noise processes are such that the information struc-

ture is stochastically nested. In this case, the optimal

control laws are linear.

Remark: It should be noted that, if we relax the

Markov chain condition there will be an incentive for

signaling from the inner DM to the outer DM on what

the inner DM thinks regarding the initial state. The

availability of the control actions is also essential, for

otherwise, there will be an incentive for the inner DM

to signal information on its future control signals. ⋄
The stochastically nested information structure dis-

cussed above brings to mind the Control Sharing Infor-

mation Pattern of Aoki [2], Sandell and Athans [10]

and Bismut [4]. In those works, ǫ−optimal policies

were obtained for the control sharing pattern. The ǫ

term arises due to the fact that the control policy is to

encode information on both the control action and the

observation, with as minimum damage as possible to the

control action.

In our setup, the resulting policy is optimal (and not

only ǫ-optimal), and unlike the setups of [10] and [4],

is applicable to cases where (i) the control policy is

discontinuous, or (ii) the state space has finite cardinality

(hence arbitrarily small precision of two signals is not

possible via encoding into one-signal since there is only

finite information that can be transmitted in one signal),

or (iii) the observation and control sets are not compact.

B. Stochastically Decoupled Information Structure

Definition 2.2: Let a state be explicitly represented

by its individual components x =
[

x1 x2 . . . xL
]

,

and evolve under the following dynamics

xi
t+1 = f1(x

i
t, u

i
t, w

i
t), i ∈ {1, 2, . . . , L}

zt+1 = f(zt, u
1
t , u

2
t , . . . , u

L
t ),
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yi
t = gi(xt, v

i
t), i ∈ {1, 2, . . . , L},

for some measurable functions fi, g
i, f and {wi

t} in-

dependent state disturbance processes and {vi
t}, obser-

vation noise processes for i ∈ {1, 2, . . . , L}. In the

above (xi
t, w

i
t, v

i
t, i ∈ {1, 2, . . . , L}, z0) are independent

second-order processes. Under the decentralized system

description of Section I-A, suppose each of the DMs has

access to the additional {zt} process: ỹi
t = [yi

t, zt], i ∈
{1, 2, . . . , L}. If the information available at each con-

troller is such that

xi
t ↔ (yi

[0,t], u
i
[0,t−1]) ↔ {xj

0, z0, w
j

[0,t−1], y
j

[0,t], j 6= i}

form Markov chains, for all t and i, then such an infor-

mation structure is said to be stochastically decoupled.

Theorem 2.2: Let there be an optimization problem

with the objective to be minimized as:

E[

T−1
∑

t=0

c1(x
1
t , u

1
t ) + c2(x

2
t , u

2
t ) + . . . cL(xL

t , uL
t )].

If the controllers have stochastically decoupled infor-

mation structures, then the optimal control problem is

tractable and a finite dimensional dynamic programming

recursion can be used to obtain the solutions.

An example is the following dynamical system de-

scribed by

x1
t+1 = a1x

1
t + u1

t + w1
t

x2
t+1 = a2x

2
t + u2

t + w2
t

x3
t+1 = a3x

3
t + u1

t + u2
t + w3

t

y1
t = (x1

t + v1
t , x2

t + v2
t + v21

t , x3
t + v31

t )

y2
t = (x1

t + v1
t + v12

t , x2
t + v2

t , x3
t + v32

t ),

with the goal of the minimization of

J = E

[ T−1
∑

t=0

(

(x1
t )

2 + (x2
t )

2 + ρ1(u
1
t )

2 + ρ2(u
2
t )

2

)]

,

with ρ1, ρ2 > 0 constants.

III. BELIEF SHARING INFORMATION PATTERN

The computationally attractive aspects of a partially

nested, or nested information structure comes with a

price of exchanging all of the information available

at the preceding controllers noiselessly. This is, how-

ever, impractical. In the analysis heretofore, we have

weakened the information requirements for tractability

in a class of decentralized optimization problems. We

now investigate the quantitative minimization of the

information requirements needed for tractability in a

large class of decentralized optimal control problems.

Before proceeding further, let us recall Witsenhausen’s

equivalent model [13] for dynamic team problems in

terms of an extensive form static team problem. Let

there be a common information vector Ic
t at some time

t, which is available at all of the decision makers. Let

at times ks − 1, k ∈ Z+ ∪ {0} and T divisible by k,

s ∈ Z+, the decision makers share all their information:

Ic
ks−1 = {y[0,ks−1],u[0,ks−1]} and for Ic

0 = {P (x0)},

that is at time 0 the DMs have the same apriori belief

on the initial state. Until the next observation instant

t = k(s + 1) − 1 we can regard the individual decision

functions specific to DMi as {ui
t = ūi

s(y
i
[ks,t], I

c
ks−1)}

and we let ū denote the ensemble of such decision

functions. In essence, it suffices to generate ūs for all

s ≥ 0, as the decision outputs conditioned on yi
[ks+1,t],

under ūi
s(y

i
[ks,t], I

c
ks−1), can be generated. Witsenhausen

achieved this by transforming the effects of the control

action into the costs and formulating an equivalent con-

trol problem. In such a case, we have that ūs(., I
c
ks−1) is

the joint team decision rule mapping Ic
ks−1 into a space

of action vectors: {ui(Ic
ks−1, y

i
[ks,t]), i ∈ {1, 2 . . . , L},

t ∈ {ks, ks + 1, . . . , k(s + 1) − 1}}. In this case, the

cost function is also modified as:

Jx0(Π) = EΠ

x0
[

T
k
−1

∑

s=0

c̄(ūs(., I
c
ks−1), x̄s)]

with

c̄(ūs(., I
c
ks−1), x̄s) =

k(s+1)−1
∑

t=ks

c(xt,ut)

Lemma 3.1: Consider the decentralized system setup

in Section I-A, with the observation noise processes

being independent. Let Ic
t be a common information

vector supplied to the DMs regularly at every k time

stages, so that the DMs have common memory with

a control policy generated as described above. Then,

{x̄s := xks, ūs(., I
c
ks−1), s ≥ 0} forms a Controlled

Markov chain

Lemma 3.2: Let Ic
t be a common information vector

supplied to the DMs regularly at every k time steps.

There is no loss in performance if Ic
ks−1 is replaced by

P (x̄s|I
c
ks−1).

Proof: The cost can be written as a function of addi-

tive costs: Jx0(Π, IS) = EΠ

x0
[
∑

T
k
−1

s=0 c̃(ūs, x̄s)], with

c̃(ūs, x̄s) =
∑k(s+1)−1

t=ks c(xt,ut). For the minimization

of an additive cost in Partially Observed Markov Chains,

it suffices to transform the state to an equivalent state of

conditional distributions [11]. Hence P (x̄s|I
c
ks−1) acts

as a sufficient statistic. ⋄
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The essential issue for a tractable solution is to

ensure a common information vector which will act as

a sufficient statistic for future control policies. This can

be done via sharing information at every stage, or some

structure possibly requiring larger but finite delay.

Definition 3.1: Belief Sharing Information Pat-

tern: An information pattern in which the DMs share

their beliefs about the system state is called the belief

sharing information pattern. If the belief sharing occurs

periodically at every k-stages (k > 1), the DMs also

share the control actions they applied in the last k-1

stages, together with intermediate belief information. In

this case, the information pattern is called the k-stage

belief sharing information pattern. ⋄
Remark: It should be noted that, the exchange of the

control actions is essential, as was discussed in view of

stochastic nestedness. The DMs also need to exchange

information for intermediate beliefs. The following al-

gorithmic discussion will make this clear. ⋄
We now discuss how the beliefs are shared sequen-

tially. We proceed by induction. Suppose at time ks−1,

the DMs have an agreement on P (x̄s|I
c
ks−1) and know

the policies used by each of the DMs, hence know the

ICS and the probability measure P . It follows that,

πs+1 := P (x̄s+1|y[ks,k(s+1)−1],u[ks,k(s+1)−1], πs)

writes as

P (x̄s+1, (y,u)[ks,k(s+1)−1] |πs)
∑

x̄s+1
P (x̄s+1, (y,u)[ks,k(s+1)−1] |πs)

=

∑

x[ks,k(s+1)−1]
P (x̄s+1, (x,y,u)[ks,k(s+1)−1] |πs)

∑

x[ks,k(s+1)−1],x̄s+1
P (x̄s+1, (x,y,u)[ks,k(s+1)−1] |πs)

We now express the numerator above more explicitly as

∑

xk(s+1)−1

(

P (xk(s+1)|xk(s+1)−1,uk(s+1)−1)

(

L
∏

l=1

P (yl
k(s+1)−1|xk(s+1)−1))

. . .

. . . . . . . . .

. . .
∑

xks

(

P (xks+1|xks,uks)

(

L
∏

l=1

P (yl
ks|xks))P (xks|I

c
ks−1)

))

. . .

))

(2)

Iff k > 1, then the DMs also need to share the control

actions applied in the previous k−1 time stages, as well

as beliefs on individual states.

When the belief-sharing occurs at every stage, then

controls can be generated by each of the DMs, hence

the control actions need not be shared.

Plant

DM1

DM2

DM3

Fig. 1: A version of the belief propagation algorithm can

be used for the belief sharing pattern. For a cycle-free

network the analysis is simpler.

In the following, we study communication require-

ments such that such belief-sharing can be achieved for

the case when k = 1.

A. Minimum Communication Rate Needed for the Belief

Sharing Pattern

The exchange of the common information states under

deterministic nestedness might lead to a large informa-

tion exchange noiselessly. This is impractical for many

scenarios. However, as a result of Lemma 3.1 and 3.2,

what needs to be exchanged is a sufficient amount

of information such that the DMs have a common

P (x̄s|I
c
s), so that their recursions can be based on this

information.

Let us consider the one-stage belief sharing pattern,

first for a two DM setup. In this case, the information

needed at both the controllers is such that they all need

to exchange the relevant information on the state, and

need to agree on p(x̄t|I
1
t , I2

t ), where Ii
t denotes the

information available at DMi. In the one-step Belief

Sharing Pattern, x̄t = xt, since the period for infor-

mation exchange k = 1.

Theorem 3.1: Suppose the observation variables are

discrete valued, that is Y
i, i = 1, 2 is a countable space.

To achieve the belief sharing information pattern, a

lower bound on the minimum average amount of bits

to be transmitted to DM2 is given by:

R2,1 ≥ H

(

P (xt|I
c
t−1, y

1
t , y2

t )

∣

∣

∣

∣

P (xt−1|I
c
t−1), y

1
t

)

A lower bound on the minimum amount of information

needed to be transmitted to DM1 from DM2 is:

R1,2 ≥ H

(

P (xt|I
c
t−1, y

1
t , y2

t )

∣

∣

∣

∣

P (xt−1|I
c
t−1), y

2
t

)

4252



Corollary 3.1: When the observation space is dis-

crete, the one-stage belief sharing information pattern

requires less or equal amount of information exchange

between the controllers than the centralized information

pattern.

B. Case Studies

In the following, we provide a few explicit examples,

which exhibit the weaker conditions required by stochas-

tic nestedness.

1) Zero-Capacity Channels:

Proposition 3.1: Consider the case in which the

channels have zero capacity. In this case, as

P (ȳi
s = η|x̄s) = P (ȳi

s = β|x̄s)

for all η, β values that the observation can take, there

is no further information that is needed for the belief-

sharing pattern.

Proof: This follows

from H

(

P (xt|I
c
t−1, y

1
t , y2

t )

∣

∣

∣

∣

P (xt−1|I
c
t−1), y

1
t

)

= 0.

This rate bound is tight. ⋄
As such, there is no need for information exchange,

since there is no information generated by the obser-

vation for the controller with regard to the state and

no transmitted information will be useful. Hence, the

communication required for stochastic nestedness is zero

if all of the information channels are channels with zero-

capacity. We note that, in such a case, the controls do

not need to be exchanged either, as there is already an

agreement on the beliefs, based on the apriori belief; and

the optimal team decisions can be generated decentrally.

It should be noted that, when the channels are zero-

capacity channels, the deterministic nestedness condi-

tions would require all the information to be exchanged,

although the performance benefit of this is zero. This

example exhibits the efficiency difference between the

two information patterns.

2) Stochastically Decoupled Structure: For this in-

formation pattern, belief sharing is not needed, as the

problem is tractable under the mentioned structures and

the problem is already partitioned into L independent,

centralized optimal control under partial observation

problems.

3) Stochastically Nested Structure: In case there is

stochastic nestedness, the outer DM need not receive

any information, except for the control actions of the

inner DM.

IV. CONCLUSION

This paper presented a new information structure,

the stochastically nested information structure, which is

weaker than the previously known information structures

(such as the nested, or partially nested information

structures, or the observation sharing information pat-

terns) which lead to tractable decentralized optimization

solutions, which also lead to the optimality of linear

solutions for LQG team optimization problems. We

also presented a new information sharing pattern, the

belief sharing information pattern. Under this pattern,

the communication exchange requirements is shown to

be strictly less than the requirements for deterministic

nestedness, or the deterministic observation sharing pat-

terns. We provided quantitative examples exhibiting the

benefit of the new information structure.
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