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Abstract— Zooming type adaptive quantizers have been
introduced in the networked control literature as efficient
coders for stabilizing open-loop unstable noise-free systems
connected over noiseless channels with arbitrary initial
conditions. Such quantizers can be regarded as a special
class of the Goodman-Gersho adaptive quantizers. In this
paper, we provide a stochastic stability result for such
quantizers when the system is driven by an additive noise
process. Conditions leading to stability are evaluated when

the system is driven by noise with non-compact support
for its probability measure. It is shown that zooming
quantizers are efficient and almost achieve the fundamental
lower bound of the logarithm of the absolute value of
an unstable eigenvalue. In particular, such quantizers are
asymptotically optimal when the unstable pole of the linear
system is large for a weak form of stability.

I. INTRODUCTION

We consider a remote stabilization problem where a

controller which has access to quantized measurements

acts on a plant, which is open-loop unstable. Before

proceeding further with the description of the system,

we discuss the quantization policy investigated.

First, let us define a quantizer. A quantizer, Q, for

a scalar continuous variable is a mapping from R to a

finite set, characterized by corresponding bins {Bi} and

their representation {qi}, such that ∀i, Q(x) = qi if and

only if x ∈ Bi.

Of particular interest is the class of uniform quantiz-

ers. A uniform quantizer: Q∆ : R → R with step size ∆
and an (even) K number of levels satisfies the following

for k = 1, 2 . . . , K:

Q∆(x) =



















(−K
2 + k − 1/2)∆, if

x ∈ [(−K
2 + k − 1)∆, (−K

2 + k)∆)

(K
2 + 1/2)∆, if x ≥ K

2 ∆

−(K
2 + 1/2)∆, if x ≤ −K

2 ∆

A general class of quantizers are those which are

adaptive. Let S be a set of states for a quantizer state
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S. Let F : S × R → S be a state update-function.

An adaptive quantizer has the following state update

equations:

St+1 = F (St, Qt(xt))

Here, Qt is the quantizer applied at time t, xt is the input

to the quantizer Qt, and St is the state of the quantizer.

One particular class of adaptive quantizers is the

Goodman-Gersho type quantizers [1], which also in-

clude the zooming-type quantizers [4]. One type of

Goodman-Gersho adaptive quantizers has the following

form with Q∆ being a uniform quantizer with a given

number of levels and bin-size ∆ and Q̄ determining the

updates in the bin-size of the uniform quantizer:

qt = Q∆t(xt)

∆t+1 = ∆tQ̄(xt)

Here ∆t characterizes the uniform quantizer, as it is the

bin size of the quantizer at time t.
In the following, we provide the linear system de-

scription to which the quantizer is applied.

We consider an LTI discrete-time scalar system de-

scribed by

xt+1 = axt + but + dt, (1)

where xt is the state at time t, ut is the control input, and

{dt} is a sequence of zero-mean independent, identically

distributed (i.i.d.) random variables such that each of

the random variables admits a probability distribution

ν which is absolutely continuous with respect to the

Lebesgue measure on R, and for every open set D ∈ R,

ν(D) > 0. Furthermore, E[d2
t ] < ∞. Here a is the

system coefficient with |a| > 1, that is, the system is

open-loop unstable. Thus, the class of systems consid-

ered includes the case where {dt} are Gaussian random

variables.

This system is connected over a noiseless channel

with a finite capacity to an estimator (controller). The

controller has only access to the information it has re-

ceived through the channel. The controller in our model

estimates the state and then applies her control. As such,
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the problem reduces to a state estimation problem since

such a scalar system is controllable. Hence, the stability

of the estimation error is equivalent to the stability of

the state itself.

A. Literature Review

Zooming type adaptive quantizers, which will be

described further in the paper, have been recently in-

troduced by Brockett and Liberzon [6], Liberzon [4]

and Liberzon and Nesic [5] for the use in remote

stabilization of open-loop unstable, noise-free systems

with arbitrary initial conditions. Nair and Evans [10]

provided a stability result under the assumption that

the quantization is variable-rate and showed the first

result for a noisy setup (with unbounded support for the

noise probability measure) that on average it suffices

to use more than log2(|a|) bits to achieve a form of

stability. [10] used asymptotic quantization theory to

obtain a time-varying scheme, where the quantizer is

used at certain intervals at a very high rate, and at

other times, the quantizer is not used. In contradis-

tinction, we provide a technique which allows us to

both provide a result for the case when the quantizer

is fixed-rate as well as to obtain an invariance condition

for a probability measure on the quantizer parameters.

There is also a vast literature on quantizer design in

the communications and information theory community,

as conveniently presented in the survey paper [11].

One important further reference here is the work by

Goodman and Gersho [1], where an adaptive quantizer

was introduced and the adaptive quantizer’s stationarity

properties were investigated when the source fed to

the quantizer is independent and identically distributed

with a finite second moment. Kieffer and Dunham [3]

have obtained conditions for the stochastic stability of a

number of coding schemes when the source considered

is also stable, that is when it has an invariant distribution;

where various forms of stability of the quantizer and the

estimation error have been studied. In our case, however,

the schemes in [1] and [3] are not directly applicable, as

the process we consider is open-loop unstable, as well

as Markovian. Another related work by Kieffer is [2].

II. STOCHASTIC STABILITY VIA ADAPTIVE

QUANTIZERS: ZOOMING TYPE QUANTIZERS

An example of Goodman-Gersho [1] type adaptive

quantizers, which also has been shown to be effective in

control systems, are those that have zoom level coeffi-

cients as the quantizer state [4]. In the zooming scheme,

the quantizer enlarges the bin sizes in the quantizer until

the state process is in the range of the quantizer, in which

phase the quantizer is in the perfect-zoom phase. Due to

the effect of the system noise, occasionally the state will

be in the overflow region of the quantizer, leading to an

under-zoom phase. We will refer to such quantizers as

zooming quantizers.

In the following, we will assume the communication

channel to be a discrete noiseless one with capacity R.

We now state our main result.

Theorem 2.1: Consider a zooming type adaptive

quantizer applied to the linear control system described

by (1), with the following update rules for t ≥ 0 and

with ∆0 ∈ R selected arbitrarily and x̂−1 = 0:

ut = −
a

b
x̂t

x̂t = ax̂t−1 + Q∆t(xt)

∆t+1 = ∆tQ̄(|
xt

∆t2R−1
|)

If there exist δ, ǫ, η > 0 with η < ǫ and L > 0 such

that,

Q̄(x) ≥ |a| + δ if |x| > 1

|a|

|a| + ǫ − η
< Q̄(x) < 1 if 0 ≤ |x| ≤ 1, ∆ > L

Q̄(x) = 1 if 0 ≤ |x| ≤ 1, ∆ ≤ L (2)

with
√

√

√

√

E[d2
t ]

L |a|
|a|+ǫ−η2R−1

< δ

and

R = log2(⌈|a| + ǫ⌉ + 1),

then the adaptive quantizer policy leads to the existence

of a recurrent set, furthermore with

lim sup
t→∞

E[log(x2
t )] < ∞

Remark: Hence, a simple quantization scheme indeed

suffices for a form of stability. The additional price

of such a quantizer is an additional 1 level. The rate

required is close to the lower bound presented by Wong

and Brockett: log2(|a|) [7]. In our case, the additional

1 term is for the overflow term for the under-zoom

phase. As |a| → ∞, log2(|a| + 1) − log2(|a|) =
log2(1 + 1/|a|) ≤ log2(e)1/|a| → 0. As such, zooming

quantizers are asymptotically optimal for obtaining a

finite expected logarithm of the state magnitude. ⋄
Remark: We note that, our result above is somewhat

weaker than those found by Nair and Evans [10], as our

result includes a bound on the expected value of log(x2
t ),

as opposed to that of x2
t . However, our result uses a

time-invariant rate (that is a fixed-rate). The analysis in
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[10] uses results from asymptotic quantization theory,

by applying a variable-rate scheme, where a very-high

rate quantizer is applied occasionally, and quantization

is not applied at other times. ⋄
Remark: We note that the stability result for such a

scheme requires new techniques to be used, as classical

tools in Markovian stability theory will not be applicable

directly. In the following section, we use a two-stage

Martingale approach to prove the existence of a recurrent

set. ⋄
Our second result is the following:

Theorem 2.2: Under the setup of Theorem 2.1, if

furthermore, the quantizer bin sizes are such that their

(base−2) logarithms are integer multiples of some scalar

s and log(Q̄(.)) take values in integer multiples of s,

where the integers taken are relatively prime (that is

they share no common divisors except for 1), then the

jointly Markov process (et, ∆t) forms a positive (Harris)

recurrent Markov chain, and has a unique invariant

distribution.

A. Proof of Theorem 2.1

Let et = xt − x̂t. We first start with the following

result, the proof of which we omit.

Lemma 2.1:

P ((et, ∆t) ∈ C|(et−1, ∆t−1), ..., (e0, ∆0))

= P ((et, ∆t) ∈ C|(et−1, ∆t−1)), ∀C ∈ B(R × R+)

i.e. (et, ∆t) is a Markov chain.

Let ht := et

∆t2R−1 . Consider the following sets:

Ce = {e : |e| ≤ E} Ch = {h : |h| ≤ 1},

with E = 2R−1L( |a|
|a|+ǫ−η ). Further, let another set be

C′
e = {e : |e| ≤ F}, with a sufficiently large F value

to be derived below. We will study the expected number

of time stages between visits of {(et, ht)} to C′
e × Ch.

Consider the drift of the (et, ht) process in Figure 1:

When et, ht are in Ce×Ch, the expected drift increases

both |h| and |e|. When the et process gets outside

C′
e and ht outside Ch (under-zoomed), there is a drift

for ht towards Ch, however, |et| will keep increasing.

Finally, when the process hits Ch (perfect zoom), then

the process drifts towards C′
e. There exists an upper

bound on the value that h can take when et is inside the

compact sets, by the hypothesis of the theorem. We first

show that the sequence {ht, t ≥ 0} visits Ch infinitely

often with probability 1 and the expected length of the

excursion is uniformly bounded over all possible values

of (e, f) ∈ C′
e×Ch. Once Ch visited, then the estimation

error decreases on average. However, unless this is met,

|et| keeps increasing stochastically. Let V (ht) = h2
t

|et|

|ht|

E F

1

Fig. 1: Drift in the Error Process: When under-zoomed,

the error increases on average; when perfectly-zoomed,

the error decreases.

serve as a Lyapunov function. Define a sequence of

stopping times for the perfect-zoom case with

τ0 = inf{k > 0 : |hk| ≤ 1, |h0| ≤ 1},

τz+1 = inf{k > τz : |hk| ≤ 1}

We have that, if |ht| > 1 (under-zoomed)

E[h2
t+1|ht, et] ≤

(a2 + E[d2]
|et|2

)

(a + δ)2
(ht)

2

Since when |ht| > 1, we have that |et| ≥

2R−1L( |a|
|a|+ǫ−η ), it follows that E[h2

t+1|ht, et] ≤

(
a2+ E[d2]

E2

(a+δ)2 )(ht)
2. If |ht| ≤ 1, then

E[h2
t+1] ≤

a2 (∆t)
2

4 + E[d2
t ]

(∆t2R−1)2
(
|a| + ǫ − η

|a|
)2

≤
a2 L′2

4 + E[d2
t ]

(L′2R−1)2
(
|a| + ǫ − η

|a|
)2

=: K1, (3)

where L′ = L |a|
|a|+ǫ−η (this is a lower bound on ∆t).

Hence, it follows that

E[h2
t+1 − h2

t |ht, et] ≤ −ρh2
t + K11(|ht|≤1), (4)

where 1(U) is the indicator function for event U with

K1 = 1 +
a2 L′2

4 + E[d2
t ]

(L′2R−1)2
(
|a| + ǫ − η

|a|
)2,

ρ = 1 −
(a2 + E[d2]

E2 )

(a + δ)2
(5)

Since for two non-negative numbers A, B > 0, A2 +
B2 ≤ (A + B)2 it follows that the hypothesis
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√

E[d2
t ]

L′2R−1 < δ in the theorem statement ensures ρ > 0.

Now, define M0 := V (h0), and for t ≥ 1

Mt := V (ht) −
t−1
∑

i=0

(−ρ + K11(hi∈Ch))

Hence, as |ht| > 1 when ht /∈ Ch,

E[M(t+1)|(es, hs), s ≤ t] ≤ Mt, ∀t ≥ 0, and thus,

{Mt} is a Super-Martingale. Define a stopping time:

τN = min(N, min{i > 0 : V (hi) ≥ N, V (hi) ≤ 1, }).
The stopping time is bounded and the Super-Martingale

sequence is also bounded. Hence, we have, by the Mar-

tingale optional sampling theorem: E[M(τN)] ≤ E[M0].
Hence, we obtain

E[

τN−1
∑

i=0

]ρ ≤ V (h0) + K1E[

τN−1
∑

i=0

1(hi∈C)]

Thus, ρE[τN − 1 + 1] ≤ V (h0) + K1, and by the

Monotone Convergence Theorem,

ρ lim
N→∞

E[τN ] = ρE[τ ] ≤ V (h0) + K1 = 1 + K1.

Hence,

E[τz+1 − τz] ≤ (1 + K1)/ρ (6)

uniformly for all eτz
, hτz

∈ C′
e × Ch values. Once

perfect-zooming occurs, that is ht ∈ Ch, then we have

E[e2
t+1|ht, et] ≤ (a2/22R)

∆2
t

4
+ E[d2

t ]

By the strong Markov property (eτz
, hτz

) is also a

Markov chain as {τz < n} ∈ Fn, the filtration at time

n for any n ≥ τz . The probability that τz+1 6= τz + 1,

is upper bounded by the probability:

Pe(∆τz
) :=

P

(

d2
τz

> (∆τz
(|a|/2)(

⌈|a| + ǫ⌉ − |a| − ǫ + η

|a| + ǫ − η
))2

)

If τz+1 6= τz + 1, then this means that the error is

increasing and the system is once-again under-zoomed:

eτz+1 = aeτz
+ dτz

and ∆τz+1 = |a|
|a|+ǫ−η∆τz

. With

some probability, the quantizer will still be in the

perfect-zoom phase τz+1 = τz +1. In case perfect-zoom

is lost, there is a uniform bound on when the zoom is

expected to be recovered. It follows that, conditioned on

increment in the error, until the next stopping time, the

process will increase exponentially and hence

eτz+1 = aτz+1−τz(eτz
+

τz+1−τz−1
∑

t=0

a−t−1dt+τz
).

We now show that, there exist φ > 0, |G| < ∞ such

that

E[log(e2
τz+1

)|eτz
] ≤ (1 − φ) log(e2

τz
) + G1|eτz |≤F (7)

After some relatively tedious steps, we obtain the fol-

lowing:

E[log(e2
τz+1

)|eτz
]

≤ (1 − Pe(∆τz
))

(

2 log(|a|/2R) + log(e2
τz

)

)

+Pe(∆τz
)

(

2E[(τz+1 − τz)] log(|a|)

+ log(2(e)2τz
+ 2

E[d2]

(1 − |a|−1)2
)

)

(8)

We now proceed to upper-bound E[log(e2
τz+1

)|eτz
]. To-

ward this end, we have

P

(

|dτz
| > (∆τz

(|a|/2)( ⌈|a|+ǫ⌉−|a|−ǫ+η
|a|+ǫ−η ))

)

≤
E[d2

τz
]

(∆τz (|a|/2)(
⌈|a|+ǫ⌉−|a|−ǫ+η

|a|+ǫ−η
))2

≤
E[d2

τz
]

(K2∆τz )2 , (9)

where we use Markov’s inequality, with

K2 = (|a|/2)

(

⌈|a| + ǫ⌉ − |a| − ǫ + η

|a| + ǫ − η

)

,

and it follows that Pe(∆τz
) ≤

E[d2
τz

]

(K2∆τz )2 . Now, for large

eτz
values, by substituting the uniform bound in (6), if

the following holds, there is a drift to C′
e. As log(1 +

a) ≤ a for a ≥ 0, it suffices that the following holds for

(7)

Pe(∆τz
)

{

2(1 + K1)/ρ log(|a|) + log(2)

+

E[d2]
(1−|a|−1)2

e2
τz

+ 2 log(2R/|a|)

}

< 2 log(2R/|a|) (10)

Let

I = (2(1 + K1)/ρ) log(|a|) + log(2) + 2 log(2R/|a|)

+
E[d2]

(1 − |a|−1)2

Then, it follows that, for 2 log(2R/|a|) − λ > 0

F = max

(

1/K2,

√

√

√

√

E[d2
t ]I

K2
2 (2 log(2R

|a| ) − λ)

)

> 0,

the following holds for some λ > 0:

E[log(e2
τz+1

)] ≤ (1 − λ) log(e2
τz

) + G1|(eτz )|≤F
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with G = 2(1+K1)/ρ) log |a|+log(2F 2 +2 E[d2]
(1−|a|−1)2 )

+2 log(2R

|a| ). Hence, we have obtained another drift

condition for the sampled Markov chain. This shows

that the newly constructed Markov process eτz
hits

C′
e = {et : |et| ≤ F} infinitely often. Let us call this

process τy , and define

τy+1 = inf{t > τy : |et| ≤ F, |ht| ≤ 1|}

= inf{τz+k > τz : |eτz+k
| ≤ F}

Hence, k is the number of visits such that {h : |h(t)| ≤
1} until et hits C′

e. In this set the cost is finite. When

there is an excursion outside this set, the expected length

of the trip (in terms of the new Markov process) is finite,

that is E[τy+1 − τy] < ∞. This follows because of the

following: Define a variable Mτz
:= log(e2

τz
), and for

k ≥ 1, Mτz+k
= log(e2

τz+k
)−

∑k−1
l=0 (1−λ) log(e2

τz+l
)−

G1|(eτz+l)|≤F , Mτz+k
is a Super-Martingale sequence

since E[Mτz+1|Fτz
] ≤ Mτz

. For any finite n, let us

define kn = min(k ≤ n, k + log(e2
τz+l) ≥ n), which is

a stopping time. Hence,

E[
kn−1
∑

l=0

(1 − λ) log(e2
τz+l

)] ≤ M0 ≤ log(F 2)

Since log(e2
τz+l

) ≥ E[τz+l+1−τz+l] for F large enough,

it follows that:

(1 − λ)E[

kn

∑

l=1

τz+l − τz+l−1] ≤ M0 ≤ log(F 2)

or E[τz+kn − τz] ≤ M0 ≤ log(F 2)
(1−λ) . Finally, taking the

limit as n → ∞, and by the Monotone Convergence

Theorem, it follows that E[τ(z+k) − τz ] ≤
log(F 2)
(1−λ) and

sup
(eτz ,hτz )∈C′

e×Ch

E[τ(z+k) − τz ] ≤
log(F 2)

(1 − λ)

This leads to a finite expected cost in the logarithm of

the magnitude. ⋄

III. PROOF OF THEOREM 2.2: EXISTENCE OF AN

INVARIANT PROBABILITY DISTRIBUTION

Before proceeding further, we review a number of

definitions useful for the development in this section.

Let {xt, t ≥ 0} be a Markov chain with state space

(X,B(X), and defined on a probability space (Ω,F ,P),
where B(X) denotes the Borel σ−field on X, Ω is the

sample space, F a sigma field of subsets of Ω, and P a

probability measure. Let P (x, D) := P (xt+1 ∈ D|xt =
x) denote the transition probability from x to D, that

is the probability of the event {xt+1 ∈ D} given that

xt = x.

Definition 3.1: For a Markov chain with transition

probability defined as before, a probability measure π is

invariant on the Borel space (X,B(X)) if

π(D) =

∫

X

P (x, D)π(dx), ∀D ∈ B(X) .

Definition 3.2: A Markov chain is µ-irreducible, if

for any set B ⊂ X, such that µ(B) > 0, and ∀x ∈ R,

there exists some integer n > 0, possibly depending on

B and x, such that Pn(x, B) > 0, where Pn(x, B) is

the transition probability in n stages, that is P (xt+n ∈
B|xt = x).

Definition 3.3: [12] A set A ⊂ X is µ − petite on

(X,B(X)) if for some distribution T on N (set of natural

numbers), and some non-trivial probability measure µ,

∞
∑

n=0

Pn(x, B)T (n) ≥ µ(B), ∀x ∈ A, and B ∈ B(X),

where B(X) denotes the (Borel) sigma-field on X.

Theorem 3.1: ([12] Thm. 4.1) Consider a Markov

process {xt} taking values in X. A compact set A ∈ X,

is recurrent if P (min(t > 0 : xt ∈ A) < ∞|x0 =
x) = 1, ∀x ∈ X. If the recurrent set A is a µ−petite set,

if the chain is µ-irreducible, and if supx∈A E[min(t >
0 : xt ∈ A)|x0 = x] < ∞, then the Markov chain is

positive Harris recurrent and it admits a unique invariant

distribution.

In our setting, (et, ∆t) forms the Markov chain. In view

of the above results, we now show that the set of bin

sizes forms a communication class under the hypothesis

of the theorem: Since we have ∆t+1 = Q̄(| et

∆t2R |)∆t,

it follows that

log2(∆t+1)/s = log2(Q̄(|
et

∆t2R
|))/s + log2(∆t)/s,

is also an integer. Furthermore, since the source process

xt is Lebesgue-irreducible (as the system noise admits

a continuous probability density function), and there is

a uniform lower bound on the bin-size L′, the error

process takes values in any of the admissible quantizer

bins with non-zero probability. Let the values taken

by log2(Q̄(| et

∆t2R |))/s be {−A, B}. By the hypothesis

of the theorem statement, A, B are relatively prime.

Consider two integers k, l ≥ log2(L
′)

s . Further, assume,

without any loss of generality that l > k. From k to l,
one can construct a sequence consisting of −A and B
integers such that the sum of these integers equals l− k
for all l, k ∈ N, that is there exist NA, NB ∈ Z+ such

that

l − k = −NAA + NBB.

Consider first the case where k > log2(L′)
s + NAA. We

show that the probability of NA occurrences of perfect
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zoom, and NB occurrences of under-zoom phases is

bounded away from zero. This set of occurrences in-

cludes the event that in the first NA time stages perfect-

zoom occurs and later, successively, NB times under-

zoom phase occurs. The probability of this event is

lower bounded by

(

P (dt ∈ [−|a|2sk − L′,−|a|2sk +

L′])

)NA
(

P (dt > |a|2sl])

)NB

> 0. A similar analysis

can be performed when k < log2(L′)
s + NAA, by

considering the opposite order of events, where in the

first NB times, under-zoom occurs, and in the successive

NA time stages, perfect-zoom occurs. As such, the

selection of these events will always have non-zero

probability due to the Lebesgue irreducibility of the

noise distribution. For any two admissible integers k, l
for some p > 0, P (log2(∆t+p) = ls| log2(∆t) = ks) >
0. Now, we can connect the results of the previous

section with Theorem 3.1. The recurrent set C′
e × Ch

is ν−petite, for some probability measure ν as any set

in the state space is visited starting from C′
e × Ch, and

the chain is irreducible. These two imply that the chain

is positive Harris recurrent.

IV. SIMULATION

As a simulation study, we consider a linear system

with the following dynamics: xt+1 = 2.5xt + ut + dt,
where E[dt] = 0, E[d2

t ] = 1, and {dt} are i.i.d.

Gaussian variables. We use the zooming quantizer with

rate log2(4) = 2, since 4 is the smallest integer as large

as ⌈2.5⌉ + 1. We have taken L′ = 1.

The plot below (Figure 2) corroborates the stochastic

stability result, by explicitly showing the under-zoomed

and perfectly zoomed phases, with the peaks in the plots

showing the under-zoom phases.

V. CONCLUSION

We provided a stochastic stability result for the zoom-

ing quantizers. In particular, we showed that zooming

quantizers lead to a weak form of stability and are

efficient.
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