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Abstract— A mathematical model for the scheduling of an-
giogenic inhibitors that includes a pharmacokinetic equation
is considered as an optimal control problem. When dosage
and concentration of the inhibitor are identified, there exists
an optimal singular arc of order 1 that forms the core of
a synthesis of optimal controls. Under the standard phar-
macokinetic linear model for the concentration this singular
arc is preserved and still optimal, but its order increases to
2. This prevents concatenations of the singular arc with the
constant bang controls and now the transitions to and from
the singular arc are through chattering arcs. Optimal controls
have the property that the associated concentration of inhibitors
tracks the optimal singular arc for the reduced model without
pharmacokinetic equations.

I. INTRODUCTION

Anti-angiogenesis is a novel indirect treatment approach to

tumor type cancers that aims at preventing a growing tumor

from developing the network of blood vessels and capillaries

that it needs for its supply of nutrients and oxygen to enable

further tumor growth. Anti-angiogenic treatment was already

proposed in the early seventies by J. Folkman [12], but only

enabled by the discovery of the inhibitory mechanisms of the

tumor in the nineties [7], [15]. It brings in external angio-

genic agents to disrupt the growth of endothelial cells which

form the lining of newly developing blood vessels and the

tumor, deprived of necessary nutrition, ideally regresses. This

indirect treatment approach does not kill the cancer cells, but

rather than targeting the fast duplicating and continuously

mutating tumor cells, it targets the genetically far more stable

endothelial cells. As a consequence, no clonal resistance

to angiogenic inhibitors has been observed in experimental

cancer [2]. Since developing drug resistance all too often is

the limiting factor in conventional chemotherapy treatments,

tumor anti-angiogenesis has been called a new hope for the

treatment of tumors [14].

Several mathematical models that describe the dynamics

of angiogenesis have been proposed. Some of these aim at

fully reflecting the complexity of the biological processes and

allow for large-scale simulations (e.g., [1]), others aggregate

variables into low-dimensional dynamical systems [13], [11],

[9] and thus are amenable to mathematical analysis. Of

these one of the most prominent models was developed by

This material is based upon research supported by the National Science
Foundation under collaborative research grants DMS 0707404/0707410.

Folkman and his collaborators Hahnfeldt, Panigrahy, and

Hlatky, then at Harvard Medical School. In [13] a two

dimensional model of ordinary differential equations for the

interactions between the tumor volume, p, and the carrying

capacity of the vasculature, q, was developed and biologi-

cally validated. The latter is defined as the maximum tumor

volume sustainable by the vascular network that supports

the tumor with nutrients. It is closely related to the volume

of endothelial cells and for short we also refer to it as the

endothelial support of the tumor. Two main modifications

of the original model have been formulated since then, one

by Ergun, Camphausen and Wein from the National Cancer

Institute in the U.S. [11], the other by d’Onofrio (at the

European Institute of Oncology in Milan) and Gandolfi (at

National Research Council in Rome) in [9].

Naturally, in all medical applications resources are limited

(and very expensive in the case of anti-angiogenic treat-

ments) and side-effects need to be kept tolerable. Thus

the problem of how to apply given amounts of agents in

an optimal way arises. Applications of optimal control to

mathematical models arising in biomedical problems have

had a long history with much of the focus on models in

cancer chemotherapy (e.g., [18], [25], [26]). Recently, there

has been a strong resurgence of this methodology in the

analysis of newer models. This especially holds for novel

treatment approaches to cancer like anti-angiogenesis dis-

cussed here (e.g., [19], [22], [27], [28]) and immunotherapies

(e.g., [6], [8]). Also, models describing the immune response

to viruses have been of strong interest (e.g., HIV [16]). In

[11] the question how to schedule an a priori given amount

of angiogenic inhibitors in such a way as to realize the

maximum tumor reduction possible was posed as an optimal

control problem by Ergun et al. and initially analyzed.

Complete solutions to both the original model of [13] as

well as its modifications from [9] and [11] were given by us

in [19], [22], [23].

In view of the tremendous complexities of cancer treat-

ments, for the analysis of mathematical models it is a good

strategy to start with simplified models and then incorporate

increasingly more complex and medically more realistic

features into the model. In this sense, a commonly made

simplification in the literature, and so far this also was made

in the analysis of the models for tumor anti-angiogenesis

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB11.5

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1060



mentioned above, is to identify the drug dosage with its

concentration and even more, with its effects. In reality

these clearly are different phenomena and their relations

are studied under the names of pharmacokinetics (PK) and

pharmacodynamics (PD). Pharmacokinetic equations model

the drug’s concentration in the body plasma and pharma-

codynamics models the effectiveness of the drugs. In short,

PK/PD stands for the description of the full process, also

known as drug delivery in the medical literature.

In this paper, for the model by Ergun, Camphausen and

Wein [11], we extend our research to include the commonly

used linear pharmacokinetic model in our analysis. It turns

out that such an addition has significant implications if

optimal singular arcs exist in the model. In fact, it can be

shown that for a dynamics given by a control-affine system

the optimality status of singular arcs does not change [24].

For example, for models for cancer chemotherapy singular

controls are not optimal and thus the addition of linear PK

has little effect on optimal protocols [20], [21]. For the model

considered here, however, singular controls are optimal and

a corresponding singular arc is the center piece to a synthesis

of optimal controls. This curve is preserved and still optimal

once PK is added to the model. But we shall show that the

order of the singular arc increases by one making the syn-

thesis of optimal controls a challenging problem. Still, as we

shall show, all essential features of the simplified model are

preserved and the optimal concentrations of inhibitors follow

the identical singular arc. This allows for the construction of

suboptimal controls by tracking this arc. From a practical

point of view, optimal controls that contain chattering arcs

are not realizable anyway and thus our constructions provide

satisfactory control schemes.

II. A MATHEMATICAL MODEL FOR TUMOR

ANTI-ANGIOGENIC THERAPY

In this paper we consider the mathematical model for

tumor anti-angiogenesis that was formulated by Ergun, Cam-

phausen and Wein in [11]. Based on the model by Hahnfeldt

et al. [13], the spatial aspects of the underlying consumption-

diffusion processes that stimulate and inhibit angiogenesis

are incorporated into a non-spatial 2-compartment model

with the primary tumor volume p and its carrying capacity

q as variables. Tumor growth is modelled by a Gompertzian

growth function of the form

ṗ = −ξp ln

(

p

q

)

(1)

where ξ denotes a tumor growth parameter. The dynamics

proposed in [11] for the equation modelling the change in

the endothelial support is given by

q̇ = bq
2

3 − dq
4

3 −Guq, (2)

where b (birth) and d (death), respectively, denote endoge-

nous stimulation and inhibition parameters for the endothelial

support. The multiples of 2
3 in the q-exponents arise through

the scaling of tumor volume to the surface area through

which inhibitors need to be released. This specific form

was chosen in [11] since it achieves a better balance in

the substitution of stimulation and inhibition compared with

the differential-algebraic nature of the original model where

the q-dynamics reaches its steady-state extremely fast. The

last term Guq represents exogenous inhibition and thus the

variable u that corresponds to the angiogenic dose rate is

the control in the system and the constant G represents an

anti-angiogenic killing parameter.

We consider the optimal control problem initially formu-

lated in [11]: for a free terminal time T , minimize the tumor

volume J(u) = p(T ) subject to the dynamics (1) and (2)

over all Lebesgue measurable functions u : [0, T ] → [0, a]
which satisfy a constraint on the total amount of anti-

angiogenic inhibitors administered,

∫ T

0

u(t)dt ≤ A. (3)

Mathematically it is more convenient to eliminate the frac-

tional powers with a change of coordinates, x = q
1

3 ,

and to incorporate the constraint (3) into the dynamics by

introducing a new variable y which keeps track of the amount

of the drug used. Hence we consider the following equivalent

optimal control problem:

(OC) for a free terminal time T , minimize p(T ) over all

Lebesgue measurable functions u : [0, T ] → [0, a]
subject to

ṗ = −ξp ln
( p

x3

)

, p(0) = p0, (4)

ẋ =
1

3
(b− dx2 −Gux), x(0) = x0, (5)

ẏ = u, y(0) = 0, (6)

and terminal condition y(T ) ≤ A.

Necessary conditions for optimality are given by the

Pontryagin Maximum Principle (e.g., [3], [4], [5]). Defining

the Hamiltonian H = H(λ, p, q, u) as

H = −λ1ξp ln
( p

x3

)

+
λ2

3

(

b− dx2 −Gux
)

+ λ3u, (7)

these conditions imply that there exists a multiplier λ =
(λ1, λ2, λ3) ∈ (R3)∗, (which we write as a row-vector) that

satisfies the adjoint equation

λ̇(t) = −
∂H

∂x
(λ(t), p∗(t), x∗(t), u∗(t)) (8)

so that the optimal control u∗ minimizes the Hamiltonian

along (λ(t), p∗(t), x∗(t)) over the control set [0, a] with min-

imum value given by 0. This minimum condition is equiva-

lent to minimizing the linear function (λ3−
1
3λ2(t)Gx∗(t))v

over the control set [0, a]. Thus, if we define the so-called

switching function Φ as

Φ(t) = λ3 −
1

3
λ2(t)Gx∗(t), (9)

then optimal controls satisfy

u∗(t) =

{

0 if Φ(t) > 0
a if Φ(t) < 0

. (10)
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A priori the control is not determined by the minimum

condition at times when Φ(t) = 0. However, if Φ(t) ≡ 0 on

an open interval, then also all derivatives of Φ(t) must vanish

and this may determine the control. Controls of this kind

are called singular while we refer to the constant controls

u = 0 and u = a as bang controls. For the model considered

here, singular controls are indeed optimal and we recall these

results from earlier publications [17], [19].

Proposition 2.1: There exists a locally minimizing singu-

lar arc S defined in (p, x)-space by

psin = psin(x) = x3 exp

(

3
b− dx2

b+ dx2

)

(11)

over an interval x∗ℓ ≤ x ≤ x∗u and the corresponding singular

control is given in feedback form as

usin(x) = ψ(x) =
1

G

(

b− dx2

x
+ 3ξ

b+ dx2

b− dx2

)

. (12)

The values x∗ℓ and x∗u are the unique solutions to the equation

ψ(x) = a in (0,
√

b
d
). �

This structure is robust and does not depend on the

parameter values chosen. (For the underlying problem, the

coefficient b is larger then d by orders of magnitude, b > d.)

Optimal controls then need to be synthesized from singular

and bang controls through an analysis of the switching

function. In the papers [17], [19] we carried out this analysis

and, excluding certain degenerate initial conditions (p0, q0),
q0 = x3

0, we proved the following result:

Theorem 2.1: Optimal controls are at most concatenations

of the form 0asa0 where 0 denotes an interval along which

the optimal control is given by the constant control u = 0,

that is no inhibitors are given, a denotes an interval along

which the optimal control is given by the constant control

u = a at full dose, and s denotes an interval along which the

optimal control follows the time-varying singular feedback

control (12). This control is only optimal while the system

follows the optimal singular arc S defined by (11) in the

(p, x)-space. �

A synthesis then provides a full “road map” of how

optimal protocols look like depending on the initial condition

in the problem, both qualitatively and quantitatively. Once it

is known that the maximally possible optimal concatenation

sequence is of the form 0asa0, it is not difficult to compute

the optimal control for a particular initial condition (p0, q0).
Figure 1 gives a characteristic example of the optimal control

(top) and its corresponding trajectory (bottom) for the initial

conditions p0 = 12, 000 and q0 = 15, 000. For our numerical

illustration we have used the following biologically validated

data from [13] that are based on experiments with Lewis lung

carcinoma implanted in white mice: ξ = 0.192
ln 10 = 0.084 per

day (this value is adjusted to the natural logarithm.), b = 5.85
mm per day, d = 0.00873 per mm per day, G = 0.15 kg per

mg of dose, and for illustrative purposes we selected a = 15.

The trajectory in Fig. 1 is plotted with p along the vertical

axis and the original variable q along the horizontal axis.

This choice of variables makes the visualization of tumor

reduction easier and allows for an easier interpretation. For

these initial conditions the optimal control starts as full dose

u = a and there is no initial segment with u = 0. Once the

trajectory corresponding to u = a hits the singular arc, it is

no longer optimal to give a full dose. At this time the optimal

control becomes singular following the singular arc until

all inhibitors become exhausted at some time τ . Contrary

to the initial full dose segment, there now is a significant

shrinkage of the tumor volume along the singular arc. Since

p(τ) > q(τ), it follows that the tumor volume will still be

shrinking for times t > τ until the diagonal is reached at

time T , p(T ) = q(T ). The minimum tumor volume is thus

realized at this time T along a trajectory for u = 0. This

structure is the most typical synthesis of the type as0, but

other concatenation sequences are also possible.
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Fig. 1. Optimal control (top) and corresponding trajectory (bottom) for
initial conditions p0 = 12, 000 and q0 = 15, 000

III. CONCATENATIONS WITH SINGULAR CONTROLS OF

ORDERS 1 AND 2

The model considered above is a single-input control-

affine system of the form

ż = f(z) + ug(z) (13)

with z = (p, x, y)T and the switching function Φ can

succinctly be expressed as the inner product

Φ(t) = 〈λ(t), g(z(t))〉 . (14)

Along a singular control all derivatives of the switching

function must vanish and these conditions often allow the

computation of singular controls and the analysis of their

optimality status. Given any function

Ψ(t) = 〈λ(t), h(z(t))〉 , (15)

where h is a continuously differentiable vector field, a direct

calculation verifies that its derivative along a solution to the
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system equation (13) for control u and a solution λ to the

corresponding adjoint equations is given by

Ψ̇(t) = 〈λ(t), [f + ug, h](z(t))〉 (16)

where [f, h] is the Lie bracket of the vector fields f and

h given by [f, h](z) = Dh(z)f(z) − Df(z)h(z) with Df

and Dg denoting the matrices of the partial derivatives of

the vector fields, all evaluated along z(t). We also use

the notation adf (g) = [f, g], especially when higher order

brackets will be involved.

Thus the first two derivatives of the switching function are

given by

Φ̇(t) = 〈λ(t), [f, g](z(t))〉 (17)

Φ̈(t) = 〈λ(t), [f + ug, [f, g]](z(t))〉 . (18)

For problem (OC) the strengthened Legendre-Clebsch con-

dition [3] is satisfied, that is

〈λ(t), [g, [f, g]](z(t))〉 < 0 (19)

and thus the singular control can be expressed as

usin(t) = −
〈λ(t), [f, [f, g]](z(t))〉

〈λ(t), [g, [f, g]](z(t))〉
. (20)

Singular controls of this type are said to be of order 1 [5]. An

important implication of the strengthened Legendre-Clebsch

condition is that order 1 singular controls that take values

in the interior of the control set can be concatenated with

the bang controls u = a and u = 0 at any point along

the singular arc. For example, if the control is u = 0, then,

since Φ̈(t) = 0 along the singular control, the strengthened

Legendre-Clebsch condition implies that Φ̈(τ±) > 0 consis-

tent with the minimum condition of the maximum principle,

both for entry and exit from the singular arc.

If, however, the Lie bracket [g, [f, g]] vanishes identically,

then we have instead

Φ̈(t) = 〈λ(t), [f, [f, g]](z(t))〉 ≡ 0, (21)
...
Φ(t) =

〈

λ(t), ad3
f (g)(z(t))

〉

≡ 0, (22)

and now the control u only appears for the first time in the

fourth derivative of Φ,

Φ(4)(t) =
〈

λ(t), ad4
f (g)(z(t))

〉

(23)

+ u(t)
〈

λ(t), [g, ad3
f (g)](z(t))

〉

.

It now is a necessary condition for optimality that
〈

λ(t), [g, ad3
f (g)](z(t))

〉

≥ 0 (24)

and if this quantity is positive, the singular control is said to

be of order 2. However, in this case the signs of the derivative

of the switching function violate the maximum principle if

the singular control would be concatenated with the bang

controls. For example, suppose for some ε > 0 the control

is singular over the interval (τ − ε, τ) and is given by u = 0
over the interval (τ, τ + ε). Because of the change of sign

we now have that

Φ(4)(τ+) =
〈

λ(τ), ad4
f (g)(z(t))

〉

< 0 (25)

and thus the switching function has a local maximum for

t = τ , i.e., is negative over the interval (τ, τ + ε). But then

the minimization property of the Hamiltonian implies that

the control must be u = a. The analogous contradiction

arises for other types of concatenations. Thus an optimal

singular control of order 2 that takes values in the interior of

the control set cannot be concatenated with a bang control.

In fact, an optimal control needs to switch infinitely often

between the controls u = 0 and u = a on any interval (τ, τ+
ε) if a singular junction occurs at time τ . Corresponding

trajectories are called chattering arcs.

IV. THE EXTENDED MODEL WITH PK

In many biomedical models it is assumed as a first approx-

imation, as it was done here, that the concentration c of the

drug is equal to its dosage u and effects e are instantaneous.

Clearly, this is not the case and bringing PK and PD into

the model will more realistically represent the dynamics of

the treatment. We thus now consider an extended version of

problem (OC) where a linear model for pharmacokinetics

has been added; that is, the dosage u and concentration c of

the inhibitors are no longer identified, but are linked by a

first order linear ODE with constant coefficients,

ċ = −kc+ hu, c(0) = 0. (26)

The model itself thus is one of exponential growth/decay

and is commonly used as model for PK. The maximum

concentration is given by cmax = ha
k

and the clearance rate

k is related to the half-life of the inhibitor as ln 2
k

. We also add

a simple model for PD assuming the effect is proportional

to the concentration of the inhibitors, e = sc with 0 < s ≤ 1.

Thus overall the model now becomes

(LPK) for a free terminal time T , minimize J(u) =
p(T ) over all Lebesgue measurable functions u :
[0, T ] → [0, a] subject to

ṗ = −ξp ln
( p

x3

)

, p(0) = p0 (27)

ẋ =
1

3
(b− dx2 −Gscx), x(0) = x0 (28)

ċ = −kc+ hu, c(0) = 0 (29)

ẏ = u, y(0) = 0 (30)

and terminal condition y(T ) ≤ A.

The system still is single input and control-affine of the

form (13), but with 4-dimensional vector z = (p, x, c, y)T

and adjusted drift and control vector fields f and g. The

Hamiltonian now takes the form

H = −λ1ξp ln
( p

x3

)

+
1

3
λ2(b− dx2 −Gscx)

+ λ3(−kc+ hu) + λ4u (31)

and the switching function Φ(t) is given by

Φ(t) = λ3(t)h+ λ4. (32)

As before, the maximum principle identifies bang and singu-

lar controls as canonical candidates for optimality, but now

we have [g, [f, g]] = 0. Explicit computations verify that
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the singular control is of order 2 and that the strengthened

Legendre-Clebsch condition for minimality is satisfied,

∂

∂u

(

d4

dt4
Φ(t)

)

=
1

27
G2s2h2λ2(t)(b− dx(t)2) > 0. (33)

This result relies on the fact that λ2(t) > 0 on the interval

[0, T ).
In fact, the singular curve from problem (OC) is pre-

served: along a singular arc the multiplier λ vanishes against

the vector fields f , g, [f, g] and [f, [f, g]]. Since λ is non-

zero, these four vector must be linearly dependent. (Although

not obvious, it follows from general calculations that the

vector field ad3
f (g) also lies in the span of these brackets

[24].) But g is independent of the other vectors and thus

0 =

∣

∣

∣

∣

∣

∣

−ξp ln
(

p
x3

)

0 −ξpGsh
1
3 (b− dx2 −Gscx) 1

3Gsxh
1
9Gsh(b+ dx2 + 3xk)

−kc kh k2h

∣

∣

∣

∣

∣

∣

=
1

9
ξpkGsh2

{

(b+ dx2) ln
( p

x3

)

− 3(b− dx2)
}

which implies

ln
( p

x3

)

= 3
b− dx2

b+ dx2
. (34)

Hence relation (11) for the singular arc is still valid for the

model with PK.

The optimal singular concentration c∗sin(t) can then be

calculated by taking the derivative of (34) along the trajectory

and substituting ṗ and ẋ from the state equations. Using the

identity (34), after a somewhat lengthy calculation we obtain

the optimal singular concentration/effect as

e∗sin = sc∗sin =
1

G

(

b− dx2

x
+ 3ξ

b+ dx2

b− dx2

)

, (35)

identical with (12) for the singular arc of problem (OC). But

now this equation is for the effect/concentration, not for the

optimal singular dosage. Differentiating one more time, an

explicit, albeit lengthy formula for the singular control can

be derived to obtain the following result:

Proposition 4.1: There exists a locally minimizing singu-

lar arc S defined in (p, x)-space by

p = p(x) = x3 exp

(

3
b− dx2

b+ dx2

)

(36)

which is admissible over an interval x ∈ [x∗l , x
∗
u]. The

corresponding singular effect and concentration are given as

a function of x by

e∗sin(x) = sc∗sin(x) =
1

G

(

b− dx2

x
+ 3ξ

b+ dx2

b− dx2

)

, (37)

and writing θ(x) = b+dx2

b−dx2 , the singular control can be

expressed in feedback form as

u∗sin(x) = u∗sin(θ(x), c∗sin(x))

=
1

h

[

3ξ2θ

Gs
(1 − 2θ2) + c∗sin(ξθ2 + k)

]

. (38)

�

The singular arc S is the same as in the model without

PK and what was the formula for the singular control when

dosage, concentration and effect were identified, now be-

comes the optimal singular effect/concentration. This clearly

shows the usefulness of the simplified model as a first

approximation. However, since singular controls now are of

order 2, no concatenations with bang controls are optimal and

these connections are made through chattering arcs. Clearly

such a control scheme is not realistic and it makes sense to

consider sub-optimal, but simple and realizable protocols.

If we consider the serially connected system represented

by Fig. 2 and take e = sc as the input to the subsystem II,

it follows from the above analysis that, ideally, the optimal

drug effect e∗ should have the same structure and expression

as the optimal control does for the system without PK and

PD, mostly in the form of ”as0” as in the example given

above.

Fig. 2. Serially connected system with PK/PD

Given the knowledge of the optimal synthesis of the

singular drug effect from the model without PK, it appears

reasonable to conclude that the new optimal control u∗(t)
is one that produces as concentration the optimal e∗(t) for

the model without PK. But because of the inertia of the

PK dynamics and the constraints on u, the real output

e(t) cannot follow the discontinuous e∗(t) as represented

in Fig. 3. This leads us to consider suboptimal controls usub

under the PK and PD dynamics that actuate e(t) to track

e∗(t) “closely”. Clearly, these controls need to start with a

full dose segment where u∗(t) = 15 along some interval

[0, t′a) and the treatment ends with u∗(t) = 0 on a final

interval [t′s, T ]. In between we track the originally optimal

singular control, now the singular concentration/effect. As we

have seen, complexities occur in the optimal transition (or

concatenation) from the bang control to the singular control

since the second order optimal singular control u∗sin cannot be

concatenated with either u = 0 or u = a, but chatters. Thus

here we consider some direct suboptimal approximations. For

example, we insert an additional segment for u = 0 in order

to speed up the transition to the singular arc. The graphs of

this control u∗sub and its corresponding effect e∗sub in time are

shown in Fig. 4 and Fig. 5 represents an example of such a

trajectory corresponding to an ”a0s0”-structured suboptimal

control.
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Fig. 3. Optimal control (dosage/concentration/effect) for the model without
PK/PD

Fig. 4. Suboptimal approximation of the concentration/effect for the model
with PK

V. CONCLUSION

In this paper we have analyzed a mathematical model for

tumor anti-angiogenesis as an optimal control problem. We

have shown that while the addition of a pharmacokinetic

model for the concentration of the inhibitors does change the

structure of optimal solutions, nevertheless the most impor-

tant features including an optimal singular arc are preserved.

Thus in this case the simplified model does retain significant

information about the solutions of the more realistic model.
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