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Abstract— This paper studies a class of uncertain discrete
event systems over the max-plus algebra, where system matrices
are unknown but are convex combinations of known matrices.
These systems model a wide range of applications, for example,
transportation systems with varying vehicle travel time and
queueing networks with uncertain arrival and queuing time.
This paper presents computational methods for different robust
invariant sets of such systems. A recursive algorithm is given
to compute the supremal robust invariant sub-semimodule in a
given sub-semimodule. The algorithm converges to a fixed point
in a finite number of iterations under proper assumptions on
the state semimodule. This paper also presents computational
methods for positively robust invariant polyhedral sets. A
search algorithm is presented for the positively robust invariant
polyhedral sets. The main results are applied to the time table
design of a public transportation network.

Keywords: Robust controlled invariance, discrete event sys-
tems, max-plus algebra.

I. INTRODUCTION

In the study of linear systems over a field or a ring,
the geometric approach ([5], [6], [10], [11], [15]) is used
in many control problems, for example, the disturbance
decoupling problem, the model matching problem, and the
block decoupling problem. Controlled invariant subspaces
(or sets) play a key role in these fundamental problems
of geometric control theory. The geometric approach for
discrete event systems over the max-plus algebra is still
a new research direction [4] comparing to the geometric
control theory for traditional linear systems over a field [15].
The max-plus algebra, a special semiring [9], is a set of
real numbers embedded with the max operation and the plus
operation. Semirings can be understood as a set of objects
without inverses with respect to the corresponding operators.
Systems over the max-plus algebra are used to model many
discrete event systems, for instance, queueing systems [3],
transportation systems [1], and communication networks [8].

Researchers have been studying different computational
methods for controlled invariant spaces (or sets) for dis-
crete event systems over the max-plus algebra ([12], [14]).
However, there are many uncertain factors in the discrete
event system modeling. This paper focuses on a class of
uncertain discrete event systems over the max-plus algebra,
in which system matrices are uncertain but can be written as
linear combinations of known matrices. These system model
a class of discrete event systems, such as transportation
systems with varying travel time and queuing networks with
uncertain arrival time and queueing time. Most of these
uncertainties can be characterized by max-plus convex sets in
[13]. To the author’s best knowledge, this paper is the first
attempt for the computational methods of different robust
controlled invariant sets for this class of uncertain discrete
event systems.
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The main challenge for systems over a semiring (or
even a ring) is that the (A, B)-invariant sub-semimodule
(or submodule) does not coincide with (A, B)-invariant sub-
semimodule (or submodule) of feedback type ([5], [6], [10]).
A semimodule over a semiring can be analogized to a linear
space over a field. In this paper, a recursive algorithm is given
to compute the supremal robust invariant sub-semimodule
in a given sub-semimodule. The algorithm converges to a
fixed point in a finite number of iterations under proper
assumptions on the state semimodule. The fixed point is
the supremal robust controlled invariant sub-semimodule of
the given sub-semimodule. Another computational method
is presented for robust controlled invariant sub-semimodule
of feedback type in a given sub-semimodule. This paper
also presents computational methods for positively robust
invariant polyhedral sets in two cases, time-invariant and
time-varying polyhedral sets. The reason to focus on time-
varying polyhedral invariant sets is that there are many
quantities in discrete event systems varying with time. For
instance, in transportation networks, the control goal is that
the departure time of each vehicle is under a time constraint.
These constraints usually vary over time and can be used to
design proper time tables for the transportation systems. A
search algorithm for time-varying positively robust invariant
sets is presented and is demonstrated using a public trans-
portation network.

II. MATHEMATICAL PRELIMINARIES

A. Semiring and Semimodule

A monoid R is a semigroup (R, ⊞) with an identity
element eR with respect to the binary operation ⊞. The
term semiring means a set, R = (R, ⊞, eR, ⊠, 1R) with two
binary associative operations, ⊞ and ⊠, such that (R, ⊞, eR)
is a commutative monoid and (R, ⊠, 1R) is a monoid, which
are connected by a two-sided distributive law of ⊠ over
⊞. Moreover, eR ⊠ r = r ⊠ eR = eR, for all r in R.
Examples of semirings include the set of natural numbers,
the max-plus algebra, the min-plus algebra, and the Boolean
algebra. R = (R, ⊞, eR, ⊠, 1R) is a semifield if and only
if (R\{eR}, ⊠, 1R) is a group, i.e. all of its elements
have inverse elements with respect to the ⊠ operator. An
idempotent semifield R is a semifield satisfying a⊞a = a for
all a ∈ R. The common example for idempotent semifields is
max-plus algebra, which replaces the traditional addition and
multiplication into the max operation and the plus operation,

Addition : a ⊕ b ≡ max{a, b},

Multiplication : a ⊗ b ≡ a + b.

In max-plus algebra literature, we usually denote it as
RMax=(R ∪ {ǫ},⊕, ǫ,⊗, e), where R is the set of real
numbers, ǫ = −∞, and e = 0. Similarly, ZMax = (Z ∪
{ǫ},⊕, ǫ,⊗, e) denotes the semiring of integers.
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Let (R, ⊞, eR, ⊠, 1R) be a semiring, and (M, ⊞M , eM )
be a commutative monoid, where the subscript denotes the
corresponding monoid for the operator ⊞. M is called a left
R-semimodule if there exists a map µ : R × M → M ,
denoted by µ(r, m) = rm, for all r ∈ R and m ∈ M , such
that the following conditions are satisfied:

1) r(m1 ⊞M m2) = rm1 ⊞M rm2;
2) (r1 ⊞ r2)m = r1m ⊞M r2m;
3) r1(r2m) = (r1 ⊠ r2)m;
4) 1R m = m;
5) r eM = eM = eR m,

for any r, r1, r2 ∈ R and m, m1, m2 ∈ M . In this paper, e
denotes the unit semimodule. A sub-semimodule K of M is
a submonoid of M with rk ∈ K , for all r ∈ R with k ∈ K .
An R-morphism between two semimodules (M, ⊞M , eM )
and (N, ⊞N , eN) is a map f : M → N satisfying

1) f(m1 ⊞M m2) = f(m1) ⊞N f(m2);
2) f(rm) = rf(m),

for all m, m1, m2 ∈ M and r ∈ R.
Let N be a subset of a R-semimodule (M, ⊞M , eM ). We

denote N0 as the set of all elements of the form ⊞M
i

λini

where ni are elements in N , λi are elements in R, and i
are elements in an index set I . The sub-semimodule N0 is
said to be generated by N , and N is called a system of
generators of N0. The subset N of an R-semimodule M is
called linearly independent if ⊞M

i
λini = ⊞M

i
βini implies

λi = βi for all i ∈ I . An R-semimodule M is called a free
R-semimodule if it has a linearly independent subset N of
M which generates M and then N is called a basis of M .
If N has a finite number of elements, M is called a finitely
generated R-semimodule, denoted as span N .

In [12], Katz defined the concept of volume for the max-
plus semimodule. Let K ⊂ Z

n
Max be the integer max-plus

semimodule, the volume of K, denoted as vol(K) is the
cardinality of the set {x ∈ K|x1 ⊕ x2 ⊕ · · · ⊕ xn = 0}.
This set is denoted as K̃. Also, if K ∈ Z

n×p
Max

, the volume
of the semimodule K = Im K is denoted as vol(K) =
vol(Im K) = vol(K).

B. Uncertain Discrete Event Systems over Max-Plus Algebra

A class of uncertain discrete event systems over the max-
plus algebra is described by the following equation:

x(k) = Ã x(k − 1) ⊕ B u(k), (1)

where the state semimodule X ∼= R
n
Max and the input

semimodule U ∼= R
r
Max are free. A : X → X and

B : U → X are R-semimodule morphisms. The system’s

state matrix Ã is unknown but it is the linear combination
of known matrices, A1, A2, · · · , Am, i.e.

Ã =
m⊕

i=1

(λi ⊗ Ai), with
m⊕

i=1

λi = e.

A convex set P is convex if (a ⊗ x) ⊕ (b ⊗ y) ∈ P for
any x, y ∈ P and a, b in a semiring R and a ⊕ b = e.

Then Ã is in the convex hull of A1, · · · , Am, denoted as

Ã ∈ co{A1, · · · , Am}.
The geometric concepts of different invariant subspaces

can be generalized to systems over a semiring. Given a
system of the form (1) over the max-plus algebra RMax,
a sub-semimodule V of the state semimodule X is

• called (Ã, B)-invariant or robust controlled invariant if

and only if, for all x0 ∈ V and an arbitrary matrix Ã ∈
co{A1, · · · , Am}, there exists a sequence of control
inputs, u = {u1, u2, · · · }, such that every component in
the state trajectory produced by this input, x(x0; u) =
{x0, x1, · · · }, remains inside of V .

• called (Ã, B)-invariant of feedback type, or (Ã⊕BF )-
invariant, if and only if there exists a state feedback

F : X → U such that (Ã⊕BF )V ⊂ V , for an arbitrary

matrix Ã ∈ co{A1, · · · , Am}.

Unlike systems over a field, (A, B)-invariant sub-
semimodules of feedback type are not same as (A, B)-
invariant sub-semimodules for systems over a semiring or
even a ring. Conte and Perdon [6] proved that, for systems
over a ring, if an (A, B)-invariant submodule is a direct
summand of the free state semimodule X , then it is (A, B)-
invariant of feedback type. However, direct summand in
semimodules is far more complicated than modules, the same
result in [6] is not true any more.

III. ROBUST INVARIANT SUB-SEMIMODULES

This section presents the computational methods for robust

(Ã, B)-invariant sub-semimodules and (Ã ⊕ BF )-invariant
sub-semimodules in a given sub-semimodule. These compu-
tation methods are generalizations of deterministic discrete
event systems in [12].

A. (Ã, B)-Invariant Sub-semimodules

A sub-semimodule V of the state semimodule is (Ã, B)-
invariant if and only if

V = V ∩ Ã−1(V ⊖ B), (2)

where B = B(U) and

Ã−1(V ⊖ B) = {x ∈ R
n
Max|∃u ∈ U, s.t.Ãx ⊕ Bu ∈ V ,

∀Ã ∈ co{A1, · · · , Am}}. (3)

Lemma 1: For an uncertain discrete event system over the
max-plus algebra of the form (1), a sub-semimodule V in

the state semimodule is (Ã, B)-invariant if and only if V is
(Ai, B)-invariant for any i ∈ {1, 2, · · · , m}.

Lemma 2: For an uncertain discrete event system over the
max-plus algebra of the form (1), a sub-semimodule V of the
state semimodule satisfies the following equality,

Ã−1(V ⊖ B) =
m⋂

i=1

A−1

i (V ⊖ B).

The supremal (A, B)-invariant subspace V ∗ of a linear
system over a field is computed using the following algorithm
[15], where A−1(Vi + B) = {x ∈ R

n|Ax ∈ Vi + B}:

V1 = K

Vk+1 = Vk ∩ A−1(Vk + B), k ∈ N. (4)

For systems over a field, this recursion converges to a fixed
point, which is the supremal controlled invariant subspace in
K, after a finite number of iterations. However, for systems
over a semiring or even a ring, this algorithm does not guar-
antee to terminate in finite steps. For uncertain systems over
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the max-plus algebra, to calculate the supremal controlled
invariant sub-semimodule of a given sub-semimodule, we
can use Lemma 2 to modify the algorithm (4) to:

V1 = K

Vk+1 = Vk ∩ Ã−1(Vk ⊖ B)

= Vk ∩
m⋂

i=1

A−1

i (Vk ⊖ B), k ∈ N. (5)

The following lemma states that the algorithm (5) can be
used to calculate the the supremal controlled invariant sub-
semimodule in K. This result is a generalization of Lemma
3 in [12] by Katz for the deterministic case.

Lemma 3: Let {Vk}k≥0 be the family of sub-semimodules
defined by the algorithm (5). If there exists ∩k∈NVk, then

any (Ã, B)-invariant sub-semimodule of K is contained
in ∩k∈NVk, namely the supremal controlled invariant sub-
semimodule V∗ is also contained in ∩k∈NVk. Moreover, if
the algorithm in Eq. (5) terminates in r steps, then V ∗ = Vr.

Notice that, the algorithm (5) does not always terminate
in a finite number of steps. However, if restricting to a finite
volume semimodule in the integer max-plus algebra, the
algorithm (5) terminates in finite steps, which is stated in the
following proposition. This result is a direct generalization of
Theorem 2 in [12], so the proofs are omitted due to limited
space. Proposition 1 is illustrated by Example 1.

Proposition 1: Given a sub-semimodule K in Z
n
Max with

a finite volume. The supremal robust (Ã, B)-invariant sub-
semimodule of K under the dynamics of the system (1) is
finitely generated. The sequence {Vk}k∈N by the algorithm
5 terminates in a finite number r of steps, V ∗ = Vr and
r ≤ vol(K) + 1.

Example 1: Consider an uncertain discrete event system

over ZMax with system matrix Ã ∈ co{A1, A2}, where

A1 =

[
1 −∞

−∞ 0

]
, A2 =

[
2 −∞

−∞ 0

]
, B =

[
0
0

]
.

We need to calculate the supremal (Ã, B)-invariant sub-
semimodule in K = {(x, y)T ∈ Z

2
Max|x + 1 ≤ y ≤ x + 4}.

The set K̃ is

K̃ = {(x, y)T ∈ K|x ⊕ y = 0}

= {(−1, 0)T , (−2, 0)T , (−3, 0)T , (−4, 0)T}.

The volume of K is 4. Then the algorithm (5) to calculate the
supremal controlled invariant sub-semimodule will terminate
at most vol(K)+1 = 5 steps. We verify it by computing the
algorithm (5):

V1 = K,

V2 = V1 ∩

2⋂

i=1

A−1

i (V1 ⊖ B)

= {(x, y)T ∈ Z
2
Max|x + 3 ≤ y ≤ x + 4},

V3 = V2 ∩

2⋂

i=1

A−1

i (V2 ⊖ B) = {(−∞,−∞)T },

V4 = V3, · · · , Vk+1 = V3.

The algorithm terminates in 3 steps and the supremal(Ã, B)-
invariant sub-semimodule is V ∗ = V3 = {(−∞,−∞)T}. ♦

B. (Ã, B)-Invariant Sub-semimodules of Feedback Type

Because a controlled invariant sub-semimodule is not iden-
tical with a control invariant sub-semimodule of feedback
type, the computational method in the algorithm (5) cannot

be used to calculate (Ã, B)-invariant sub-semimodules of
feedback type. For the integer max-plus algebra, if a given
sub-semimodule V = Im Q, where Q = Z

n×r
Max

, then V

is (Ã ⊕ BF )-invariant if and only if there exists matrices

F ∈ Z
q×n
Max

and G ∈ Z
r×r
Max

, such that

(Ã ⊕ BF )Q = QG, ∀Ã ∈ co{A1, · · · , Am}.

Because Ã is uncertain, we actually can verify this condition
using each known matrix, Ai.

Lemma 4: Given sub-semimodule V = Im Q, where Q =
Z

n×r
Max

, then V is (Ã⊕BF )-invariant if and only if there exists

matrices Fi ∈ Z
q×n
Max

and Gi ∈ Z
r×r
Max

, such that

(Ai ⊕ BFi)Q = QGi, ∀i ∈ {1, · · · , m}.

To calculate for each Fi and Gi, we can use the elimination
method in [12] and the residuation theory in [1].

IV. POSITIVELY ROBUST INVARIANT POLYHEDRAL SETS

This section presents computational methods for different
positively robust invariant polyhedral sets for systems over
an idempotent semiring (R,⊕, eR,⊗, 1R) described by the
following equation:

x(k) = Ã x(k − 1). (6)

The system’s state matrix Ã is unknown but it is the
linear combination of known matrices, A1, A2, · · · , Am.
Obviously, discrete event systems over the max-plus algebra
RMax are special cases of such systems. The results in this
section are motivated by Truffet [14] and Bitsoris [2].

A. Time-invariant Polyhedral Sets

If we are considering time-invariant polyhedral sets

P(F, φ, ψ) = {x ∈ Rn|φ ≤ F ⊗ x ≤ ψ},

φ, ψ ∈ Rp, and F ∈ Rp×n.

For deterministic linear systems over an idempotent semi-
ring, the necessary and sufficient condition for positively
invariance of the set P(In, φ, ψ) was established in [14].

Lemma 5: [14] Assume n = p and F = In, where In

denotes the n × n identity matrix. P(In, φ, ψ) is positively
invariant under the dynamics of the system,

x(k) = Ax(k − 1), A ∈ Rn×n, (7)

if and only if

(A ⊗ ψ ≤ ψ) ∧ (φ ≤ A ⊗ φ). (8)

For uncertain linear systems (6) over an idempotent semiring
R, the similar result as Lemma 5 can also obtained.

Proposition 2: Assume n = p and F = In, where In

denotes the n × n identity matrix. P(In, φ, ψ) is positively
robust invariant under the dynamics of the system (6) if and
only if

(Ai ⊗ ψ ≤ ψ) ∧ (φ ≤ Ai ⊗ φ), (9)
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for all i ∈ {1, · · · , m}.
The following proposition is a sufficient condition for a

polyhedral set, P(F, φ, ψ), to be positively invariant under
the dynamic of the system (7).

Proposition 3: Assume n = p, P(F, φ, ψ) is positively
invariant under the dynamics of the system (7) if there exists
a matrix H ∈ Rp×p such that

F ⊗ A = H ⊗ F and

(H ⊗ ψ ≤ ψ) ∧ (φ ≤ H ⊗ φ). (10)

The second condition means that P(In, φ, ψ) is H-positively
invariant.

The following proposition states a sufficient condition for
a polyhedral set P(F, φ, ψ) to be positively robust invariant.

Proposition 4: Assume n = p, P(F, φ, ψ) is positively
robust invariant under the dynamics of the system (6) if there
exists a matrix Hi ∈ Rp×p such that

F ⊗ Ai = Hi ⊗ F and

(Hi ⊗ ψ ≤ ψ) ∧ (φ ≤ Hi ⊗ φ). (11)

The second condition means that P(In, φ, ψ) is Hi-positively
invariant, where i ∈ {1, · · · , m}.

B. Time-variant Polyhedral Sets

If we are considering time-varying polyhedral sets

P̃(F, φ(k), ψ(k)) = {x(k) ∈ Rn|φ(k) ≤ F ⊗ x(k) ≤ ψ(k)},

φ(k) = Kφ ⊗ φ(k − 1), ψ(k) = Kψ ⊗ ψ(k − 1),

where φ, ψ ∈ Rp, k ∈ Z
+, and F ∈ Rp×n, and x(k) is

governed by system (6) or system (7). Time-varying polyhe-
dral sets are polyhedrons with time-variant boundaries. Such
conditions are very common in reality, such as the public
transportation networks with time-varying time tables. Due
to space limit, all proofs are omitted in this subsection.

Lemma 6: Assume n = p and F = In, where In denotes

the n × n identity matrix. P̃(In, φ(k), ψ(k)) is positively
robust invariant under the dynamics of system (7) if and
only if

(A ⊗ ψ(k) ≤ Kψ ⊗ ψ(k)) ∧ (Kφ ⊗ φ(k) ≤ A ⊗ φ(k)), (12)

for all k ∈ Z
+.

Lemma 6 presents the necessary and sufficient conditions

for a time-variant polyhedral set P̃(In, φ(k), ψ(k)) to be
positively invariant for system (7). If we are given Kφ

and Kψ, the searching method for φ∗ ≤ ψ∗, such that

P̃(In, φ(k), ψ(k)), k ≥ 1, to be positively invariant for
system (7), can be performed as follows.

1) We solve the following equations for φ∗ ≤ ψ∗,

A ⊗ ψ∗ = Kψ ⊗ ψ∗,

A ⊗ φ∗ = Kφ ⊗ φ∗.

2) For any x(0) ∈ Rn such that let φ(0) = φ∗ and ψ(0) =
ψ∗ and φ(0) ≤ x(0) ≤ ψ(0), we have

A ⊗ φ(0) ≤ A ⊗ x(0) ≤ A ⊗ ψ(0) =⇒

Kφ ⊗ φ(0) ≤ A ⊗ x(0) ≤ Kψ ⊗ ψ(0) =⇒

φ(1) ≤ x(1) ≤ ψ(1).

Continuing this process, we are able to show that

P̃(In, φ(k), ψ(k)) is positively invariant with respect

to system (7). Therefore, φ∗ and ψ∗ generate the pos-
sible boundaries for a positively invariant polyhedral
set.

The following proposition presents the necessary and

sufficient conditions for P̃(In, φ(k), ψ(k)) to be positively
robust invariant.

Proposition 5: Assume n = p and F = In, where In

denotes the n × n identity matrix. P̃(In, φ(k), ψ(k)) is
positively robust invariant under the dynamics of the system
(6) if and only if

(Ai ⊗ ψ(k) ≤ Kψ ⊗ ψ(k)) ∧ (Kφ ⊗ φ(k) ≤ Ai ⊗ φ(k)),

for all i ∈ {1, · · · , m} and k ∈ Z
+.

If we are given Kφ and Kψ, the searching method for

φ∗ ≤ ψ∗, such that P̃(In, φ(k), ψ(k)), k ≥ 1, to be
positively robust invariant for system (6), is similar the
positively invariance case.

1) Firstly, we solve the following equations for φ∗ ≤ ψ∗,

Ai ⊗ ψ∗ = Kψ ⊗ ψ∗,

Ai ⊗ φ∗ = Kφ ⊗ φ∗,

for all possible Ai, i ∈ {1, · · · , m}.
2) For any x(0) ∈ Rn such that let φ(0) = φ∗ and ψ(0) =

ψ∗ and φ(0) ≤ x(0) ≤ ψ(0), we have

Ai ⊗ φ(0) ≤ Ai ⊗ x(0) ≤ Ai ⊗ ψ(0) =⇒

Kφ ⊗ φ(0) ≤ Ai ⊗ x(0) ≤ Kψ ⊗ ψ(0) =⇒

φ(1) ≤ x(1) ≤ ψ(1),

for all i ∈ {1, · · · , m}. Continuing this process, we are

able to show that P̃(In, φ(k), ψ(k)) is positively robust
invariant with respect to system (6). Therefore, φ∗ and
ψ∗ generate the possible boundaries for a positively
robust invariant polyhedral set.

The following proposition is a sufficient condition for a

polyhedral set P̃(F, φ(k), ψ(k)) to be positively invariant
under the dynamic of the system (7).

Proposition 6: Assume n = p, P̃(F, φ(k), ψ(k)) is posi-
tively invariant under the dynamics of the system (7) if there
exists a matrix H ∈ Rp×p such that

F ⊗ A = H ⊗ F and

(H ⊗ ψ(k) ≤ Kψ ⊗ ψ(k)) ∧ (Kψ ⊗ φ(k) ≤ H ⊗ φ(k)).

The second condition means that P̃(In, φ(k), ψ(k)) is H-
positively invariant.

The following proposition states a sufficient condition for

a polyhedral set P̃(F, φ(k), ψ(k)) to be positively robust
invariant.

Proposition 7: Assume n = p, P̃(F, φ(k), ψ(k)) is posi-
tively robust invariant under the dynamics of the system (6)
if there exists a matrix H ∈ Rp×p such that

F ⊗ Ai = Hi ⊗ F and

(Hi ⊗ ψ(k) ≤ Kψ ⊗ ψ(k)) ∧ (Kφ ⊗ φ(k) ≤ Hi ⊗ φ(k)).

The second condition means that P̃(In, φ(k), ψ(k)) is Hi-
positively invariant, where i ∈ {1, · · · , m} and k ∈ Z

+.
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Fig. 1. A small public transportation network [7].

C. Example: A Public Transportation Network

In this section, we model a public transportation network
[7] by an uncertain discrete event system over the max-plus
algebra. We will use the main results in this paper to check
if a polyhedral set is positively robust invariant.

In a small public transportation network [7], there are train
services from P via Q to S and back and from Q to R and
back. Trains from P to S have to stop at Q for the connection
to trains with destination R and vice versa. If xi(·) denotes
the departure time of the first train in the direction i, i =
1, · · · , 4. The train which is about to leave in the direction
i for the k-th time cannot leave if the train has not arrived
yet. This condition can be represented as

xi(k) ≥ aij ⊗ xj(k − 1), (13)

where xi(k) denotes the k-th departure time in direction i
and aij is the traveling time from direction j to i, including
the loading time of passengers. Another condition is that the
train needs to wait the possible connecting trains, i.e.

xi(k) ≥ ail ⊗ xl(k − 1), (14)

where l is the possible connecting direction and a il denotes
the traveling time from direction l to i, also including the
loading time of passengers. For the simple transportation
network in Fig. 1, the system equation is described as

x(k) = Ax(k − 1), where A =




ǫ a2 ǫ ǫ
ǫ ǫ a3 a4

a1 ǫ a3 a4

a1 ǫ a3 ǫ


 ,

where ai denotes the traveling time on direction i ∈
{1, · · · , 4}. If the traveling time ai is deterministic, then
the linear system is a deterministic discrete event system.
In reality, however, the traveling time usually varies due to
traffic and other emergency situations. For instance, assume
a1 ∈ [10, 20] minutes, a2 ∈ [15, 25] minutes, a3 ∈ [10, 20]
minutes and a4 ∈ [15, 25] minutes, then the system becomes

an uncertain linear system x(k) = Ãx(k − 1), where Ã ∈
co{A1, A2} and

A1 =




ǫ 15 ǫ ǫ
ǫ ǫ 10 15
10 ǫ 10 15
10 ǫ 10 ǫ




and

A2 =




ǫ 25 ǫ ǫ
ǫ ǫ 20 25
20 ǫ 20 25
20 ǫ 20 ǫ


 .

We are considering a polyhedral set

P̃(I4, φ(k), ψ(k)) = {x ∈ R
4|φ(k) ≤ x(k) ≤ ψ(k)},

where Kφ = 13.3333 and Kψ = 23.3333 and

φ(k) = Kφ ⊗ φ(k − 1) and ψ(k) = Kψ ⊗ ψ(k − 1).

Firstly, we solve the following equations for φ∗ ≤ ψ∗,

Ai ⊗ ψ∗ = Kψ ⊗ ψ∗,

Ai ⊗ φ∗ = Kφ ⊗ φ∗,

for all possible Ai, i ∈ {1, 2}. Because Kφ and Kψ are
eigenvalues for A1 and A2, respectively, we obtain that

φ(0) = φ∗ = [30, 28.3333, 28.3333, 26.6667]T and

ψ(0) = ψ∗ = [50, 48.3333, 48.3333, 46.6667]T ,

which are the eigenvectors for both Ai matrices, for i = 1, 2.
Using Proposition 5, we can verify that

(Ai ⊗ ψ(k) ≤ Kψ ⊗ ψ(k)) ∧ (Kφ ⊗ φ(k) ≤ Ai ⊗ φ(k)),

for all i ∈ {1, · · · , m} and k ∈ Z
+. Therefore, the given

polyhedral set is positively robust invariant with respect to
the public transportation network for arbitrary choice of ma-

trix Ã ∈ co{A1, A2}. We can understand φ(k) and ψ(k) as
time-variant time tables for trains in this station. Therefore,
we have a feasible method to establish a reasonable time
table for the traffic system.

For instance, we pick Ã = λ1⊗A1⊕λ2⊗A2 and λ1 = 0
and λ2 = −5. After computing the system trajectories, the

four states, xi(k), are in the set, P̃(I4, φ(k), ψ(k)), as shown
in Fig. 2. These polyhedral sets can be refined to find optimal
time tables.
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Fig. 2. The traveling time in direction 1, 2, 3, 4.

V. CONCLUSION

This paper studies a class of discrete event systems over
the max-plus algebra, where system matrices are unknown
but are convex combinations of known matrices. Various
computational methods for different robust invariant sets are
presented for such systems. These invariant sets are impor-
tant in many control synthesis problems for discrete event
systems, such as the disturbance decoupling problem, the
block decoupling problem, and the model matching problem.
Future research will explore different types of controlled
invariant sets besides polyhedral sets, such as ellipsoidal
invariant sets, in controller synthesis problems of discrete
event systems.
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VI. APPENDIX: PROOFS

Proof of Lemma 1: “=⇒”, necessity. If V is (Ã, B)-
invariant, then, for all x ∈ V , Ãx ⊕ Bu ∈ V , that is,⊕m

i=1
λiAix ⊕ Bu is also in V∗. So for any special Ai,

AiV ⊕ Bu ⊂ V for all i ∈ {1, 2, · · · , m}. Therefore, V is
(Ai, B) -invariant for any i.

“⇐=”, sufficiency. If V is (Ai, B)-invariant for any i =
1, 2, · · · , m, then, for all x ∈ V , there exists a ui ∈ U , such
that Aix⊕Bui ∈ V . Because the sub-semimodule V is closed
under the addition operation,

⊕m

i=1
λiAix⊕B

⊕m

i=1
λiui =

Ãx ⊕ Bu ∈ V , where u =
⊕m

i=1
λiui. Therefore, V is

(Ã, B)-invariant. ♦
Proof of Lemma 2: “⊆”: For any x ∈ Ã−1(V ⊖B), there

exists a u ∈ U such that Ãx⊕Bu =
⊕m

i=1
λiAix⊕Bu ∈ V .

Therefore, Aix ⊕ Bu ∈ V for a special i ∈ {1, · · · , m}.
Therefore, x ∈

⋂m

i=1
A−1

i (V ⊖ B).
“⊇”: For any x ∈

⋂m

i=1
A−1

i (V⊖B), there exists a ui ∈ U ,
such that Aix⊕Bui ∈ V for all i = {1, · · · , m}. Therefore,⊕m

i=1
λiAix ⊕ B

⊕m

i=1
λiui = Ãx ⊕ Bu ∈ V , where u =⊕m

i=1
λiui. Hence, x ∈ Ã−1(V ⊖ B). ♦

Proof of Lemma 4: “⇐=”: If (Ai ⊕BFi)Q = QGi, then

m⊕

i=1

λi(Ai ⊕ BFi)Q =

m⊕

i=1

λiQGi

(

m⊕

i=1

λiAi ⊕ B

m⊕

i=1

λiFi)Q = Q

m⊕

i=1

λiGi

(Ã ⊕ BF̃ )Q = QG̃,

where F̃ ∈ co{F1, · · · , Fm} and G̃ ∈ co{G1, · · · , Gm}.

Then, V is (Ã ⊕ BF )-invariant. “=⇒”: V is (Ã ⊕ BF )-
invariant, then

(Ã ⊕ BF )Q = QG, ∀Ã ∈ co{A1, · · · , Am}.

Therefore, (Ai ⊕BFi)Q = QGi, for all i ∈ {1, · · · , m}. ♦
Proof of Proposition 2: “=⇒”. If P(In, φ, ψ) is positively

invariant under the dynamics of the system (6), then for any

x ∈ Rn such that φ ≤ x ≤ ψ, we have φ ≤ Ã ⊗ x ≤ ψ,

for any possible choice of Ã ∈ co{A1, · · · , Am}. Therefore,
we have φ ≤ Ai ⊗ x ≤ ψ, for any i ∈ {1, · · · , m}. Using
Lemma 5, we have (Ai ⊗ ψ ≤ ψ) ∧ (φ ≤ Ai ⊗ φ) for all
i ∈ {1, · · · , m}.

“⇐=”. Because the equation (9) holds for all i ∈
{1, · · · , m}, we have

m⊕

i=1

λi ⊗ Ai ⊗ ψ ≤

m⊕

i=1

λi ⊗ ψ ∧

m⊕

i=1

λi ⊗ φ ≤

m⊕

i=1

λi ⊗ Ai ⊗ φ.

for all i ∈ {1, · · · , m}. Since ⊕m
i=1λi = 1R and ⊕m

i=1λi ⊗
Ai = Ã, the above condition becomes

(Ã ⊗ ψ ≤ ψ) ∧ (φ ≤ Ã ⊗ φ).

Using Lemma 5, P(In, φ, ψ) is positively robust invariant
for the discrete event system (6). ♦

Proof of Proposition 3: We need to prove for any φ ≤
F ⊗ x ≤ ψ, we have φ ≤ F ⊗ A ⊗ x ≤ ψ. Since F ⊗ A =
H ⊗ F , we only need to show that φ ≤ H ⊗ F ⊗ x ≤ ψ.

Since P(In, φ, ψ) is H-positively invariant, for all x ∈ Rn,
φ ≤ x ≤ ψ, we have φ ≤ H ⊗ x ≤ ψ. Therefore, F ⊗ x ∈
P(In, φ, ψ). We have φ ≤ H⊗F ⊗x ≤ ψ. Thus, P(F, φ, ψ)
is positively invariant under the dynamics of the system (7).
♦

Proof of Proposition 4: We need to prove for any φ ≤
F ⊗ x ≤ ψ, we have φ ≤ F ⊗ Ã⊗ x ≤ ψ for arbitrary Ã ∈
co{A1, · · · , Am}. Since F ⊗ Ai = Hi ⊗ F and P(In, φ, ψ)
is Hi-positively invariant, for all x ∈ Rn, φ ≤ x ≤ ψ, we
have φ ≤ Hi ⊗ x ≤ ψ. Therefore, F ⊗ x ∈ P(In, φ, ψ). We
have

φ ≤ Hi ⊗ F ⊗ x = F ⊗ Ai ⊗ x ≤ ψ,

for all i ∈ {1, · · · , m}. Adding them together to obtain

φ =

m⊕

i=1

λiφ ≤

m⊕

i=1

(λi ⊗ F ⊗ Ai ⊗ x) ≤

m⊕

i=1

λiψ = ψ,

where
⊕m

i=1
(λi ⊗F ⊗Ai⊗x) = F ⊗ (

⊕m

i=1
λi⊗Ai)⊗x =

F ⊗ Ã ⊗ x. Therefore, we have φ ≤ F ⊗ Ã ⊗ x ≤ ψ for
all φ ≤ F ⊗ x ≤ ψ. Thus, P(F, φ, ψ) is positively invariant
under the dynamics of the system (7). ♦
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