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Abstract— This paper addresses the problem of online

surveillance of undersea targets moving over a deployed sensor

field. A real-time algorithm has been formulated to estimate

the detection threshold based on the ensemble of sensor time

series data collected from the track of a moving target. The

probabilistic-state-machine-based algorithm is optimal in the

sense of weighted linear least squares. The algorithm has been

tested with sensor data from several tracks on a simulation test

bed.

1. INTRODUCTION

Distributed fields of passive sensors are often deployed

to cover large areas for information gathering at moderate

cost [1][2][3]. Such systems are becoming prevalent for

surveillance, especially for detection of undersea targets,

which allow many inexpensive sensors to be deployed in

situations that would otherwise require a very large and

expensive platform. Algorithms for sensor placement are

scalable to the application needs and are largely fault-

tolerant [4]; such applications include, but are not limited

to, military surveillance, environmental and atmospheric

monitoring, biological species tracking, and condition-based

diagnostics and prognostics. This paper focuses on target

tracking and surveillance in undersea military applications.

The task of tracking covert underwater targets includes

deployment of a sensor field in the surveillance region of

interest. In this paper, it is assumed that statistical distri-

butions of expected target trajectories and the environment

are known a priori. Given the information on placement of
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sensors, the objective here is to estimate track-dependent de-

tection thresholds in real time by making trade-offs between

maximization of the detection probability and minimization

of the false-alarm probability.

Continuous-domain techniques are available to effectively

solve the above multi-objective optimization problem offline

from the corresponding Pareto set [5]. The operating point

on the Pareto set is chosen from physical requirements or

to reflect the user’s intents, for example, in a Command &

Control (C2) environment. Generation of the Pareto set is

usually computationally expensive and any perturbation of

the statistical distribution of the target trajectory may require

a complete re-evaluation of the optimization parameters

in the above scheme [6]. Therefore, a need exists for a

computationally efficient algorithm that will yield estimated

results with comparable accuracy and precision. Such algo-

rithms must be validated and calibrated by other established

optimization tools [7].

In the present context of establishing the feasibility of

probabilistic-state-machine-based tools for estimation of de-

tection thresholds, the data sets have been generated from

a simulation test bed at the laboratories of Naval Underseas

Warfare Center (NUWC) as outputs from a given sensor field

that is optimized to track a moving target. The detection

threshold in the data set is optimal for only a given track.

As the track is perturbed from the nominal condition, the

performance degrades, i.e., the value of the cost functional

deviates from the optimal point.

This paper investigates the feasibility of deriving a

probabilistic-state-machine-based algorithm to estimate de-

tection thresholds for tracks by using the simulation data. It

is organized in four sections including the present section.

Section 2 formulates a probabilistic-state-machine-based al-

gorithm for real-time estimation of detection thresholds. Sec-
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Fig. 1. Sensor placement and a target path

tion 3 presents the simulation results to establish feasibility

of the proposed method for estimation of detection threshold

as needed for tracking of undersea targets. The paper is

concluded in Section 4 along with recommendations for

future research.

2. DETECTION THRESHOLD ESTIMATION

This section formulates the problem of developing a

probabilistic-state-machine-based procedure for estimation

of detection thresholds for off-nominal tracks as an alter-

native to the conventional optimization methods.

A. The Track-before-detect Strategy

It is assumed that passive sonar sensors are deployed over

a marine region, where the location of each sensor is known.

As target travels across the region, each sensor picks up

a noise-contaminated signal. A sensor that is closer to the

target receives a signal of larger magnitude as compared to

a sensor that is located farther away from the target. In this

scenario, the transmission channel is assumed to be have

an inverse square law relationship (with respect to distance)

and the signal is contaminated with multiplicative Gaussian

noise.

Fig. 1 illustrates a conceptual operation in the sensor field

and depicts the track followed by the target.

A common practice is to detect targets by setting a

detection threshold D. In this setting, a sensor is said to

have detected a target if it receives a signal of magnitude

greater than D. Naturally, a lower value of D would result in

a higher rate of false alarms due to the ambient/background

noise, while a higher value of D would increase the prob-

ability of missed detection, i.e., diminish the probability of

successful search. It is well known that a large number of

distributed low-capability sensors would increase occurrence

of false alarms. The track-before-detect strategy tends to

reduce the probability of false alarms by only considering

those false alarms that occur in sequences that are spatially

and kinematically consistent with the motion of an expected

target.

Wettergren [4] has presented an application of the track-

before-detect strategy in undersea sensor networks, where

the performance has been analyzed in terms of probability

of successful search and probability of false alarms. In order

to search the area in a cost-effective manner, each sensor in

the sensor field is equipped with an autonomous detection

capability, where sensor attempts to independently detect

the target. The track-before-detect strategy involves fusion

of multi-sensor information such that the information from

multiple sensors is combined to make up for the reduced

coverage provided by the individual sensors. This process

requires agreement of multiple sensor decisions for reliable

target detection. the rationale is that a reliable decision on

target decision cannot be made until a consistent estimate

of the target track is obtained from different sensors that

represent different directions. In addition to reduction of the

probability of false alarms, having consistent decisions from

multiple sensors provides a natural mechanism of assimi-

lating tracking information concurrently with the detection

reports.

B. Formulation of the Optimization Problem

A sensor detects a target if the measured signal crosses

a threshold D. In accordance with the track-before-detect

paradigm, a target is said to be detected if a selected number

of sensors detect the target. In addition, all of these detections

must be carried out within the time interval of the target

being in the search region.

The target is assumed to emit sonar energy at a level of

100dB and the ambient/background noise is assumed to be

at a level of 70dB. The ocean water acts as an attenuator that

is assumed to follow the inverse square law with respect to

the distance from the source and the (multiplicative) noise

gain is assumed to have 2db variance.

Identification of an optimal value of D involves solution

of a bi-objective optimization problem. The two (conflicting)

objectives are: (i) to maximize the probability of successful

search (PSS), and (ii) to minimize the probability of false

search (PFS). For a given target track, PSS as a function

of D is evaluated by a suitable Monte Carlo simulation. In

contrast, PFS is analytically evaluated [4]. Both PSS(D) and

PFS(D) are monotonically decreasing functions of D.
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It has been observed that the non-dominated points in the

plot of log(PSS) versus log(PFS) form a convex curve.

Thus, a single objective function J is constructed by a

weighted linear combination of the objective functions PSS

and PFS .

J(α, D) = α log(PSS(D)) − (1 − α) log(PFS(D)) (1)

where α is a scalar weight (0 < α < 1).

For a given weight α, the optimal detection threshold Dopt

is obtained as:

Dopt = arg max
D

J(α, D) (2)

It follows from the above expression that, for a given α,

Dopt is dependent on the target track. However, in target

detection applications, the target track is not known and the

problem at hand is to identify Dopt in real time from the

ensemble of data generated from the sensor field for the track

that the target is following. A naive solution to this problem

is to select an a priori value D̄ of the detection threshold

that could be set as the average of detection thresholds for

all possible individual target tracks. This paper presents a

method for identification of track-dependent detection thresh-

old, which makes use of the language measure concept [8] in

the setting of a probabilistic finite state automata (PFSA).

C. Description of the Operation Scenario

The time series data collected from k sensors are parti-

tioned for conversion into a symbol sequence [9][10], where

the number of symbols in the alphabet is a positive integer

n. Then, based on the Markov assumption, a probabilistic

finite state automaton (PFSA) is constructed from the

symbol sequence [11]. The PFSA is characterized by an

(n × n) state transition matrix Π that is an irreducible

stochastic matrix [12] by construction. The algorithm used

for construction of the PFSA could be non-unique because

it relies on the symbol sequence that is obtained by course

graining of the time series data, where symbolization may

not be achieved through a generating partition [11].

It is hypothesized [13] that there exists a state weight vec-

tor χ ∈ R
n such that the renormalized language measure [8]

of the PFSA is given as

ν = lim
θ→0+

θ
(
I −

(
1 − θ

)
Π

)
−1

χ (3)

Given that the state transition probability matrix Π is

irreducible, an alternative form [8] of Eq. (3) is as follows.

ν =
(
χ

Tp
)

1(n×1) (4)

where 1(n×1) , [1 1 · · · 1]T and the state probability vector

p ∈ R
n is the (unity-sum-normalized) right eigenvector of

the transposed state transition matrix Π
T corresponding to

its unique unity eigenvalue. Thus, the renormalized measure

vector ν can be expressed in terms of a scalar ν which is the

inner product of the state probability vector p and the state

weight vector χ. In other words, ν is the (scalar) expected

value of the state weight obtained as:

ν = χ
Tp (5)

Now it is proposed that the state weight χ be assigned such

that the residue (Di−D̄) of the detection threshold for the ith

track, where D̄ is the expected/average value of the detection

threshold for all tracks, is identically equal to the parameter

νi of the renormalized measure of the corresponding track.

Then, an estimate D̂i of the detection threshold Di for the

ith track is obtained from Eq. (5) as:

Di − D̄ = νi ⇒ D̂i = χ̂
T
pi + D̄ (6)

The next task is to generate an estimate χ̂ of the (track-

invariant) state weight vector χ from an ensemble of track

data sets. The sets of simulated track data are divided into

two mutually disjoint subsets - a training set and a test set.

The detection threshold for the tracks in the training set are

known a priori.

An (ℓ × n) matrix H is constructed from the training set

as

H =
[
p1 p2 · · · pℓ

]T
(7)

where the (n × 1) state probability vectors pi ∈ R
n, i ∈

{1, 2, 3, · · · , ℓ} are respectively obtained from the ℓ tracks

in the training set, where ℓ > n. Since the matrix H has the

full column rank n, the (n×n) matrix
(
H

T
H

)
is invertible.

Similarly, a threshold residue vector D consisting of the

known values of the detection threshold for each of the tracks

in the training set is obtained as:

D =
[
D1 − D̄ D2 − D̄ · · · Dℓ − D̄

]T
(8)

where the positive scalars Di, i ∈ {1, 2, 3, ..., ℓ}, are the

known threshold residues for the respective tracks in the

training set and D̄ is the expected/average value of detection

threshold. Accordingly, a measurement model of the (ℓ× 1)

threshold residue vector D is formulated as:

D = Hχ + ε (9)
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where the measurement error vector ε is assumed to be ad-

ditive zero-mean and the (positive definite) error covariance

matrix is R.

An estimate χ̂ of the track-invariant (n × 1) vector χ is

obtained by the (weighted) linear least square method based

on the information obtained from the training set. This task

is performed by orthogonal projection of the (ℓ×1) threshold

residue vector D onto the column space of H such that

χ̂ =
[
H

TR−1
H

]−1
H

TR−1D (10)

Note that χ̂ is an unbiased estimate of χ and if the measure-

ment noise ε in Eq. (9) is jointly Gaussian, then χ̂ is also

the minimum-variance estimate of χ.

If the information on the measurement noise covariance

matrix is not available, it is logical to assume (e.g., for

identical sensors) that R ∼ Iℓ×ℓ. In that case, Eq. (10)

reduces to

χ̂ =
[
H

T
H

]−1
H

TD (11)

Following Eq. (11), a probabilistic-state-machine-based

estimate of the threshold residue vector D is obtained in

terms of an estimate of the track-invariant state weight vector

χ as

D̂ = H χ̂ ⇔ D̂i = χ̂
T
pi + D̄, i ∈ {1, 2, · · · , ℓ} (12)

Remark 2.1: The estimated state weight vector χ̂ is a

linear functional in the space R
n because χ̂ : R

n → R is a

linear map, as seen in Eq. (6). If the scalar D is replaced by

a vector parameter of dimension m ≤ n, then χ̂ will become

a linear transformation from R
n onto R

m. In a more general

case, a nonlinear transformation should be sought to address

this identification problem. That is, it might be necessary to

find a homeomorphism between the range space of χ̂ and

the space of the parameter vector that replaces the scalar D.

Remark 2.2: The algorithm in Eq. (12) for estimation

of detection threshold is sufficiently simple for real-time

execution on (limited memory) sensor nodes. In the present

form, the algorithm is formulated based on the principle of

linear least squares and is data driven in the absence of

additional pertinent information such as a model of the un-

derlying physical process and statistics of the environmental

noise. Should this information be available, it is envisioned

that combined model-based and data-driven algorithms for

(possibly nonlinear) estimation of the state weight vector χ

could be constructed for execution in real time on (limited

memory) sensor nodes in a sensor network.

3. RESULTS AND DISCUSSION

This section presents the results generated from the simu-

lated data from a typical undersea sensor field. The ensemble

of time series data is obtained from a set of 20 sensors in the

given sensor field for each of 21 different tracks. The optimal

detection threshold for each track corresponds to the value of

the cost weight α = 0.95 (see Eq. (1)). The objective here is

to demonstrate efficacy of probabilistic-state-machine-based

estimation of the detection threshold for individual tracks.

Data from 10 tracks out of the 21 tracks have been used to

for the purpose of learning and the parameter vector χ is

estimated corresponding to the cost weight α = 0.95. The

performance is then tested on the remaining 11 tracks.
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Fig. 3. Error in Estimated Detection Threshold

Figure 2 shows both the computed values of D and

the respective estimated values D̂. These results have been

generated by partitioning the signal space by a symbol
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Fig. 4. Depiction of information flow

alphabet Σ with cardinality |Σ| = 4 and then constructing a

PFSA with (n = 4) states [11]. Hence, the χ vector lies

in R
4. Figure 3 depicts the estimation error δi , D̂i − Di

in the ith track for i = {1, 2, · · · . 21}. The mean of the

estimation error was evaluated to be mδ ∼ 10−6 dB, which

shows that the estimate is unbaised. The standard deviation

of the estimation error was found to be σδ = 0.59 dB.

A. Multi-level Optimization Using Language Measure

In a tactical operation, such as the one described in this

paper, there are two types of information inputs. One is

the input given by a commanding/supervising officer, and

the other is the information derived from the online track

data collected from the sensor field. In this case, the input

given by the commanding officer is the cost weight α

(see Eq. (1)). The language-measure-theoretic approach [8]

allows separation of the two inputs; the value of χ vector

is dependent on α while the state probability vector p is a

function of the target track i.

D̂i(α) = χT (α)pi (13)

Hierarchical modeling of the decision space enables exten-

sion of problem to a multi-level optimization scheme. The

Pareto decision point determines an optimal characteristic

vector by maximization of the language measure of the

linguistic model at each level with respect to the assigned

cost vector on the corresponding states of the linguistic

model (e.g., a finite-state automaton). The language-measure-

theoretic syntactic modifications are optimized via a numeri-

cally efficient combinatorial scheme leading to an optimized

decision hierarchy. The computational cost of language-

measure-theoretic optimization is estimated to be relatively

small implying that optimality will be maintained by re-

optimization in real time or near-real time as the comman-

der’s cost objectives vary and the mission states evolve. Fig-

ure 4 illustrates the concept of hierarchical learning and real-

time execution for typical track-before detection of undersea

targets as explained in the following two paragraphs.

The left hand plate in Fig. 4 shows the learning scheme

which is executed in real time on a slow scale with a set

of exogenous inputs. These inputs include adjustments of

weights in the multi-objective cost functional for a given

sensor field). The generated information on sensor placement

is passed to the sensor field in the top-down direction

to update the system parameters (e.g., reference values of

detection thresholds for individual tracks). At the lower level,

the time series data from the sensor field for each track are

used for generation of a symbol sequence [11] that is trans-

mitted bottom-up for construction of a probabilistic finite

state automaton (PFSA). The quasi-static state probability

vectors of the PFSA serve as patterns of individual tracks.

At the upper level, a combination of the track patterns and

system parameters yield a single cost vector for all tracks.

Thus, the output of the learning scheme is a cost vector that

is a function of the exogenous inputs for a given sensor field.

The right hand plate in Fig. 4 shows the target tracking

scheme which is executed in real time on a fast scale based

on exogenous inputs. These inputs include the cost vector
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that was obtained in the learning scheme for a specified

weight in the multi-objective cost functional for a given

sensor field. As a target follows a track, time series data

from the sensor field are collected for online generation of

a symbol sequence that is transmitted bottom-up to compute

the state probability vector (i.e., a track pattern) from the

PFSA that was constructed in the learning scheme. At

the upper level, A scalar function (e.g., an inner product)

of the online track pattern vector and the cost vector (that

was computed in the learning scheme) yields the estimated

system parameters (e.g., detection threshold) for the track

that is just completed by the target. Thus, the output of the

target tracking scheme is estimated system parameters that

are functions of the exogenous inputs (i.e., the cost vector)

and the online tracking signals from the sensor field.

4. CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH

This paper addresses online surveillance of undersea tar-

gets as a real-time track-before-detect problem. As the target

moves across the sensor field, each sensor collects time

series data; the sensors that are closer to the path of the

target capture stronger signals. A track-before-detect algo-

rithm has been formulated to estimate the track-dependent

detection threshold based on the ensemble of time series

data from the sensor field. The objective here is to obtain a

suboptimal trade-off between the probabilities of false alarm

and successful search based on a specific cost functional.

However, the probabilistic-state-machine-based algorithm is

optimal in the sense of weighted linear least squares. The

algorithm has been tested with sensor data from several

tracks on a simulated sensor field. The results suggest that

the probabilistic-state-machine-based approach is feasible for

real-time estimation of detection threshold as needed for

tracking of undersea targets. However, further investigation

needs to be conducted with rich experimental data to firmly

validate efficacy of the proposed track-before-detect algo-

rithm for online surveillance of undersea targets.

Future research would involve extension of the

probabilistic-state-machine-based approach to the

challenging problem of optimal sensor placement [14]

for online tracking of undersea targets. Current optimization

algorithms, such as GANBI [7], are computationally

expensive in terms of both execution time and memory

requirements. It is necessary to construct a mathematically

rigorous and computationally inexpensive (i.e., fast execution

with low memory requirements) formal-language-theoretic

algorithm to support the optimization objectives similar

to what the existing tools provide. Once calibrated with

results generated from existing optimization algorithms, it

is expected that the formal-language-theoretic algorithm

would provide solutions for sensor placement in real tome

for modest perturbations in the nominal target statistics. It

is envisioned that this algorithm will be locally executable

on individual nodes of a sensor network in the undersea

environment.
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