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Abstract— In this paper we consider a network that is
trying to reach consensus over the occurrence of an event
while communicating over Additive White Gaussian Noise
(AWGN) channels. We characterize the impact of different link
qualities and network connectivity on consensus performance
by analyzing both the asymptotic and transient behaviors. More
specifically, we derive a tight approximation for the second
largest eigenvalue of the probability transition matrix. We
furthermore characterize the dynamics of each individual node.

keywords– binary Consensus, link qualities, network con-

nectivity

I. INTRODUCTION

Cooperative decision-making and control has received

considerable attention in recent years. Such problems arise

in many different areas such as environmental monitoring,

surveillance and security, smart homes and factories, target

tracking and military systems. Consider a scenario where

a network of agents wants to perform a task jointly. Each

agent has limited sensing capabilities and has to rely on

the group for improving its estimation/detection quality.

Consensus problems arise when the agents need to reach an

agreement on the value of a parameter. These problems have

been categorized into two groups: Estimation Consensus

and Detection Consensus [1]. Estimation consensus refers

to the problems where the parameter of interest can take

values over an infinite set or an unknown finite set. These

problems received considerable attention over the past few

years. Convergence and equilibrium state of continuous-time

and discrete-time consensus protocols have been studied

for both time-invariant and time-varying topologies [2]-[5].

Furthermore, consensus protocols have been applied to for-

mation problems [6]-[9] as well as distributed filtering [10].

The uncertainty in the exchanged information was considered

and accounted for in [11] where conditions for achieving

consensus were derived. [12], [13] provide a comprehensive

survey of the literature on such consensus problems.

Detection Consensus, on the other hand, refers to the

problems in which the parameter of interest takes values

from a finite known set. Binary consensus [1] then refers to

a subset of detection consensus problems where the network

is trying to reach an agreement over a parameter that can
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only have two values. For instance, networked detection

of fire falls into this category. While estimation consensus

problems have received considerable attention, detection

consensus problems have mainly remained unexplored. [14]

considered and characterized phase transition of a binary

consensus problem in the presence of a uniformly distributed

communication noise. Since the probability density function

of this noise is bounded, there exists a transition point

beyond which consensus will be reached in this case [14].

In most consensus applications, the agents will communicate

their status wirelessly. Therefore, the received data will be

corrupted by the receiver noise, which is best modeled

as an additive Gaussian noise [15]. Therefore, it becomes

important to analyze the performance of consensus problems

in the presence of Gaussian communication noise. To address

this, binary consensus with Gaussian communication noise

was considered in [1]. Since the noise is not bounded in this

case, there is no transition point beyond which consensus

is guaranteed. Instead, a probabilistic approach was utilized

to characterize the behavior of the network. It was shown

that the steady-state behavior of such systems is undesirable,

independent of the amount of communication noise variance,

as the network loses the memory of the initial state. The

network, however, may still be in consensus for a long period

of time. To characterize this, an expression for the second

largest eigenvalue of the underlying dynamical system was

then derived. In [16], [17], results of [1] are extended to the

case where knowledge of link qualities is available in the

receiver as well as to fading environments.

The analysis of [1] was carried out under the assumption

that the graph is fully connected, with all the link noises

having the same variances. In this paper, we extend the

analysis of [1] to embrace the impact of heterogeneous

link qualities and graph connectivity. More specifically, we

derive an expression for the second largest eigenvalue of the

probability transition matrix when links have different noise

variances. We then explore the impact of graph connectivity

on the performance. We make the assumption that all the

nodes have the same degree (regular graphs) in order to

derive an expression for the second largest eigenvalue. We

finally characterize the behavior of each individual node.

We show that the asymptotic voting pattern of each node

becomes purely random. The paper is organized as follows.
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Section II introduces the problem and describes our system

model. Section III explores the impact of different link qual-

ities on the performance. Section IV characterizes the impact

of network connectivity on consensus. This is followed by

the characterization of the behavior of an individual node in

Section V and conclusions in Section VI.

II. SYSTEM MODEL

Consider M agents that want to reach consensus on the

occurrence of an event. Each agent makes a decision on the

occurrence of the event based on its one-time local sensor

measurement. Let bi(0) ∈ {0, 1} represent the initial decision

of the ith agent, at time step k = 0, based on its local

measurement, where bi = 1 indicates that the ith agent votes

that the event occurred whereas bi = 0 denotes otherwise.

Each agent sends its vote to the rest of the group, using

only one bit of information, and revises its vote based on the

received information. This process will go on for a while.

Adopting the same language of [1], we say that accurate

consensus is achieved if each agent reaches the majority of

the initial votes. For instance, if 70% of the agents start by

voting 1, it is desirable that all the agents vote one after

communicating a number of times.

Each transmission gets corrupted by the receiver noise,

which is best modeled as an Additive White Gaussian Noise

(AWGN channel) [15]. When a node receives the decisions of

other nodes, the receptions can happen in different frequen-

cies or time slots [18]. Then each reception will experience

a different (uncorrelated) sample of the receiver thermal

noise. Let nj,i(k) represent the noise at kth time step in the

transmission of the information from the jth node to the ith

one. nj,i(k) is a zero-mean Gaussian random variable with

the variance of σ2
j,i(k). Let b̂j,i(k) represent the reception

of the ith agent from the transmission of the jth one at

kth time step. We will have b̂j,i(k) = bj(k) + nj,i(k) for

j ∈ Ψi(k), where Ψi(k) represents the set of those agents

that can communicate to the ith one (including itself) at time

step k. Let Ni(k) represent the size of Ψi(k). Each agent

will then update its vote based on the received information

as follows:

bi(k + 1) = Dec




1

Ni(k)

∑

j∈Ψi(k)

b̂j,i(k)





= Dec




1

Ni(k)

∑

j∈Ψi(k)

bj(k) +
1

Ni(k)

∑

j∈Ψi(k),j 6=i

nj,i(k)



 ,

(1)

where Dec(.) represents a decision function for binary 0-1

detection: Dec(x) =

{
1 x ≥ .5
0 x < .5

.

III. IMPACT OF HETEROGENEOUS LINK QUALITIES

In this section we explore the impact of different link qual-

ities on binary networked consensus. In order to focus on the

impact of link qualities, we consider a fully connected time-

invariant graph in this section, and relax these assumptions

in the subsequent parts. We will then have Ni(k) = M and

bi(k + 1) = Dec




1

M

M∑

j=1

b̂j,i(k)





= Dec




S(k)

M
+

1

M

M∑

j=1,j 6=i

nj,i(k)



 , (2)

where S(k) =
∑M

i=1 bi(k) is the sufficient information to

represent the state of the network in this case. Without loss of

generality and for the purpose of mathematical derivations,

we take M to be even. Let κj,i represent the probability

that the jth agent votes one given that the current state is i

(S(k) = i). We will have,

κj,i = Prob(bj(k + 1) = 1|S(k) = i)

= Prob(
i

M
+ nj(k) ≥

1

2
)

= Q(
1
2 − i

M

σj
), (3)

where nj =
∑M

z=1,z 6=j
nz,j

M , σ2
j =

∑ M
z=1,z 6=j

σ2
z,j

M2 and Q(η) =

1√
2π

∫ ∞
η e−u2/2du. Let Π(k) =






Prob(S(k) = 0)
...

Prob(S(k) = M)




. We

will have

Π(k + 1) = PT Π(k), (4)

where Pi,j = Prob(S(k + 1) = j|S(k) = i). Matrix P is

row stochastic and positive (assuming σj 6= 0, ∀j). Let λ0,

λ1, . . . , λM represent the eigenvalues of P , where |λ0| ≥
|λ1| ≥ . . . ≥ |λM |. Then λ0 = 1, |λi| < 1 for 1 ≤ i ≤ M

and limk→∞(PT )k → xyT where x = PT x, y = Py, and

xT y = 1 [1], [19]. Furthermore, it can be easily confirmed

that κj,M−i = 1 − κj,i for 0 ≤ i ≤ M and 1 ≤ j ≤ M .

In [1], binary consensus over communication links with

the same noise variances was considered. It was shown that

the asymptotic behavior of the network was undesirable as

it would lose its memory of the initial state. To understand

the transient behavior, an expression for the second largest

eigenvalue was derived. In this part, we will extend that

analysis to derive a tight approximation for the second largest

eigenvalue when links have different noise variances.

Lemma 1: We have PM−i,M−j = Pi,j .

Proof: We will have the following by noting that

different noise samples are independent:

PM−i,M−j =

1∑

i1=0

· · ·

1∑

iM=0
︸ ︷︷ ︸
∑

M
u=1 iu=M−j

Prob(b1(k + 1) = i1, · · · , bM (k + 1) = iM |S(k) = M − i)

=
1∑

i1=0

· · ·
1∑

iM=0
︸ ︷︷ ︸
∑

M
u=1 iu=M−j

M∏

u=1

Prob(bu(k + 1) = iu|S(k) = M − i).

(5)
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Since for iu ∈ {0, 1}

Prob(bu(k + 1) = iu|S(k) = M − i)

= Prob(bu(k + 1) = 1 − iu|S(k) = i),

(6)

we will have PM−i,M−j = Pi,j .

Lemma 2:
∑M

j=0 j × Pi,j =
∑M

j=1 κj,i for 0 ≤ i ≤ M .

Proof:

M∑

j=0

j × Pi,j = E
(
S(k + 1)|S(k) = i

)

=
M∑

j=1

E
(
bj(k + 1)|S(k) = i

)

=

M∑

j=1

κj,i. (7)

Lemma 3: We have
∑M

2 −1
j=0 (M

2 − j)(Pi,j − PM−i,j) =
M
2 −

∑M
j=1 κj,i.

Proof: The following can be shown using Lemma 1

and 2:

∑M
2 −1

j=0 (M
2 − j)(Pi,j − PM−i,j) =

∑M
2 −1

j=0 (M
2 − j)Pi,j +

∑M
j′= M

2 +1(
M
2 − j′)PM−i,M−j′ =

∑M
2 −1

j=0 (M
2 − j)Pi,j +

∑M
j′= M

2 +1(
M
2 − j′)Pi,j′ =

∑M
j=0 (M

2 − j)Pi,j = M
2 −

∑M
j=1 κj,i.

(8)

We next find a tight approximation for λ1.

Assumption 1: For large enough σjs, we will have the

following approximation based on the linearization of the Q

function: κj,i,approx = i
M + (1− 2i

M )κj,0 for 0 ≤ i ≤ M . See

[1] for more details.

Theorem 1: Let Papprox and λ1,approx represent the ap-

proximation of matrix P and its second largest eigenvalue

under Assumption 1 respectively. We will have λ1,approx =

1 − 2
M

∑M
j=1 Q( 1

2σj
).

Proof: Let PT be partitioned as follows: PT =



P1

P2

P3



, where P1 is the matrix with the first M
2 rows

of PT , P2 is the M
2 th row of PT and P3 is the matrix

with the last M
2 rows of PT (note that P is a square

matrix of dimension M + 1). Let λ represent an eigenvalue

of P with β =
[

β0 β1 . . . βM

]T
representing the

corresponding eigenvector:





P1

P2

P3



β = λβ. By utilizing the

special structure of matrix P denoted in Lemma 1, we have

P1β−DP3β = λ








β0 − βM

β1 − βM−1

...

βM
2 −1 − βM

2 +1








, where D represents

the backward identity matrix. This results in Σζ = λζ,

where ζ =
[

ζ0 ζ1 . . . ζM
2 −1

]T

with ζi = βi − βM−i

for 0 ≤ i ≤ M
2 − 1 and Σj,i = Pi,j − PM−i,j for

0 ≤ i, j ≤ M
2 −1. Let Σj,i,approx represent the approximation

of Σj,i. Let χ = ΣT
approx








M
2

M
2 − 1

...

1








, then the ith element

of χ will be as follows, using Lemma 3:

χ(i) =

M
2 −1
∑

j=0

(
M

2
− j)(Pi,j,approx − PM−i,j,approx)

=
M

2
−

∑

j

κj,i,approx = (
M

2
− i)(1 −

2

M

∑

j

Q(
1

2σj
)).

(9)

Then 1 − 2
M

∑

j Q( 1
2σj

) is an eigenvalue of Σapprox. Since

the eigenvalues of Σapprox are also eigenvalues of Papprox,

1 − 2
M

∑

j Q( 1
2σj

) is an eigenvalue of Papprox. Furthermore,

as σj → 0, this eigenvalue goes to one. Therefore it is the

second largest eigenvalue (see [1] for details).

The second largest eigenvalue plays a key role in determin-

ing how fast the network is approaching its steady-state. The

closer the second eigenvalue is to the unit circle, the network

will be in consensus for a longer period of time. This can

be seen from Theorem 1. The higher the noise variances are,

the smaller the second largest eigenvalue will be.

So far in this section we assumed that link variances are

time-invariant. For stochastic link variances, Eq. 4 can be

easily modified to reflect the impact of non-stationary link

qualities by changing P to P (k) and σj of Eq. 3 to σj(k).
For a general distribution of σj,i(k), Π(k) may not converge.

To see this, note that for Π(k) to converge, there should exist

a vector c such that cT P (k) = cT , for any P (k). However,

by checking the eigenvectors of P (k) for σj,i(k1) = 0 and

σj,i(k2) → ∞, for j 6= i, it can be easily confirmed that

no common c exists. For such stochastic cases, the average

dynamics should instead be considered, i.e. the average of

P (k), averaged over the distribution of link variances should

be considered (see [17] for related discussions).

IV. IMPACT OF GRAPH CONNECTIVITY

In this section we explore the impact of graphs that are

not fully connected on consensus behavior. More specifically,

we derive an expression for the second largest eigenvalue

assuming a time-invariant connected graph. Since different

nodes have different neighbor sets in this case, let Si(k)
represent the sum of the votes of the neighbors of the ith node

(including itself) at kth time step: Si(k) =
∑

j∈Ψi
bj(k). We

have the following for 0 ≤ r ≤ Ni,

κi,r,Ni
= Prob[bi(k + 1) = 1|Si(k) = r]

= Q(
1
2 − r

Ni

σi
), (10)
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where σ2
i =

∑

j∈Ψi,j 6=i σ2
j,i

N2
i

and Ni is the size of the neighbor

set of node i (including itself).

In this case, S(k) is no longer sufficient information to

represent the state of the network. Instead, we define D(k) =
[b1(k) b2(k) · · · bM (k)] as the state of the network at kth

time step. Given D(k), bi(k + 1)s become independent:

Prob
[
D(k + 1) = [z1 · · · zM ]|D(k)

]
=

M∏

i=1

Prob[bi(k + 1) = zi|D(k)], (11)

where zi ∈ {0, 1} for 1 ≤ i ≤ M . Let Ξ(k) represent a

2M × 1 vector that contains the probabilities of being in

different states:

Ξ(k) =















Prob
[
D(k) = [00 · · · 0]

]
→ S(k) = 0

Prob
[
D(k) = [00 · · · 1]

]

...

Prob
[
D(k) = [01 · · · 0]

]

Prob
[
D(k) = [10 · · · 0]

]







→ S(k) = 1

...

Prob [D(k) = [11 · · ·1]] → S(k) = M















,

(12)

where S(k) is the sum of all the votes as defined in Section

III. In Eq. 12, without loss of generality, possible states are

ordered such that S(k) increases. Within each group where

S(k) is constant, the states are ordered increasingly. Then,

Ξi(k) = Prob[D(k) = φi] for 0 ≤ i ≤ 2M − 1, where φi is

the ith state chosen from the ordered list. We will have,

Ξ(k + 1) = T T Ξ(k), (13)

where T = [Ti,j ] represents a 2M × 2M state transition

matrix. Next we derive an expression for the second largest

eigenvalue of the state transition matrix. For this derivation,

we assume that all the nodes have the same number of

neighbors, i.e. the graph is regular. We furthermore, assume

that all the links have the same noise variances. We are

currently working on relaxing these assumptions as discussed

in Section VI on further extensions.

Extended Assumption 1 (extended to not fully connected

graphs): For large enough σi, κi,r,Ni
of Eq. 10 can be tightly

approximated as follows:

κi,r,Ni
≈

r

Ni
+ (1 − 2

r

Ni
)κi,0,Ni

. (14)

Lemma 4: Let Tapprox represent the transition probability

matrix generated under extended Assumption 1. Let Ni = N

for 1 ≤ i ≤ M and σi,j = σ for i 6= j and 1 ≤ i, j ≤
M . Then, λ1,approx = 1 − 2Q( 1

2σN
) is the second largest

eigenvalue of Tapprox, where σ2
N = (N−1)σ2

N2 .

Proof: For any 0 ≤ i ≤ 2M − 1, we will have the

following:

M∑

j=0

jProb[S(k + 1) = j|D(k) = φi]

= E[S(k + 1)|D(k) = φi]

=

M∑

m=1

E[bm(k + 1)|D(k) = φi]

=

M∑

m=1

κm,Sm(k),N , (15)

where Sm(k) is a function of φi. By applying the approxi-

mation of Eq. 14 to κm,Sm(k),N , we will have

M∑

j=0

jProb[S(k + 1) = j|D(k) = φi]

=
M∑

m=1

Sm(k)

N
+

(
M − 2

M∑

m=1

Sm(k)

N

)
κm,0,N

= S(k) +
(
M − 2S(k)

)
κm,0,N , (16)

where κm,0,N = Q( 1
2σN

), for 1 ≤ m ≤ M , and S(k) =
sum(φi) with sum(.) representing the sum of the vector. The

last equality is written using
∑

m Sm(k) = NS(k).
Similarly, we have

M∑

j=0

M

2
Prob[S(k + 1) = j|D(k) = φi] =

M

2
. (17)

Therefore,

M∑

j=0

(
M

2
− j)Prob[S(k + 1) = j|D(k) = φi]

=
(M

2
− S(k)

)(
1 − 2Q(

1

2σN
)
)
. (18)

Let ζ represent a 2M × 1 vector, where ζd = M
2 − sum(φd)

and χ = Tapproxζ. Then we will have the following using

Eq. 18,

χ(d) =

M∑

j=0

(
M

2
− j)Prob[S(k + 1) = j|D(k) = φd]

=
(M

2
− sum(φd)

)
(1 − 2Q(

1

2σN
))

= ζd(1 − 2Q(
1

2σN
)). (19)

Therefore, 1 − 2Q( 1
2σN

) is one of the eigenvalues of

Tapprox. As σN goes to 0, λ1,approx goes to one. Therefore,

similar to Section III, it can be easily confirmed that this is

the second largest eigenvalue.

As discussed earlier, the second largest eigenvalue plays a

key role in the overall consensus behavior. The closer it is to

one, the better the performance will be as the network will

stay in consensus for a longer period of time with higher

probability. It can be seen from Lemma 4 that as N increases,

λ1 gets closer to one. This means that the denser the graph
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is, the better the performance will be, as expected. Fig. 1

shows the impact of graph density on the performance. The

network has 6 nodes with 5 out of 6 initially voting 0. All

the links have σ = 0.6. The figure shows the probability

of accurate consensus as a function of time. It can be seen

that as N decreases, the network stays in accurate consensus

with lower probability and for a shorter period of time.
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Fig. 1. Impact of network connectivity on binary consensus over regular
graphs with noisy links – M = 6.

V. BEHAVIOR OF AN INDIVIDUAL NODE

In this section we explore the voting dynamics of an

individual node. We will have the following for a general

connected graph with different and stochastic link qualities:

bi(k + 1) = Dec

(
Si(k)

Ni(k)
+ ni(k)

)

, (20)

where 1 < Ni(k) ≤ M is as defined in Section II

and ni(k) = 1
Ni(k)

∑

j∈Ψi(k),j 6=i nj,i(k) has a variance

of σ2
i (k) = 1

N2
i (k)

∑

j∈Ψi(k),j 6=i σ2
j,i(k). We will have the

following for the ith node under extended Assumption 1:

Prob[bi(k + 1) = 1]

=

Ni(k)
∑

r=0

Prob[bi(k + 1) = 1|Si(k) = r]Prob[Si(k) = r]

=

Ni(k)
∑

r=0

κi,r,Ni(k)Prob[Si(k) = r]

=

Ni(k)
∑

r=0

(
r

Ni(k)
+ (1 − 2

r

Ni(k)
)κi,0,Ni(k)

)

×

Prob[Si(k) = r]

= κi,0,Ni(k) +
1 − 2κi,0,Ni(k)

Ni(k)
Si(k)

= κi,0,Ni(k) +
1 − 2κi,0,Ni(k)

Ni(k)

∑

j∈Ψi(k)

Prob[bj(k) = 1].

(21)

Then we will have

Λ(k + 1) = B(k)Λ(k) + A(k), (22)

where Λ(k) =








Prob(b1(k) = 1)
Prob(b2(k) = 1)

...

Prob(bM (k) = 1)








, Ai(k) = κi,0,Ni(k),

B′
i(k) =

1−2κi,0,Ni(k)

Ni(k) , B(k) is an M × M matrix with

Bi,j(k) =

{

B
′

i(k) j ∈ Ψi(k)
0 else

and A(k) is a column

vector whose ith element is Ai(k).

Therefore:

Λ(k) =
k−1∏

i=0

B(i)Λ(0) +
k−1∑

j=0




(

k−1∏

t=j+1

B(t)
)
A(j)



. (23)

For the next derivation, we assume that the network has

different link qualities that are stochastic, but it is fully

connected. Then we will have, Ni(k) = M, ∀i and B(k) =






B′
1(k)

B′
2(k)
...

B′
M (k)








[
1 · · · 1

]
= B′(k)

[
1 · · · 1

]
. Let

α(j) =
M∑

r=1

Ar(j) =
M∑

r=1

Q(
1

2σr(j)
),

β(j) =
M∑

r=1

B′
r(j) = 1 −

2

M

M∑

r=1

Q(
1

2σr(j)
) = 1 −

2

M
α(j),

(24)

and Λ̂(0) = sum (Λ(0)). We will have,

Λ(k) =

k−1∏

i=0

B(i)Λ(0) +

k−1∑

j=0

(

k−1∏

t=j+1

B(t))A(j)

= A(k − 1) + B′(k − 1)

×





k−2∏

i=0

β(i)Λ̂(0) +
k−2∑

j=0

α(j)
k−2∏

t=j+1

β(t)



 .(25)

By using Eq. 24, we will have

Λ(k) = A(k − 1) + B′(k − 1)

[
k−2∏

i=0

β(i)Λ̂(0)

+
M

2





k−2∑

j=0

k−2∏

t=j+1

β(t) −

k−2∑

j=0

k−2∏

t=j

β(t)







 , (26)
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which results in

Λ(k) =

A(k − 1) + B′(k − 1)

[
k−2∏

i=0

β(i)Λ̂(0) +
M

2
(1 −

k−2∏

j=0

β(j))





= A(k−1)+
M

2
B′(k−1)+(Λ̂(0)−

M

2
)B′(k−1)

k−2∏

i=0

β(i)

=
1

2

[
1 1 · · · 1

]T
+(Λ̂(0)−

M

2
)B′(k−1)

k−2∏

i=0

β(i).

(27)

It is easy to see that β(i) =
∑M

r=1 B′
r(i) < 1 (assuming that

at least one link has a non-zero variance). Therefore,

lim
k→∞

Λ(k) =
1

2

[
1 1 · · · 1

]T
. (28)

This suggests that at steady state, each node’s voting pattern

becomes purely random, which is consistent with the fact

that the network becomes memoryless. Fig. 2 shows the

convergence of Λ(k) to 0.5 for a network of 4 nodes, where

3 out of 4 start by voting 1. The simulation confirms the

derivations.
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Fig. 2. Dynamics of each individual node

VI. CONCLUSION AND FURTHER EXTENSIONS

In this paper we considered the dynamics of binary

consensus over Gaussian communication links. We explored

the impact of link qualities with different variances on

the performance by deriving an expression for the second

largest eigenvalue. Furthermore, we characterized the impact

of network connectivity on binary consensus by deriving

an expression for the second largest eigenvalue for regular

connected graphs. Finally, we characterized the behavior

of an individual node and showed that each node will

asymptotically vote purely random. We made a number of

assumptions in our derivations. For instance, we assumed

regular graphs in order to characterize the impact of graph

connectivity. We are currently working on relaxing these

assumptions. For the stochastic case, we are working on

characterizing the dynamics of the average of the system

with pdfs that are relevant in fading environments.
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