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Abstract— Stabilization of unstable systems with actuator
delay of substantial length and of completely unknown value
is an important problem that has never been attempted. We
present a Lyapunov-based adaptive control design that achieves
global stability, without a requirement that the delay estimate be
near the true delay value. We solve the problem by employing
a framework where the actuator delay is represented as a
transport PDE, by estimating the delay value as the reciprocal
of the convection speed in the transport PDE, and by using full
state predictor-based feedback.

I. INTRODUCTION

Adaptive control in the presence of actuator delays is a

hard problem. To our knowledge, the only existing results

are the 1988 result by Ortega and Lozano [17] and the 2003

results by Niculescu and Annaswamy [16] and Evesque et

al [4]. These results deal with the problem where the plant

has unknown parameters but the delay value is known.

The remaining theoretical frontier, and a problem of great

practical relevance, is the case where the actuator delay value

is unknown and highly uncertain. This problem is open in

general even in the case where no parametric uncertainty

exists in the ODE plant. The importance of problems with

unknown delays was highlighted in [3], where a simple

scheme for delay estimation and controller gain adjustment

to preserve closed-loop stability was also presented. An

attempt at adaptive design for unknown delay was also made

in [10] by applying the Pade approximation, however, while

the design was (predictably) successful for the approximate

problem, it was not successful for a model with an actual

delay of significant length.

In this paper we present the first systematic adaptive

control design for a system with unknown actuator delay

by focusing on the case

Ẋ(t) = AX(t)+ BU(t−D) , (1)

where the full state—both the ODE plant state X ∈ R
n and

the infinite-dimensional actuator state U(η),η ∈ [t −D,t]—
are available for measurement, and where the ODE plant

parameters are known, but where the delay length D is

unknown (though constant) and can have an arbitrarily large

value. This problem can be formulated around an actuator

delay model given by a transport equation (convective/first-
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order hyperbolic PDE), namely,

Ẋ(t) = AX(t)+ Bu(0,t) (2)

Dut(x,t) = ux(x,t) (3)

u(1,t) = U(t) , (4)

where u(x,t) is the state of the actuator, the domain length

is known (unity) but the propagation speed 1/D is unknown.

The actuator state is related to the input through the following

equation

u(x,t) = U(t + D(x−1)) , (5)

which, in particular, gives u(1,t) = U(t) and u(0,t) =
U(t −D). The control law around which we build a delay-

adaptation mechanism is a predictor-based feedback law,

U(t) = K

[

eADX(t)+ D

∫ 1

0
eAD(1−y)Bu(y,t)dy

]

, (6)

which achieves exponential stability at u ≡ 0,X = 0 by

performing perfect compensation of the actuator delay, and

which has been employed in many control design and

analysis studies for systems with actuator delays over the

last three decades [1], [4], [5], [6], [7], [8], [9], [13], [14],

[15], [16], [18], [21], [22].

Within this framework we obtain a global adaptive stabi-

lization result, for an arbitrarily large and unknown actuator

delay value (Sections III and IV).

Without a question, an even more relevant and challenging

problem is the one where the full state is not available

for measurement, more specifically, when the state of the

transport PDE u(x,t), i.e., the actuator state, is not measured.

A yet more challenging problem is when, in addition, only

an output of the ODE system

Y (t) = CX(t) (7)

is measured, rather than the full state X(t), and, finally,

the most challenging in this string of problems is when the

ODE plant has parametric uncertainty, i.e., A(θ ),B(θ ),C(θ ),
where θ is unknown. (For an exhaustive categorization of

adaptive control problems with actuator delay, please see

Section II). However, as restrictive as the requirement for

measurement of u(x,t) may seem, we do not believe that any

delay-adaptive problem without the measurement of u(x,t) is

solvable globally because it cannot be formulated as linearly

parametrized in the unknown delay D. As a consequence,

when the controller uses an estimate of u(x,t), not only do

the initial values of the ODE state and the actuator state have

to be small, but the initial value of the delay estimation error

also has to be small (the delay value is allowed to be large
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but the initial value of its estimate has to be close to the true

value of the delay). This local result is actually proven in

the journal version of this paper.

In our global full-state feedback design we require only

one bit of a priori knowledge about the length of the delay:

Assumption 1: An upper bound D̄ on the unknown D > 0

is known.

This upper bound is used in two ways. An adaptation

algorithm employing projection keeps the delay estimate

below the a priori bound. In addition, based on the upper

bound for the delay length, the adaptation gain is selected

to be sufficiently small, and a normalization parameter is

selected to be sufficiently large, to ensure that adaptation

is sufficiently slow to guarantee closed-loop stability. The

approach for update law design (Section III) and for the

corresponding stability analysis (Section IV) is based on the

ideas that we introduced in [12] for Lyapunov-based adaptive

control of parabolic PDEs. The adaptation and normalization

gain choices are conservative. The relevant part of the design

is the structure of the adaptation law, not the exact gain

values employed in the analysis.

In this paper the only parametric uncertainty considered is

the unknown delay. This is done for clarity of presentation,

as the presence of unknown parameters in the plant would

obscure presentation of new tools for handling the unknown

delay. In another companion paper [2] we present an exten-

sion with unknown plant parameters and where the control

objective is not regulation to zero but trajectory tracking.

We start this paper with Section II in which we categorize

all the combinations of delay-adaptive, ODE parameter-

adaptive, full-state, and output-feedback problems arising in

the area of adaptive control in the presence of delay.

II. CATEGORIZATION OF ADAPTIVE CONTROL

PROBLEMS WITH ACTUATOR DELAY

A finite-dimensional system with actuator delay may come

with

• unknown delay (D)

• unmeasured actuator state (u)

• unknown parameters in the finite-dimensional part of

the plant (A)

• unmeasured state of the finite-dimensional part of the

plant (X).

Each one of these situations introduces a design difficulty,

which needs to be dealt with by using an estimator (a

parameter estimator or a state estimator). We point out that a

state estimator of the actuator state is trivial when the delay is

known (one gets the full state by waiting one delay period),

however this estimation problem is far from trivial when the

delay is also unknown.

The symbols D,u,A,X will be helpful as we try to cate-

gorize all the problems in which one, two, three, or all four

of these design difficulties may arise. For example, (D,u,X)
denotes the case where only the ODE plant parameters are

known, whereas the delay is unknown and the state of the

actuator and the ODE are unmeasurable.

There are a total of fourteen combinations arising from

the four basic problems, (D), (u), (A), and (X). We focus

exclusively on problems where the delay is present and is

of significant length to require the use of predictor feedback

(rather than being treated as a small perturbation through

some form of small gain argument). The following list

categorizes the fourteen control problems and gives the status

of each them:

1) (X), (u), (u,X)—non-adaptive problems solvable using

observer-based predictor feedback [13];

2) (A,X), (A)—solved in [17], [16], [4] but with relative

degree limitations;

3) (u,A), (u,A,X)—tractable using the techniques

from [17], [16], [4];

4) (D)—the main result of the present paper (Sections III

and IV);

5) (D,X)—tractable as in Point 4 (by adding a standard

ODE observer) but not highly relevant;

6) (D,A)—the subject of our companion paper [2];

7) (D,A,X)—tractable using the techniques in Point 6

combined with adaptive backstepping and Kreissle-

meier observers;

8) (D,u), (D,u,A), (D,u,A,X)—not tractable globally be-

cause of lack of linear parametrization in any situation

involving (D) and (u) simultaneously; the case (D,u)

is included in a journal version of this paper.

If this combinatorial complexity hasn’t already over-

whelmed the reader, we should point out that in each

of the cases involving unknown parameters, namely (D)

and (A), multiple choices exist in terms of design

methodology (Lyapunov-based, estimation/swapping-based,

passivity/observer-based, direct, indirect, pole placement,

etc.). In addition, in output-feedback adaptive problems,

namely problems involving (A) and (X), the relative degree

plays a major role in determining the difficulty of a prob-

lem. Finally, trajectory tracking requires additional tools, as

compared to problems of regulation to zero.

So, the present paper addresses only a subset among

important problems in adaptive control with actuator delay,

but in our opinion the most relevant among the tractable

problems.

III. DELAY-ADAPTIVE PREDICTOR FEEDBACK WITH

FULL-STATE MEASUREMENT

We consider the system (2)–(4) where the pair (A,B) is

completely controllable. Before we proceed, for a reader

familiar with our prior work we point out that the represen-

tation (3), (4) is different than the representation ŭt(x̆,t) =
ŭx(x̆,t), ŭ(D,t) = U(t), ŭ(0,t) = U(t −D), ŭ(x̆,t) = U(t + x−
D), which we used in [13], [9], and which would be

less convenient for adaptive control as it is not linearly

parametrized in D.

When D is unknown, we replace (6) by the adaptive

controller

U(t) = K

[

eAD̂(t)X(t)+ D̂(t)

∫ 1

0
eAD̂(t)(1−y)Bu(y,t)dy

]

(8)
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with an estimate D̂ governed by the update law

˙̂D(t) = γProj[0,D̄]{τ(t)} (9)

where

τ(t) = −

∫ 1
0 (1 + x)w(x,t)KeAD̂(t)xdx(AX(t)+ Bu(0,t))

1 + X(t)T PX(t)+ b
∫ 1

0 (1 + x)w(x,t)2dx
,

(10)

the standard projector operator is given by

Proj[0,D̄]{τ} = τ







0, D̂ = 0 and τ < 0

0, D̂ = D̄ and τ > 0

1, else

(11)

the matrix P is the positive definite and symmetric solution

of the Lyapunov equation

P(A + BK)+ (A + BK)TP = −Q (12)

for any positive definite and symmetric matrix Q, the con-

stant b is chosen to satisfy the inequality

b ≥
4|PB|2D̄

λmin(Q)
, (13)

the transformed state of the actuator is given by

w(x,t) = u(x,t)− D̂(t)
∫ x

0
KeAD̂(t)(x−y)Bu(y,t)dy

−KeAD̂(t)xX(t) , (14)

and the positive adaptation gain γ is chosen “sufficiently

large.”

For this adaptive controller, the following result holds.

Theorem 1: Consider the closed-loop system consisting

of the plant (2)–(4), the control law (8), and the parameter

update law defined through (9)–(14). Let Assumption 1 hold.

There exists γ∗ > 0 such that for any γ ∈ (0,γ∗), the zero

solution of the system (X ,u,D̂−D) is stable in the sense

that there exist positive constants R and ρ (independent of the

initial conditions) such that for all initial conditions satisfying

(X0,u0,D̂0) ∈ R
n ×L2(0,1)× [0,D̄], the following holds:

ϒ(t) ≤ R
(

eρϒ(0)−1
)

, ∀t ≥ 0 , (15)

where

ϒ(t) = |X(t)|2 +

∫ 1

0
u(x,t)2dx + D̃(t)2 . (16)

Furthermore,

lim
t→∞

X(t) = 0 , lim
t→∞

U(t) = 0 . (17)

IV. PROOF OF STABILITY FOR FULL-STATE FEEDBACK

In this section we prove Theorem 1. We start by consid-

ering the transformation (14), along with its inverse

u(x,t) = w(x,t)+ D̂(t)

∫ x

0
Ke(A+BK)D̂(t)(x−y)Bw(y,t)dy

+Ke(A+BK)D̂(t)xX(t) . (18)

After a careful calculation, the transformed system can be

written as

Ẋ(t) = (A + BK)X(t)+ Bw(0,t) (19)

Dwt(x,t) = wx(x,t)− D̃(t)p(x,t)−D ˙̂D(t)q(x,t) (20)

w(1,t) = 0 , (21)

where D̃(t) = D− D̂(t) is the parameter estimation error, and

p(x,t) = KeAD̂(t)x (AX(t)+ Bu(0,t))

= KeAD̂(t)x ((A + BK)X(t)+ Bw(0,t)) (22)

q(x,t) =

∫ x

0
K
(

I + AD̂(t)(x− y
)

eAD̂(t)(x−y)Bu(y,t)dy

+KAxeAD̂(t)xX(t)

=

∫ x

0
w(y,t)

[

K
(

I + AD̂(t)(x− y)
)

eAD̂(t)(x−y)B

+D̂(t)

∫ x

y
K
(

I + AD̂(t)(x− ξ )
)

eAD̂(t)(x−ξ )BK

×e(A+BK)D̂(t)(ξ−y)Bdξ
]

dy

+

[

KAxeAD̂(t)x +

∫ x

0
K
(

I + AD̂(t)(x− y)
)

×eAD̂(t)(x−y)BKe(A+BK)D̂(t)ydy
]

X(t) . (23)

Now we consider a Lyapunov-Krasovskii type (non-

quadratic) functional

V (t) =D logN(t)+
b

γ
D̃(t)2 , (24)

where

N(t) = 1 + X(t)TPX(t)+ b

∫ 1

0
(1 + x)w(x,t)2dx . (25)

Taking a time derivative of V (t), we obtain

V̇ (t) =−
2b

γ
D̃(t)

(

˙̂D(t)− γτ(t)
)

+
D

N(t)

(

−X(t)T QX(t)+ 2X(t)TPBw(0,t)

−
b

D
w(0,t)2 −

b

D
‖w(t)‖2

−2b ˙̂D(t)

∫ 1

0
(1 + x)w(x,t)q(x,t)dx

)

, (26)

where we have used integration by parts and ‖w(t)‖2 denotes
∫ 1

0 w(x,t)2dx. Using the assumption that D̂(0)∈ [0,D̄] and the

update law (9)–(11) with the help of [11, Lemma E.1] or [13,

Lemma 3], we get

V̇ (t) ≤
D

N(t)

(

−X(t)T QX(t)+ 2X(t)TPBw(0,t)

−
b

D
w(0,t)2 −

b

D
‖w(t)‖2

−2b ˙̂D(t)

∫ 1

0
(1 + x)w(x,t)q(x,t)dx

)

, (27)
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as well as that D̂(t) ∈ [0,D̄],∀t ≥ 0, and ˙̂D2 ≤ γ2τ2. Then,

applying Young’s inequality and employing (13), we obtain

V̇ (t) ≤−
D

2N(t)

(

λmin(Q)|X(t)|2 +
b

D
w(0,t)2 + 2

b

D
‖w(t)‖2

+4b ˙̂D(t)

∫ 1

0
(1 + x)w(x,t)q(x,t)dx

)

, (28)

and, finally, substituting (9), we arrive at

V̇ (t) ≤−
D

2N(t)

(

λmin(Q)|X(t)|2 +
b

D
w(0,t)2 + 2

b

D
‖w(t)‖2

)

+ 2Dbγ

∫ 1
0 (1 + x)|w(x,t)||p(x,t)|dx

N(t)

×

∫ 1
0 (1 + x)|w(x,t)||q(x,t)|dx

N(t)
. (29)

Then, a lengthy but straightforward calculation, employing

the Cauchy-Schwartz and Young inequalities, along with (22)

and (23), yields

∫ 1

0
(1 + x)|w(x,t)||p(x,t)|dx

≤ MemD̂(t)
(

|X(t)|2 +‖w(t)‖2 + w(0,t)2
)

(30)

and
∫ 1

0
(1 + x)|w(x,t)||q(x,t)|dx

≤ MemD̂(t)
(

|X(t)|2 +‖w(t)‖2
)

, (31)

where M,m are sufficiently large positive constants given by

M = max
{

2|K|2|A + BK|2,2|K|2|B|2,

1 + 2|K|(1 + |A|D̄)|B|(1 + D̄|BK|),

|K|2(|A|+ |(1 + |A|D̄)|BK|)2
}

(32)

m = |A|+ |A + BK| . (33)

Introducing these two bounds into (29), we get

V̇ (t) ≤−
D

2N(t)

(

λmin(Q)|X(t)2 +
b

D
w(0,t)2 + 2

b

D
‖w(t)‖2

−γ
4bM2e2mD̄

min{λmin(P),b}

(

|X(t)|2 +‖w(t)‖2 + w(0,t)2
)

)

,

(34)

and, finally,

V̇ (t) ≤−
D

2

(

min

{

λmin(Q),
b

D̄

}

− γ
4bM2e2mD̄

min{λmin(P),b}

)

×
|X(t)|2 +‖w(t)‖2 + w(0,t)2

N(t)
. (35)

By choosing

γ∗ =
min

{

λmin(Q), b
D̄

}

min{λmin(P),b}

4bM2e2mD̄
(36)

and γ ∈ (0,γ∗) we make V̇ negative semidefinite, and hence

V (t) ≤V (0) , ∀t ≥ 0 . (37)

From this result we now derive a stability estimate.

From (14) and (18) we show that

‖u(t)‖2 ≤ r1‖w(t)‖2 + r2|X(t)|2 (38)

‖w(t)‖2 ≤ s1‖u(t)‖2 + s2|X(t)|2 , (39)

where r1,r2,s1,s2 are sufficiently large positive constants

given by

r1 = 3
(

1 + D̄2|K|2e2|A+BK|D̄|B|2
)

(40)

r2 = 3|K|2e2|A+BK|D̄ (41)

s1 = 3
(

1 + D̄2|K|2e2|A|D̄|B|2
)

(42)

s2 = 3|K|2e2|A|D̄ . (43)

From (24), (25) the following two inequalities readily follow:

D̃2 ≤
γ

b
V (44)

|X |2 ≤
1

λmin(P)

(

eV/D −1
)

. (45)

Furthermore, from (24), (25) and (38) it follows that

‖u‖2 ≤
r1

b

(

eV/D −1
)

+ r2|X |2 . (46)

Combining (44)–(46) we get

ϒ(t) ≤

(

1 + r2

λmin(P)
+

r1

b
+

γ

Db

)

(

eV (t)/D −1
)

. (47)

So, we have bounded ϒ(t) in terms of V (t), and thus, using

(37), in terms of V (0). Now we have to bound V (0) in terms

of ϒ(0). First, from (24), (25) it follows that

V ≤ D
(

λmax(P)|X |2 + 2b‖w‖2
)

+
b

γ
D̃2 . (48)

Using (39) we get

V ≤(Dλmax(P)+ 2bDs2) |X |2

+ 2bDs1‖u‖2 +
b

γ
D̃2 . (49)

and hence

V (0) ≤

(

Dλmax(P)+ 2bDs2 + 2bDs1 +
b

γ

)

ϒ(0) . (50)

Denoting

R =
1 + r2

λmin(P)
+

r1

b
+

γD

b
(51)

ρ =λmax(P)+ 2bs2 + 2bs1 +
b

γD
, (52)

we complete the proof of the stability estimate (15).

Finally, to prove the regulation result we will use (35) and

Barbalat’s lemma. However, we first discuss the boundedness

of the relevant signals. By integrating (37) from t = 0 to t =
∞, and by noting that N(t) is uniformly bounded, it follows

that X(t), ‖w(t)‖, and D̂(t) are uniformly bounded in time.

Using (38) we also get the uniform boundedness of ‖u(t)‖ in

time. With the Cauchy-Schwartz inequality, from (8) we get

uniform boundedness of U(t) for t ≥ 0. From (5) we get the
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uniform boundedness of u(0,t) for t ≥ D. Using (2) we get

uniform boundedness of d|X(t)|2/dt for t ≥ D. From (35)

it follows that X(t) is square integrable in time. From this

fact, along with the uniform boundedness of d|X(t)|2/dt for

t ≥ D, by Barbalat’s lemma we get that X(t) → 0 as t → ∞.

What remains is to prove the regulation of U(t). From (35)

it follows that ‖w(t)‖ is square integrable in time. Using (38)

we get that ‖u(t)‖ is also square integrable in time. With the

Cauchy-Schwartz inequality, from (8) we get that U(t) is

also square integrable. To complete the proof of regulation

of U(t) by Barbalat’s lemma, all that remains to show is

that dU(t)2/dt is uniformly bounded. Towards this end, we

calculate

d

dt
U(t)2 =2U(t)K

[

eAD̂(t)Ẋ(t)+ ˙̂D(t)G1(t)+
D̂(t)

D
G2(t)

]

,

(53)

where

G1(t) =AeAD̂(t)X(t)

+

∫ 1

0

(

I + AD̂(t)(1− y)
)

g(y,t)dy (54)

G2(t) =BU(t)−BeAD̂(t)u(0,t)

+
∫ 1

0
AD̂(t)g(y,t)dy (55)

and

g(y,t) = eAD̂(t)(1−y)Bu(y,t) . (56)

The signal ˙̂D(t) is uniformly bounded over t ≥ 0 according

to (9)–(11). By using also the uniform boundedness of

X(t), Ẋ(t),‖u(t)‖,U(t) over t ≥ 0, and of u(0,t) over t ≥ D,

we get uniform boundedness of dU(t)2/dt over t ≥ D. Then,

by Barbalat’s lemma, it follows that U(t) → 0 as t → ∞.

V. SIMULATIONS

We present the simulation results for the state-feedback

scheme in Section III, namely, for the closed-loop system

consisting of the plant (2)–(4), the control law (8), and the

parameter update law defined through (9)–(14).

We focus on highlighting the most important aspect of our

scheme—the ability to handle long delays, in the presence

of a large uncertainty on the delay. For this reason we focus

on the case of a scalar but unstable ODE (2), with A = 0.75

and B = 1. We take the delay as D = 1, which is larger

than A. So, the system’s transfer function is X(s)/U(s) =
e−s/(s−0.75). We assume that the known upper bound on

the delay is D̄ = 2. We take the nominal control gain as

K = −A−1 = −1.75 (which means that P = 1,Q = 2). We

take the adaptation gain as γ = 23 and the normalization

coefficient as b = 4|PB|2D̄

λmin(Q) = 2D̄ = 4. We take the actuator

initial condition as u0(x)≡ 0, i.e., as U(θ )≡ 0,∀θ ∈ [−D,0],
and the plant initial condition as X(0) = 0.5.

Hence, the closed-loop system responds to X(0) and to

D̂(0). We perform our tests for two distinctly different values

of D̂(0)—at one extreme we take D̂(0) = 0 and at the other

extreme we take D̂(0) = D̄.
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Fig. 1. The system response of they system (2)–(4), (8)–(14) for D = 1
and for two dramatically different values of initial estimate, D̂(0) = 0 and
D̂(0) = D̄ = 2D = 2.
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The responses are shown in Figure 1. First, they show that,

for both initial estimates, the adaptive controller achieves

regulation of the state and input to zero. Second, they show

that in both cases the estimate D̂(t) converges towards the

true D and settles in its vicinity. The perfect convergence

is not achieved in either of the two cases, since the reg-

ulation problem does not provide persistency of excitation

for parameter convergence. Third, the dashed plot for D̂(t)
shows that the projection operator is active during the first

0.7 seconds. Fourth, we can observe that by about 3 sec, the

evolution of the estimate D̂(t) has been completed.

Fifth, the plots for X(t) and U(t) are very informative in

showing four distinct intervals of behavior of the controller

and of the closed-loop system. During the first 1 sec, the

delay precludes any influence of the control on the plant,

so X(t) shows an exponential open-loop growth. At 1 sec,

the plant starts responding to the control and its evolution

changes qualitatively, resulting also in a qualitative change

of the control signal. When the estimation of D̂(t) ends

at about 3 seconds, the controller structure becomes linear.

However, due to the delay, the plant state X(t) continues to

evolve based on the inputs from 1 second earlier, so, a non-

monotonic transient continues until about 4 seconds. From

about 4 seconds onwards, the (X ,U) system is linear and the

delay is sufficiently well compensated, so the response of

X(t) and U(t) shows a monotonically decaying exponential

trend of a first order system.

We want to stress that the plots presented here do not show

the best performance achievable with the scheme. Quite on

the contrary, the plots have been selected to illustrate the less

than perfect behaviors, with non-monotonic evolution of all

the states in the closed-loop system, that one would obtain

when γ and b are not highly tuned.

VI. CONCLUSIONS

As we have explained in Section II, the problem of full

state stabilization with known ODE plant parameters but with

unknown delay is the central problem in adaptive control

of systems with actuator delays. The other problems in the

lengthy catalog of problems are extensions of the this central

problem. Some of them are solvable globally and some of

them only locally.

We present a globally stabilizing adaptive controller which

employs the measurement of actuator state and then prove

that, when the actuator state is replaced by its adaptive

estimate, local stability and regulation are achieved. A step-

ping stone towards the latter result is a nonadaptive linear

robustness result with respect to the delay value employed in

the predictor feedback. We have presented the linear result

in more detail, to help the reader’s intuition regarding the

proof of the local adaptive result, which is considerably more

complex and presented with a limited amount of detail due

to space limitations.

The simulations show the effectiveness of the Lyapunov-

based adaptive controller. Whether the initial estimate of the

delay is zero or 100% above the true value, the estimator

drives the estimate towards the true value, which in turn

results in the stabilization of the closed-loop system by the

predictor-based adaptive controller.

When the actuator state is not measured but it is estimated,

local stability is achieved, which is proved in the journal

version of this pape. The extension to the problem with

unknown ODE plant parameters and to trajectory tracking

is presented in our other companion paper [2].
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