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Abstract— The work in this paper considers a heterogeneous
coordinated phase control problem in which most agents follow
a classic sinusoidal coupling protocol, but a select few agents
act as leaders. These leaders have the ability to report some
value other than their current phase to their neighbors. This
heterogeneous model is motivated by systems in biology and
in engineering. In biological contexts, observations have been
made that groups of trained animals can bias the behavior of
a much larger groups of untrained animals. Translating these
results to engineered contexts is of interest to, for example,
reduce the number of human operators necessary to control
a fleet of many autonomous agents. The contributions of this
paper include a general reachability result, a proof that a chain
of four or more agents is uncontrollable by a single leader, and a
nonlinear controllability analysis of some example problems. An
interesting result is that symmetry about the leader node is not
sufficient to guarantee uncontrollability of the follower nodes,
as it is in the related controlled linear agreement problem.

I. INTRODUCTION

The design and implementation of coordinated controllers

for distributed autonomous multi-agent systems is a funda-

mental challenge that has received much interest over the

past several years. Principle motivations for this interest are

that multi-agent teams offer the possibility of increased per-

formance through parallelization, better chances of success

through redundancy, and the ability to perform coordinated

tasks that were otherwise impossible to achieve with a single

agent. These benefits, however, can be difficult to harvest

due to the increased complexity of multi-agent systems. The

thesis of this paper is that a select few (leader) agents can,

under some topologies, control all other (follower) agents,

effectively reducing complexity through heterogeneity.

To gain insight into how to design distributed controllers

for coordinated multi-agent systems, control theorists have

turned to well-studied models of collective behavior. One

such model created by Kuramoto [1], describes synchro-

nization in large groups of oscillators that are coupled

sinusoidally in phase. Indeed, much attention has been given

to understanding the Kuramoto model (see [2] for a good

review). Most recently, researchers have applied insights

gained from studies of the Kuramoto model to distributed

control of autonomous agents. Early work with steering con-

trol inputs for constant speed unicycle vehicles [3] has been

linked to the Kuramoto model [4]. Recent work has built

extensively upon this foundation [5], [6], [7], although these

studies have only considered homogeneous agent dynamics.
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A promising direction for distributed control of au-

tonomous multi-agent systems considers a situation in which

one or more of the agents do not obey the usual control

law. Unlike classical leader/follower control design, the

followers do not know which agents are leaders and thus

treat all neighbors equivalently. The leader agents have the

potential to report some value other than their current phase

to their neighbors, but each neighbor receives the same

value. The prototypical example is the controlled linear

agreement problem [8], [9], [10], [11], in which follower

nodes apply a linear consensus protocol. A key result is that

the ability of a single leader node to control the other nodes

is dependent on the topology of the communication network.

In particular, if the topology is symmetric about the leader

nodes, the states of the other nodes are not controllable in the

typical linear systems sense. Nonlinear coupling functions

have been studied, primarily from the perspective of global

synchronization, in the physics community under the title of

pinning control [12], [13].

A parallel research theme can be found in biology, where

researchers are working to understand how heterogeneity

and topology influence the behavior of large aggregations.

Ongoing research with heterogeneous aggregations of Giant

Danio (Devario aequipinnatus) suggests that as few as three

trained (i.e. leader) fish are required to make twelve untrained

(i.e. follower) fish behave as if they were trained [14].

In this paper, the theme of heterogeneity through leader-

ship is extended from linear consensus to situations in which

the follower agents obey a nonlinear (sinusoidal) phase

coupling protocol. The main contributions are as follows.

The dynamics of the controlled sinusoidal coupling problem

are first written for an arbitrary interconnection topology and

leadership node assignment. A basic result showing that the

aligned set is reachable from initial conditions in a common

semicircle is established in the first theorem. Then, the

dynamics are rewritten in several ways to permit a complete

but informal analysis of three specific example problems

on three nodes. These simple examples are intended to

highlight the main differences between controlled linear

and controlled sinusoidal protocols. The three-node chain

example generalizes to N nodes to reveal that a chain of

four or more agents is never controllable by a single leader.

An interesting conclusion is that symmetry about the leader

node does not imply uncontrollability of the follower nodes.

The material presented here is organized as follows. In

the next section, the problem is formulated and mathematical

preliminaries are introduced. In Section III, a basic reacha-

bility analysis is presented for the controlled sinusoidal cou-

pling problem. Analysis and simulation of specific example
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topologies are presented in Section IV. Also included at this

point is an analysis of a N length chain. Conclusions are

presented in Section V.

II. PROBLEM FORMULAITON

The notation, conventions and assumptions used through-

out this work are described in this section. Also, leader and

follower subgraphs are defined and the definitions reachabil-

ity and controllability are reviewed.

A. Leader and Follower Subgraphs

A graph G = (V,E) is a set of nodes, V , and edges,

E ⊆ V × V , in which each edge connects one node to one

other node and no two nodes are joined by more than one

edge. The cardinality of the node and edge sets are denoted

|V | and |E|, respectively. An undirected graph is said to

be connected if a path exists from every node to every other

node, whereas a directed graph is connected if a directed path

exists from one node to every other node. Throughout this

work, all graphs are assumed to be undirected and connected,

unless otherwise noted.

Associating an arbitrary direction with each edge, the

directed incidence matrix, B, of a graph G is a |V | × |E|
matrix defined as

B(i, j) =











1 if edge j leaves node i

−1 if edge j enters node i

0 otherwise.

(1)

The incidence matrix has rank |V | − 1 whenever the graph

is connected [15]. The neighbors of node i, Ni, are the set

of nodes that are adjacent to vi in G. In a complete graph,

every node is adjacent to every other node.

A subgraph G′ = (V ′, E′) of G = (V,E) is a graph with

nodes V ′ ⊆ V and edges E′ ⊆ E. An induced subgraph

G′(V ′) of graph G is formed by keeping only edges of G
that connect nodes in V ′ to other nodes in V ′.

An interacting group of N agents can be modeled as a

graph G = (V,E) in which nodes with associated dynamics

represent agents, and edges represent inter-agent communi-

cation. For the work in this paper, we consider two types

of nodes: leader nodes and follower nodes. Thus, the node

set can be partitioned into leader and follower node sets,

VL and VF , respectively. Decomposing G into corresponding

subgraphs will prove useful later in this work.

Definition 2.1 (Follower Subgraph): Define the follower

subgraph GF to be the subgraph induced by the follower

nodes, VF .

Definition 2.2 (Leader Subgraph j): Let vj ∈ VL be a

leader. The subgraph corresponding to this leader node is

defined as

Gj = (V,Ej) (2)

Ej =
{

(vi, vj) ∈ E
∣

∣vi ∈ VF

}

. (3)

In other words, Gj consists of all nodes, but only retains

edges from E that connect leader node j to its neighboring

nodes that are followers.

Denote by BF and Bj any directed incidence matrix

associated with the follower and jth leader subgraphs. Note

that edges connecting one leader to another do not appear in

either leader or follower subgraphs.

B. Reachability and Controllability

Some basic definitions and tools from the theory of

nonlinear control will prove useful in the later parts of this

paper. In particular, the dynamics considered here can be

written in standard control-affine form,

ẋ = f0(x) +

m
∑

i=1

fi(x)ui. (4)

The first vector field, f0, is called the drift of the system.

The other m vector fields are control vector fields and ui is

the ith control input. Unlike the drift vector field, the control

vector fields can be reversed or nulled entirely through the

choice of inputs.

The set of all states attainable in exactly time T from a

point x0 by any control input is the T -reachable set from

that point, denoted R(x0, T ). The set of all states that can

be eventually reached from x0 is called the reachable set,

R(x0). A system is said to be controllable from x0 if every

other point in the domain is reachable from x0 (i.e. R(x0) =
D). Finally, a system is small time locally controllable at a

point x0 if there exists a T > 0 such that x0 ∈ R(x0, t) for

each t ∈ (0, T ] [16].

C. The Sinusoidally-Coupled Oscillator Model

Consensus seeking controllers often have the form

ẋi =
∑

j=Ni

f(xj − xi). (5)

Here, xi is the state of the ith agent and f is a coupling

function. The basic intuition is that for yT f(y) > 0, y ∈ R\
{0}, each agent moves towards the average of its neighbors’

states. Connectivity information from the graph incidence

matrix can be used to rewrite (5) as

ẋ = −Bf(BTx). (6)

When f is a constant, the protocol is linear. Indeed, much

is known about linear consensus protocols, for which the

system dynamics can be written compactly as

ẋ = −fLx, (7)

where L = BBT is the graph Laplacian. When G is

connected and f > 0, the span of the vector of ones, called

the agreement subspace, is globally attracting.

The use of linear consensus protocols is most appropriate

on linear spaces, like R
N . For the work in this paper,

the state of the N -agent system is a point θ ∈ T
N , for

instance representing the headings of the agents. A well-

studied coupling function that is suited to this space is

f(·) = sin(·), which yields

θ̇ = −B sin(BT θ). (8)
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Intuitively, each agent steers to become more aligned (lo-

cally) with its neighbors.

Much that is known about sinusoidal coupling comes

from work in physics, chemistry, and biology in which the

Kuramoto model,

ψ̇i = ωi +
K

N

N
∑

j=1

sin(ψj − ψi). (9)

has been studied for years. Here, ψ ∈ T
N is the state and

ωi ∈ R is the natural frequency of the ith “oscillator”. Fre-

quency synchronization occurs when the coupling strength,

K , is sufficiently strong.

For engineering purposes, it makes sense to choose homo-

geneous natural frequencies, in which the Kuramoto model

(9) reduces to all-to-all sinusoidal phase coupling through

the state transformation θi = ψi − ωit. With all-to-all

communication, the aligned set,

A =

{

θ ∈ T
N

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1

N

N
∑

i=1

[

cos(θi)
sin(θi)

]

∥

∥

∥

∥

∥

= 1

}

, (10)

is almost globally attracting for K > 0. The balanced (i.e.

anti-aligned) set can be defined similarly,

B =

{

θ ∈ T
N

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1

N

N
∑

i=1

[

cos(θi)
sin(θi)

]

∥

∥

∥

∥

∥

= 0

}

. (11)

While these stability results require all-to-all connectivity,

recent work has explored more general topologies [17], [18].

An important result is that the aligned set is attracting when

all phases are initially in a common semicircle, however the

aligned set is known not to be globally attracting [19].

III. DYNAMICS AND ALIGNED SET REACHABILITY

In controlled phase coupling, a subset of the nodes (called

leader nodes) have the ability to transmit a control signal

to their neighbors. The follower (i.e. non-leader) nodes do

not know of the leaders existence, and thus process received

information according to the originally prescribed model (8).

All neighbors of a particular leader receive the same value

from that leader. We begin by writing the system dynamics.

Let φ ∈ T
|VF | be the phases of the follower agents

(the phase of the leader nodes is not used, and therefore

excluded). As in previous work with controlled linear con-

sensus, the leader nodes have access to all follower phases.

The phase rate of the ith follower agent can then be written

as

φ̇i =
∑

j∈Ni

{

sin(uj − φi), if j is a leader

sin(φj − φi), otherwise.
(12)

Here, uj is the control signal sent out by leader node j. Using

the subgraphs defined above, the follower node dynamics (8)

can alternatively be written as

φ̇ = −BF sin(BT
F φ) −

|VL|
∑

i=1

PTBi sin(BT
i P (φ− ui1)).

(13)

The matrix P is formed by selecting columns corresponding

to follower node indices from an N ×N identity matrix.

The following lemma is the first contribution of this work,

and is required for the subsequent theorem.

Lemma 3.1: Consider a connected graph G = (V,E) on

N nodes and select any one node as a leader. The (entire)

aligned set is reachable from any point in the aligned set.

Proof: Assume without loss of generality that the first

node is selected as the leader and that the followers have

initial state φ(0) = α1 ∈ A, α ∈ T. To show that the

aligned set is reachable, select any β ∈ T as a goal point.

If there exists a leader controller taking the follower state

from φ(0) = α1 to limt→∞ φ(t) = β1, the aligned set is

reachable.

Consider a constant leader controller, u(t) = β, ∀t ≥
0. This choice permits the overall heterogeneous system

dynamics, including both leader and follower nodes, to be

viewed as a certain homogeneous system. In particular, the

equivalent homogeneous system consists of N nodes, each

of which applies sinusoidal coupling to all incident edges

as in (8). Edges in the follower subgraph are undirected, as

usual, but edges in the leader subgraph are directed, going

from the leader to neighbors. The state of the leader node in

the equivalent homogeneous system never changes because

it has no incident edges whereas the follower nodes will

behave as they would in the original heterogeneous system.

Then, a recent result by Moreau [20] can be leveraged

to conclude that the state of the equivalent homogeneous

system will asymptotically approach β1, and hence the

state of follower nodes in the original heterogeneous system

must also approach β1. The main idea of Moreau’s proof

is that the convex hull of the state decreases to a single-

ton, under some connectivity assumptions. The equivalent

homogeneous system with directed topology meets these

connectivity assumptions because a directed path exists from

the leader node to each follower node, by construction.

Moreau’s proof is designed for Euclidean spaces, but

Example 2 of [20] shows how the result can be applied

systems with state in T
N provided all phases are within a

common semicircle. Here, the followers all start at α, so the

result can be used directly provided β 6= α + π. To show

that β = α+ π is also reachable, the leader can temporarily

report u = α + π/2 and later change to u = β once all

agents have left α.

The following theorem is a main contribution of this work.

Theorem 3.2: Consider a connected graph G on N nodes,

and select any one node as a leader. Then, for initial

follower phases in a common semicircle, (i.e. φ − φ0 ∈
(−π/2, π/2)

|VF |
for some φ0 ∈ T), the aligned set is always

reachable.

Proof: Proof is by construction of a controller. Without

loss of generality, assume the initial state of the followers

is φ ∈ (−π/2, π/2)
|VF |

. In leaderless sinusoidal phase

coupling, the aligned set is globally asymptotically stable

over any compact subset of (−π/2, π/2)
|VF |

for arbitrary

connected graphs [17]. Thus, let the leader obey the usual
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phase coupled oscillator model with internal state ξ,

ξ̇ =
∑

j∈Nleader

sin(φj − ξ) (14)

and initial phase ξ ∈ (−π/2, π/2). The phase reported by

the leader is its internal state, u = ξ. Then, a point in the

aligned set will be approached [17]. Finally, the result of

Lemma 3.1 can be used to show reachability of the aligned

set.

Corollary 3.3 (Additional Leaders): Adding more leaders

does not decrease the size of the reachable set, because the

extra leaders can always implement follower-like behavior.

IV. EXAMPLES

Some specific examples of leader-controlled phase cou-

pling and a general result for chain graphics are presented

in this section to gain insight into this challenging problem

and to highlight the main differences between controlled

sinusoidal and controlled linear protocols. The first three

examples are for three agents, whereas the final example

consider a general chain of length N , see Fig 1.

A. Three Node Star Graph with Leader at Center

The first topology studied here is the star graph, with a

single leader at the center node (see Fig. 1(a)). This topology

is of interest because it is completely symmetric about the

leader node. This symmetry means that controlled linear con-

sensus is uncontrollable because the two followers cannot be

controlled independently. Interestingly, this uncontrollability

result does not hold with the sinusoidal coupling studied

here.

With this topology, the dynamics of each follower (12)

reduce to

φ̇i = sin(u − φi), i = 1, 2

= sinu cosφi − cosu sinφi,
(15)

where u ∈ T is the phase reported by the leader. Then, the

system dynamics can be rewritten as

φ̇ = A(φ)q(u), (16)

with

A(φ) =

[

− sinφ1 cosφ1

− sinφ2 cosφ2

]

and q(u) =

[

cosu
sinu

]

.

(17)

The leader can choose u to make the unit vector q(u)
point instantaneously in any direction. Thus, provided A(φ)
is full rank, the leader can drive the state in any direction in

the state space (T2). For this system, A(φ) loses rank only

when the state is aligned or is balanced (φ ∈ A ∪ B).

When the state is aligned, the range of A(φ) is spanned

by [1, 1]T , which is also a basis vector for the aligned set.

Thus, no control signal from the leader can eject the state

from the aligned set. On the other hand, when the state is

balanced, the range of A(φ) is spanned by [1,−1]T . Control

can drive the state out of the balanced set, but no motion is

possible directly along the balanced set.

1

Leader

2

(a)

1

Leader

2

(b)

1

Leader

2

(c)

Leader1 2 N

(d)

Fig. 1. The example topologies considered in this section are (a) a N = 3
star with the leader in the middle, (b) a N = 3 complete graph, (c) a N = 3
chain with the leader at one end, and (d) a chain of length N > 3 with the
leader at any one node. Edges from the leader are directed indicating the
follower is coupled sinusoidally to the leader, but not vice versa.

Put together, these results imply that the system is control-

lable from T
2\A. Because of the structure of T

2, the aligned

set A does not form a barrier as it would in R
2. Instead, to

get from one state to another, a controller can always choose

a path that does not pass through the aligned set.

Knowing that this system is controllable outside the

aligned set, a simple controller can be constructed to drive the

state from an initial position, φ(0) ∈ T
2 \ A to a goal state,

φ∗ ∈ T
2. The basic idea is to choose the control direction

that yields the quickest reduction in distance between the

current state and the goal,

u = argmax
ũ

(

(φ∗ − φ)TA(φ)q(ũ)
)

. (18)

This optimization problem can be solved in closed form by

examining the first-order necessary conditions,

0 =
∂

∂u

(

(φ∗ − φ)TA(φ)

[

cosu
sinu

])

= (φ∗ − φ)TA(φ)

[

− sinu
cosu

]

,

(19)

which are satisfied when

q(u) = ±A(φ)T (φ∗ − φ). (20)
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Fig. 2. The controlled state trajectory is shown for a simulation of the three
node star graph with the leader at the center. The initial state is [0,−1]
and the goal state, shown as a red dot, is [6, 1]. The state space, T

2, is
represented as the area between the two aligned sets (which are actually the
same, as per the definition of a torus).

The positive sign is chosen so that the control takes the state

in the correct direction:

(φ∗ − φ)T φ̇ = (φ∗ − φ)TA(φ)q(u)

= q(u)T q(u)

≥ 0.

(21)

Then, the leader control can be calculated as

u = atan (q(u)) , (22)

where atan is the four quadrant arctangent function.

Because A(φ) is full rank outside A∪B, the distance be-

tween the current and goal states decreases along controlled

trajectories on this subset. The state does not start aligned

and the controller will not drive the state into the aligned

set, by construction, so the only possible trouble spot is the

balanced set. Indeed, this particular controller is imperfect in

that it is unable to drive the state to a goal in the balanced

set. Because the system is controllable, a different controller

should be used when the goal state is balanced.

To demonstrate the controller in simulation, the initial and

final states were chosen at φ(0) = [0,−1] and φ∗ = [6, 1].
Results are shown in Figs. 2 and 3. The goal state is reached

in about 7sec. Note that outside the aligned and balanced

sets, no leader control input can zero the state derivative. In-

stead, once the goal point is reached, the controller naturally

oscillates back and forth to keep the state arbitrarily close to

the goal.

B. Three Node All-to-All with One Leader

The second example considered here is a complete graph

on three nodes with a single leader (see Fig. 1(b)). As with

the star topology, this structure is symmetric, but has a

non-empty follower subgraph that creates a non-zero drift

vector field. Following the analysis technique of the previous

example, the dynamics of the followers can be written as

d

dt

[

φ1

φ2

]

=

[

sin(φ2 − φ1) + sin(u− φ1)
sin(φ1 − φ2) + sin(u− φ2)

]

. (23)

0 2 4 6 8 10

−2

0

2

φ
 (

ra
d

)

0 2 4 6 8 10

−2

0

2

Time (s)

u
 (

ra
d

)

Fig. 3. Follower states φ (top) and leader control u (bottom) versus time.
The initial state is [0,−1] and the final (goal) state is φ = [6, 1]. Notice
how the control oscillates to keep the state near the goal.

Equivalently,

φ̇ = A(φ)q(u) +D(φ), (24)

with

A(φ) =

[

− sinφ1 cosφ1

− sinφ2 cosφ2

]

(25)

D(φ) =

[

sin(φ2 − φ1)
− sin(φ2 − φ1)

]

. (26)

Just as with the star graph, A(φ) is full rank everywhere

except on the aligned and balanced sets. Thus, outside A∪B,

the leader control u can push the state in any direction in

the state space. However, the magnitude of this control is

limited by the fact that q(u) is unit norm. The drift D pushes

the system toward alignment (as expected, because all-to-

all coupling is almost globally stable to alignment). Thus,

the system is only controllable when the magnitude of the

control is large enough to overcome the drift. Once the state

is sufficiently close to the aligned set, alignment cannot be

prevented by any control.

To explicitly determine the subset of the domain on which

this system is controllable, the control design technique

from the star graph example can be employed. Instead

of calculating which input vector q(u) yields the greatest

velocity towards the goal (20), we determine which input

vector results in the greatest velocity against the drift,

q(u) = A(φ)TD(φ)

= sin(φ2 − φ1)

[

sinφ2 − sinφ1

cosφ1 − cosφ2

]

,
(27)

where u is still calculated from (22). Physically, this choice

of input corresponds to the leader reporting that it is located

across the phasor circle from the average of the followers’

phasors. With this choice of input, the drift will overwhelm

the control when cos(φ2 − φ1) < −1/2. In other words,

the leader is only effective at overcoming the drift when the
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Fig. 4. The controllable set on T
2 is shown for the complete graph. When

the angle between the followers is less that 120◦ , alignment cannot be
prevented.

followers are separated by at least 120◦. Thus, this system

is only controllable inside a band around the balanced set,

as shown in Fig. 4.

C. Three Node Chain with Leader at End

The next topology considered here is a three-node chain

with the leader at one end (see Fig. 1(c)). The main difference

between this example and the previous ones is the lack

of symmetry about the leader. Again, the edge between

the followers results in a non-zero drift vector field. The

dynamics in this case are

d

dt

[

φ1

φ2

]

=

[

sin(φ2 − φ1) + sin(u− φ1)
sin(φ1 − φ2)

]

. (28)

For this topology, rewriting the dynamics in terms of A(φ)
and q(u) does not help because A(φ) is never full rank.

Instead, consider the coordinate transformation φ̄ = φ1 +φ2,

φ̃ = φ1 − φ2 and v = sin(u− φ1), for which

d

dt

[

φ̄

φ̃

]

=

[

v

−2 sin(φ̃) + v

]

, (29)

and v ∈ [−1, 1]. The control is found by u = arcsin(v)+φ1,

but when the sine of the angle difference is larger than one

half, no u can be found to counter the drift of the system.

Thus, the drift dominates the control and drags the state

towards the aligned set when 30◦ < |φ̃| < 150◦.

With this result in mind, the state space can be partitioned

into three sets,

SC =
{

φ ∈ T
2

∣

∣ 150◦ < |φ1 − φ2|
}

(30)

SD =
{

φ ∈ T
2

∣

∣ 30◦ < |φ1 − φ2| ≤ 150◦
}

(31)

SR =
{

φ ∈ T
2

∣

∣ |φ1 − φ2| ≤ 30◦
}

. (32)

For points in the controllable set (SC ), every other point

in T
2 is reachable in finite time, and thus the system is

controllable from this set. Once the state enters the drift

dominated set (SD), the above analysis shows that entering

the reachable set (SR) is unavoidable. Every point in the

reachable set is reachable from every other point in the set.

However, the reachable set is positively invariant, meaning

it cannot be escaped. The controllable, drift dominated, and

−2 0 2 4 6 8
−3

−2

−1

0

1

2

3

φ
1
 (rad)

φ
2
 (

ra
d

)

 

 

Aligned Set

Balanced Set

Controllable
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Fig. 5. The sets for the chain graph are shown. All states are reachable from
the controllable set (light gray), however the positively invariant reachable
set (dark gray) cannot be avoided after entering the drift dominated set
(medium gray).

reachable sets are depicted in Fig. 5 as light, medium, and

dark gray shaded regions, respectively.

D. N > 3 Node Chain with One Leader

While regions of reachability and controllability have been

demonstrated for the three node chain, the fact remains

that the follower agent phases are uncontrollable on the 2-

torus (i.e. not controllable everywhere). This result can be

extended to a chain of length N > 3 with a single leader,

see Fig. 1(d).

Corollary 4.1 (N -Agent Chains): Consider a group of

N > 3 agents connected in a chain and choose any one

node as the leader. Then, the leader is unable to control the

state of the N − 1 follower nodes on the domain.

Proof: Every chain of length N > 3 necessarily

terminates at one end with two adjacent follower nodes,

independent of the location of the leader in the chain. Even

if the leader were able to directly control the node adjacent

to these two nodes, the result of the the three-node chain

example from Section IV-C shows that the phases of the two

end nodes is uncontrollable. Thus, the phase of the N − 1
follower nodes is also uncontrollable.

This result is contrary to the controlled linear consensus

problem, where the N -agent chain is controllable when the

topology is not symmetric (e.g. the leader is at one end).

Note that as in the three-node example, there may exist

controllable regions and the aligned set is always reachable

from a semicircle, however the overall uncontrollability of

the chain is universal and any controllable region is likely

reduced in volume as nodes are added to the chain.

V. CONCLUSION

The work in this paper has extended previous work on

linear controlled agreement to sinusoidal coupling on the

N -torus. While much remains to be learned about this

fascinating system, results presented here show that, for any

connected topology with one or more leaders, the aligned set

is reachable from any initial state in a hemisphere. Specific

examples were then presented and analyzed to demonstrate

the effect of topology and the significant differences between
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linear and sinusoidal couplings. One observation is that

leader symmetry does not imply uncontrollability, as it did

in the linear case.

Future work will build upon the foundation presented

here to answer more general questions of reachability and

controllability. For instance, if a single leader can be placed

anywhere in a large network, where should it be put in order

to be most effective? Also, how few leader nodes are required

to make the heterogeneous system controllable?

To answer these questions and make additional progress

on this problem, future work will connect this problem to

existing theory and develop new tools as necessary. Control

of nonlinear systems that contain drift is an active area of

research.

Future work will also focus on closing the loop with

biologists to see if controlled phase coupling is a good model

of heterogeneity in natural aggregations. If so, effort will be

directed towards inter-disciplinary work in this area.
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