
  

Abstract— The ∞H  synchronization problem of the master and 
slave structure of a second-order neutral master-slave systems 
with time-varying delays is presented in this paper. Delay-
dependent sufficient conditions for the design of a delayed 
output-feedback control are given by Lyapunov-Krasovskii 
method in terms of a linear matrix inequality (LMI). A 
controller, which guarantees ∞H  synchronization of the master 
and slave structure using some free weighting matrices, is then 
developed. A numerical example has been given to show the 
effectiveness of the method.  
 

I. INTRODUCTION 
In the last few years, synchronization in chaotic dynamical 
systems has received a great deal of interest among scientists 
from various fields [1, 2]. The results of chaos 
synchronization are utilized in biology, secret 
communication and cryptography, nonlinear oscillation 
synchronization and some other nonlinear fields. The first 
idea of synchronizing two identical chaotic systems with 
different initial conditions was introduced by Pecora and 
Carroll [3], and the method was realized in electronic 
circuits. The methods for synchronization of the chaotic 
systems have been widely studied in recent years, and many 
different methods have been applied theoretically and 
experimentally to synchronize chaotic systems, such as 
feedback control [4-8], adaptive control [9, 10], 
backstepping [11] and sliding mode control [12]. 
One of the most attractive dynamical systems is the second-
order systems which capture the dynamic behaviour of many 
natural phenomena, and have found applications in many 
fields, such as vibration and structural analysis, spacecraft 
control, electrical networks, robotics control and, hence, 
have attracted much attention (see, [13-16]). It has been 
proved that in special situations a second-order system may 
show chaotic dynamics, for instance, in [17], a second-order 
linear plant containing a relay with hysteresis type 
nonlinearity shows the chaotic nature of its dynamical 
behavior. Moreover, complex dynamical behavior of second-
order linear plants controlled with conventional controllers is 
investigated in [18, 19]. On the other hand, in view of the 
time-delay phenomenon, which is frequently encountered in 
practical situations, this delay may induce complex 
behaviors for the systems concerned (see [20, 21]). Up to 
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now, to the best of the authors’ knowledge, no results about 
the synchronization of second-order master-slave systems 
with time-varying delays using delayed output-feedback 
control are available in the literature, which remains to be 
important and challenging. 
In this paper, we make an attempt to develop an efficient 
approach for ∞H synchronization problem of second-order 
neutral master-slave systems with time-varying state delays. 
The main merit of the proposed method lies in the fact that it 
provides a convex problem via introduction of additional 
decision variables such that the control gains can be found 
from the LMI formulations without reformulating the system 
equations into a standard form of a first-order neutral 
system. By using a Lyapunov-Krasovskii method and some 
free weighting matrices, new sufficient conditions are 
established in terms of a delay-dependent LMI for the 
existence of desired delayed output-feedback control such 
that the resulting closed-loop system is asymptotically stable 
and satisfies a prescribed ∞H performance. A significant 
advantage of our result is that the desired control is designed 
directly instead of coupling the model to a first-order neutral 
system and then designing the control law in a higher 
dimensional space. Therefore, our result can be implemented 
in a numerically stable and efficient way for high-
dimensional second-order systems. Furthermore, retaining 
the model in matrix second-order form has many advantages 
such as preserving physical insight of the original problem, 
preserving system matrix sparsity and structure, preserving 
uncertainty structure and entailing easier implementation. 
Finally, the simulation results are given to illustrate the 
usefulness of our results. 

II. PROBLEM DESCRIPTION 
Consider a model of second-order neutral master-slave 
systems in the form of 
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where )(),( txtx sm  are the 1×n  state vector of the master and 
slave systems, respectively; )(tu  is the 1×r  control input; 

)(tw  is the 1×q  external excitation (disturbance), 
)(),( tztz sm  are the 1×s  controlled output and )(),( tyty sm  is 

the 1×l  measured output. The time-varying vector valued 
initial functions )(tφ and )(tϕ  are continuously differentiable 
functionals, and the time-varying delays )(td  and )(tr  are 
functions satisfying, respectively, 
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Assumption 1: The nonlinear functions nngf ℜ→ℜ:,  are 
continuous and satisfy 0)0()0( == gf  and the Lipschitz 
condition, i.e., )()()( 0000 yfxfyxf −≤− )( 00 yxf −≤  and 

)()()( 0000 ygxgyxg −≤− )( 00 yxg −≤  for all nyx ℜ∈00 ,  and 

ggff ,,,  are some known matrices. 
 
Now, the synchronization error of the master and slave 
systems (1) and (2) is defined as )()()( txtxte ms −= , then the 
error dynamics between (1) and (2), namely synchronization 
error system,  can be expressed by 
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where )()()( tztztz mse −= , ))(())((:))((ˆ txftxftef ms −=  and 
)))(((:)))(((ˆ trtxgtrteg s −=−  )))((( trtxg m −− . 

 
The problem to be addressed in this paper is formulated as 
follows: given the second-order neutral master-slave systems 
(1) and (2) with any time-varying delays satisfying (3) and a 
prescribed level of disturbance attenuation 0>γ , find a 
delayed output-feedback control )(tu  of the form 
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where ][: 21 KKK = , ][: 43 KKKr = , },{: 33 CCdiagC = , 
)}(),({)( tetecolt =ξ  and the matrices 4

1}{ =iiK  are the control 
gains to be determined such that  

1) the synchronization error system (4) is asymptotically 
stable for any time delays satisfying (3);  

2) under zero initial conditions and for all non-zero 
],0[)( 2 ∞∈ Ltw , the ∞H  performance measure, i.e., 

∫
∞

∞ −=
0

2 )()()()( dttwtwtztzJ T
e

T
e γ , satisfies 0<∞J ; 

in this case, the systems (1) and (2) are said to be 
asymptotically stable with ∞H  performance measures.  

III. MAIN RESULTS 
In this section, sufficient conditions for the solvability of the 
delayed output-feedback control design problem are 
proposed using the Lyapunov method and an LMI approach.  
 
Lemma 1 ([22]): For any arbitrary positive definite matrix 
H  and a matrix W  the following inequality holds: 
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where the symbol ∗  denotes the elements below the main 
diagonal of a symmetric block matrix.        
 
Lemma 2: ([23]) For a given np×ℜ∈Μ with 

nprank <=Μ)( , assume that nnZ ×ℜ∈ is a symmetric matrix, 

then there exists a matrix ppZ ×ℜ∈ˆ  such that Μ=Μ ZZ ˆ if 
and only if  

TVZZdiagVZ }.,{. 21=  and TUZUZ 1
1

ˆˆˆ −ΜΜ= , 
where ppZ ×ℜ∈1 , )()(

2
pnpnZ −×−ℜ∈ and the singular value 

decomposition of the matrix Μ  is  represented as 
TVU ]0ˆ[Μ=Μ with the unitary matrices ppU ×ℜ∈ , nnV ×ℜ∈  

and a diagonal matrix pp×ℜ∈Μ̂ with positive diagonal 
elements in decreasing order. 
 
Theorem 1: For given scalars 0, >MM rd , DD rd ,1<  and 

0>γ , the second-order neutral master-slave systems (1) and 
(2) with any time-varying delays satisfying (3) is robustly 
stabilizable by (5) and satisfies the ∞H  performance 
measure, if there exist some matrices 2P , 3P , W , 2

1}{ =iiF , 
positive-definite matrices 1P , 2

1}{ =iiQ , H  and positive-
definite diagonal matrices 3

1}{ =Λ ii , such that the following 
inequality is feasible,  
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where CKBIAAIBA 211
~)(ˆ:ˆ −++=  , CKBBA r212 ]0[:ˆ −= , the 

operator }{Asym  denotes TAA + and the matrices Î  and I~  are 

defined, respectively, as ]0[:ˆ II =  and ]0[:~ II = . 
 
Proof: Firstly, we represent the synchronization error system 
(4) in an equivalent descriptor model form as 
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Define the Lyapunov-Krasovskii functional  
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Differentiating )(1 tV  along the system trajectory becomes 
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Also, differentiating the second to forth Lyapunov terms in 
(8) give 
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Moreover, from the Leibniz-Newton formula, the following 
equation holds for any matrices 2
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Using the obtained derivative terms (9)-(15) and adding the 
right-hand sides of equation (16) into, we obtain the 
following result for )(tV , 
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Under zero initial conditions, the ∞H  performance measure 
can be rewritten as 
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Remark 1: It is easy to see that the inequality (6) imply 
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where 1−= ii PX ( 2,1=i ) and 1323 XPXX −= . 
 
Remark 2: According to structure of matrix C , i.e., 

},{: 33 CCdiagC = , with nlCrank <=)( 3 , Lemma 2 proposes 

that an equivalent condition on equation CXCX 11
ˆ=  is 

TVXXdiagVX },{. 22111 = , TUCXCUX 1
111

ˆˆˆ −= , 

where llX 22
11

×ℜ∈ , )(2)(2
22

lnlnX −×−ℜ∈  and TVCUC ]0ˆ[=  (the 
singular value decomposition of the matrix C ), with 

lCrank 2)( = , llU 22 ×ℜ∈  , nnV 22 ×ℜ∈ and llC 22ˆ ×ℜ∈ . 
 
Theorem 2: Consider the second-order neutral master-slave 
systems (1) and (2) with any time-varying delays satisfying 
(3). For given scalars 0, >MM rd , DD rd ,1<  and 0>γ , there 
exits an output-feedback control in the form of (5) such that 
the resulting closed-loop system is robustly asymptotically 
stable and satisfies ∞H  performance measure in Definition 

1, if there exist a scalar α , matrices 2
1}ˆ{ =iiF , 2

1}~{ =iiX , 2X , 3X , 

positive-definite matrices 11X , 22X , 2
1}ˆ{ =iiQ , H  and positive 

definite diagonal matrices 3
1}{ =Λ ii ,  satisfying the LMI 
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The desired control gains in (5) are given by 
1

12
1

11
ˆ~,ˆ~ −− == XXKXXK r  from LMI (21),            (22) 

where the matrices 1X  and 1X̂  follow from Remark 2. 
 
Proof: Let },,,,,,,,,,{ 1132111 HIXXIXXXdiag T ΛΛΛ=ζ                      
where 1: −Λ=Λ ii  and 1−= HH . By introducing HWPT =:  as a 
new decision variable (with IXT α= ), applying the Schur 
complement to the matrix inequality (6) in Theorem 1 and 
premultiplying ζ  and postmultiplying Tζ  where 1: −Λ=Λ ii  
and 1−= HH and using the inequalities  
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(23) 
and considering 11

ˆ:~ XKX = , 11
ˆ XQXQ i

T
i =  and 11

ˆ XFXF i
T

i = , 
we obtain the LMI (21). ■ 

IV. SIMULATION RESULTS 
Consider the second-order neutral master-slave systems (1) 
and (2), where the system matrices are given by  
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⎡
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⎥
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⎤
⎢
⎣

⎡
=

125.0075.0
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=
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⎤
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⎡
=
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⎡
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2N ,
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==

1
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=
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D . 

The delays )1()1()()( tt eetdtr −− +−== are time-varying and 
satisfy 1)()(0 ≤=≤ tdtr  and 5.0)()( ≤= tdtr . For simulation 
purpose, a uniformly distributed random signal with 
minimum and maximum -1 and 1, respectively, as the 
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disturbance is imposed on the response system. With the 
above parameters, the neutral master-slave systems (1) and 
(2) exhibit chaotic behaviours such the 21 mm xx −  and 

21 mm xx −  planes with }2.0,3.0,6.0,4.0{)0( −−= colξ , 
}1.0,1.0,7.0,8.0{)0( −= colζ , respectively, are shown in 

Fig. 1. 
 

-5 -4 -3 -2 -1 0 1
1

2

3

4

5

6

7

8

 
 

(a) 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-5

-4

-3

-2

-1

0

1

2

3

4

 
 

(b) 
 
Figure 1. The phase trajectories: a) 21 mm xx −  plot and b) 

21 mm xx −  plot. 
 

 
Figure 2. The synchronization errors: a) )(1 te (solid line) and 
b) )(2 te  (dashed line). 

It is required to design the control law (5) such that the 
closed-loop system is asymptotically stable and satisfies the 

∞H  performance measure. To this end, in light of Theorem 
2, we solved LMI (21) with the disturbance attenuation 

2.0=γ  and obtained the following control gains by using 
Matlab LMI Control Toolbox 
 

[ ]30.0309-37.11019.0207-8.9681=K , 
[ ]2.1808-0.51520.18960.0250-=rK . 

 

 
Figure 3.  Time-response of the control law for system. 

 
 

 
Figure 4. Comparison of the controlled outputs: a) closed-
loop system (solid line) and b) open-loop system (dashed 
line). 

 
 

Now, by applying the delayed state feedback controller (5) 
with the parameters above, the synchronization error 
between the drive system and response system, i.e. 

)()()( txtxte ms −= , is shown in Fig. 2. It is seen that the 
synchronization errors )()()( 111 txtxte ms −=  and 

)()()( 222 txtxte ms −=  converge to zero. The curve of output-
feedback control is also shown in Fig. 3. To observe the ∞H  
performance, the response of the controlled output, i.e., 

)(1 txm  

)(2 txm  

)(1 txm  

)(2 txm  
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)(tze , is depicted and compared with the output signal in the 
open-loop system under the disturbance in Fig. 4.  
 

V. CONCLUSION 
This paper presented the ∞H  synchronization problem of the 
master and slave structure of a second-order neutral chaotic 
system with time-varying delays. Delay-dependent sufficient 
conditions for the design of a delayed output-feedback 
control were given by Lyapunov-Krasovskii method in terms 
of an LMI. A controller guaranteeing asymptotic stability, 
and ∞H  synchronization of the master and slave structure 
using some free weighting matrices was developed directly 
instead of coupling the model to a first-order neutral chaotic 
system. 
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