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Abstract— Among of important results herein is the perfor-
mance information analysis of forecasting higher-order charac-
teristics of a general criterion of performance associated with
a stochastic tracking system which is closely supervised by
a reference command input and a desired trajectory. Both
compactness from logic of state-space model description and
quantitativity from probabilistic knowledge of stochastic dis-
turbances are exploited to therefore allow accurate prediction
of the effects of Chi-squared randomness on performance
distribution of the optimal tracking problem. Information
about performance-measure statistics is further utilized in the
synthesis of optimal cumulant-based controllers which are thus
capable of shaping the distribution of tracking performance
without reliance on computationally intensive Monte Carlo
analysis as needed in post-design performance assessment. As
a by-product, the recent results can potentially be applicable to
another substantially larger class of optimal tracking systems
whereby local representations with only first two statistics for
non-Gaussian random distributions of exogenous disturbances
and uncertain environments may be sufficient.

I. INTRODUCTION

A class of overtaking tracking problems is central to the

study of physical systems as it is to the synthesis of feedback

systems that are able to track a-priori scheduling signals

and target control references. For example, interested readers

may consult [1], [5] and [7] to appreciate the scope of the

concepts involved in designing feedback controls for deter-

ministic systems that optimize quadratic performance indices

of reference signals. The motivation in writing the present

paper is to use performance information to affect achievable

performance in risk-averse decision making and feedback

design. The recent work proposed by the author has begun to

address some key and unique aspects as follows. First, there

is a recognition process that comprehends the significance of

linear-quadratic structure of the stochastic tracking dynamics

and incorporates this special property in the criterion of

performance. Hence, the measure of performance is, in fact

a random variable with Chi-squared type and thus, all ran-

dom sample path realizations from the underlying stochastic

process will lead to riskier and uncertain performance. The

second aspect involves the linkage of a priori knowledge of

probabilistic distribution of the underlying stochastic process

with system performance distribution and thus describes

how higher-order statistics associated with the performance-

measure are exploited to project future status of performance

uncertainty. The third aspect, which is distinct from the

traditional average performance optimization, is a general

measure of performance riskiness as being a finite linear

combination of performance-measure statistics of choice that

the feedback controller uses for its adaptive control decisions.

Since the account [6] by the author has initially dealt with

the issue of performance robustness in stochastic tracking

problems, it is therefore natural to further extend the existing

tracking results with additional command input references.

Notional advantages offered by the proposed paradigm

are especially effective for uncertainty analysis. That is,

qualitative assessment of the impact of uncertainty caused by

stochastic disturbances on system performance has long been

recognized as an important and indispensable consideration

in reliability-based design [2] and [4]. The paper is organized

as follows. In Section II the tracking system description

together with the definition of performance-measure statistics

and their supporting equations associated with the Chi-

squared random measure of performance is presented. Prob-

lem statements for the resulting Mayer problem in dynamic

programming are given in Section III. Construction of a can-

didate function for the value function and the calculation of

optimal feedback control accounting for multiple internalized

goals of performance robustness are included in Section IV,

while conclusions are drawn in Section V.

II. PRELIMINARIES

Consider a general class of stochastic tracking systems,

modeled on [t0, tf ] and governed by

dx(t) = (A(t)x(t) + B(t)u(t))dt + G(t)dw(t) (1)

x(t0) = x0

where time-continuous coefficients A ∈ C([t0, tf ]; Rn×n),
B ∈ C([t0, tf ]; Rn×m), and G ∈ C([t0, tf ]; Rn×p) are

deterministic, bounded matrix-valued functions. Uncertain

environments and exogenous disturbances, w(t) ∈ R
p are

characterized by an p-dimensional stationary Wiener process

starting from t0, independent of the known initial condition

x0, and defined with {Ft}t≥t0>0 being its filtration on a

complete filtered probability space (Ω,F , {Ft}t≥t0>0,P)
over [t0, tf ] with the correlation of independent incre-

ments E
{
[w(τ) − w(ξ)][w(τ) − w(ξ)]T

}
= W |τ − ξ| for

all τ, ξ ∈ [t0, tf ] and W > 0. The set of admissi-

ble controls L2
Ft

(Ω; C([t0, tf ]; Rm)) belongs to the Hilbert

space of R
m-valued square-integrable processes on [t0, tf ]

that are adapted to the σ-field Ft generated by w(t)

with E
{∫ tf

t0
uT (τ)u(τ)dτ

}
< ∞. Associated with ad-

missible 2-tuple (x(·);u(·)) ∈ L2
Ft

(Ω; C([t0, tf ]; Rn)) ×
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L2
Ft

(Ω; C([t0, tf ]; Rm)) is a closely guided performance-

measure J : R
n × L2

Ft
(Ω; C([t0, tf ]; Rm)) �→ R+

J(x0;u(·)) = [x(tf ) − γ(tf )]
T

Qf [x(tf ) − γ(tf )]

+

∫ tf

t0

{
[x(τ) − γ(τ)]

T
Q(τ) [x(τ) − γ(τ)]

+ [u(τ) − ρ(τ)]
T

R(τ)[u(τ) − ρ(τ)]
}

dτ (2)

where the desired trajectory γ(·) and reference control in-

put ρ(·) are given, deterministic, bounded and piecewise-

continuous functions on [t0, tf ]. Design parameters Qf ∈
R

n×n, Q ∈ C([t0, tf ]; Rn×n), and invertible R ∈
C([t0, tf ]; Rm×m) are deterministic, bounded, matrix-valued

and positive semidefinite relative weightings of the terminal

state, state trajectory, and control input.

Furthermore, as shown in [6], under linear, state-feedback

control together with the fact of the linear-quadratic sys-

tem, all higher-order statistics of the integral-quadratic

performance-measure have the quadratic-affine functional

form. This common form of these higher-order statistics fa-

cilitates the definition of a risk-averse performance index and

the associated optimization formulation herein. Therefore,

the information pattern considered in this research is a linear

time-varying feedback law generated from the tracking state

x(t) and reference command input ρ(t) by

u(t) = K(t)x(t) + lf (t) + ρ(t) (3)

where both admissible vector-valued affine input lf ∈
C([t0, tf ]; Rm) and matrix-valued feedback gain K ∈
C([t0, tf ]; Rm×n) are yet to be determined. Hence, for the

given initial condition (t0, x0) ∈ [t0, tf ] × R
n and subject

to the control decision policy (3), the dynamics of the

generalized tracking problem are governed by the stochastic

differential equation

dx(t) = (A(t) + B(t)K(t))x(t)dt

+ B(t)(lf (t) + ρ(t))dt + G(t)dw(t), x(t0) = x0 (4)

together with the realized performance-measure for a given

random realization ω ∈ Ω

J(x0;K(·), lf (·)) = [x(tf ) − γ(tf )]
T

Qf [x(tf ) − γ(tf )]

+

∫ tf

t0

{
[x(τ) − γ(τ)]

T
Q(τ) [x(τ) − γ(τ)]

+ [K(τ)x(τ) + lf (τ)]TR(τ)[K(τ)x(τ) + lf (τ)]
}

dτ . (5)

Clearly then, the performance-measure (5) is now a random

variable with Chi-squared type. Hence, the uncertainty of

performance distribution must be addressed via a complete

set of higher-order statistics beyond the statistical averaging.

It is necessary to generate some higher-order statistics asso-

ciated with (5). Such performance-measure statistics are now

called cumulants for short and thus are utilized to directly

target the uncertainty of tracking performance.

In general, it is suggested that the initial condition (t0, x0)
should be replaced by any arbitrary pair (α, xα). Then, for

the given, admissible affine input lf and feedback gain K,

(5) is considered as the “performance-to-come”, J (α, xα).

J(α, xα) � [x(tf ) − γ(tf )]
T

Qf [x(tf ) − γ(tf )]

+

∫ tf

α

{
[x(τ) − γ(τ)]

T
Q(τ) [x(τ) − γ(τ)]

+ [K(τ)x(τ) + lf (τ)]TR(τ)[K(τ)x(τ) + lf (τ)]
}

dτ . (6)

The moment-generating function of the “performance-to-

come” of (6) is defined by

ϕ (α, xα; θ) � E {exp (θJ (α, xα))} (7)

for all small parameters θ in an open interval about 0. Thus,

the cumulant-generating function immediately follows

ψ (α, xα; θ) � ln {ϕ (α, xα; θ)} (8)

for all θ in some (possibly smaller) open interval about 0
while ln{·} denotes the natural logarithmic transformation.

Theorem 1: Cumulant-Generating Function.

Suppose that α ∈ [t0, tf ] is some running variable and

θ is a small positive parameter. When ϕ (α, xα; θ) �

̺ (α; θ) exp
{
xT

αΥ(α; θ)xα + 2xT
αη(α; θ)

}
and υ (α; θ) �

ln{̺ (α; θ)}, the cumulant-generating function that contains

all the higher-order characteristics of the performance distri-

bution, is then given by the expression

ψ (α, xα; θ) = xT
αΥ(α; θ)xα + 2xT

αη(α; θ) + υ (α; θ) (9)

where the cumulant-supporting variables Υ(α; θ), η(α; θ),
and υ (α; θ) solve the time-backward differential equations

d

dα
Υ(α; θ) = −[A(α) + B(α)K(α)]T Υ(α; θ)

− Υ(α; θ)[A(α) + B(α)K(α)]

− 2Υ(α; θ)G(α)WGT (α)Υ(α; θ)

− θ
[
Q(α) + KT (α)R(α)K(α)

]
, (10)

d

dα
η (α; θ) = −[A(α) + B(α)K(α)]T η(α; θ)

− Υ(α; θ)B(α) [lf (α) + ρ(α)]

− θ
[
KT (α)R(α)lf (α) − Q(α)γ(α)

]
, (11)

d

dα
υ (α; θ) = −Tr

{
Υ(α; θ)G (α) WGT (α)

}
(12)

− 2ηT (α; θ)B(α) [lf (α) + ρ(α)]

− θ
[
lTf (α)R(α)lf (α) + γT (α)Q(α)γ(α)

]

with the terminal-value conditions Υ(tf ; θ) = θQf ,

η (tf ; θ) = −θQfγ(tf ), and υ (tf ; θ) = θγT (tf )Qfγ(tf ).
Proof: For notational simplicity, it is convenient to have

̟ (α, xα; θ) � exp {θJ (α, xα)} ,

ϕ (α, xα; θ) � E {̟ (α, xα; θ)}

together with the time derivative of

d

dα
ϕ (α, xα; θ) = −θ

{
xT

α [Q(α) + KT (α)R(α)K(α)]xα

+ 2xT
α [KT (α)R(α)lf (α) − Q(α)γ(α)] + lTf (α)R(α)lf (α)

+ γT (α)Q(α)γ(α)
}

ϕ (α, xα; θ) . (13)
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Using the standard Ito’s formula, it yields

dϕ (α, xα; θ) = E {d̟ (α, xα; θ)} ,

= ϕxα
(α, xα; θ) [A(α) + B(α)K(α)] xαdα

+ ϕα (α, xα; θ) dα + ϕxα
(α, xα; θ) B(α)[lf (α) + ρ(α)]dα

+
1

2
Tr

{
ϕxαxα

(α, xα; θ) G (α) WGT (α)
}

dα ,

which under the aforementioned definition ϕ (α, xα; θ) �

̺ (α; θ) exp
{
xT

αΥ(α; θ)xα + 2xT
αη(α; θ)

}
and its partial

derivatives, leads to the total derivative with respect to time

d

dα
ϕ (α, xα; θ) =

{[
d

dα
̺(α; θ)

̺(α, θ)
+ xT

α

d

dα
Υ(α; θ)xα

+ 2xT
α

d

dα
η(α; θ)

]
+ xT

α [A(α) + B(α)K(α)]
T

Υ(α; θ)xα

+ xT
αΥ(α; θ) [A(α) + B(α)K(α)] xα

+ 2xT
α [A(α) + B(α)K(α)]

T
η(α; θ)

+ 2xT
αΥ(α; θ)B(α)[lf (α) + ρ(α)]

+2ηT (α; θ)B(α)[lf (α)+ρ(α)]+Tr
{
Υ(α; θ)G(α)WGT (α)

}

+ 2xT
αΥ(α; θ)G(α)WGT(α)Υ(α; θ)xα

}
ϕ(α, xα; θ) . (14)

Replacing (13) into (14) and having both linear and quadratic

terms independent of xα, it requires that

d

dα
Υ(α; θ) = −[A(α) + B(α)K(α)]T Υ(α; θ)

− Υ(α; θ)[A(α) + B(α)K(α)]

− 2Υ(α; θ)G(α)WGT (α)Υ(α; θ)

− θ
[
Q(α) + KT (α)R(α)K(α)

]
,

d

dα
η (α; θ) = −[A(α) + B(α)K(α)]T η(α; θ)

− Υ(α; θ)B(α) [lf (α) + ρ(α)]

− θ
[
KT (α)R(α)lf (α) − Q(α)γ(α)

]
,

d

dα
υ (α; θ) = −Tr

{
Υ(α; θ)G (α) WGT (α)

}

− 2ηT (α; θ)B(α) [lf (α) + ρ(α)]

− θ
[
lTf (α)R(α)lf (α) + γT (α)Q(α)γ(α)

]
.

At the final time α = tf , it follows that ϕ(tf , x(tf ); θ) =
̺(tf ; θ) exp

{
xT (tf )Υ(tf ; θ)x(tf ) + 2xT (tf )η(tf ; θ)

}
=

E
{
exp

{
θ[x(tf ) − γ(tf )]T Qf [x(tf ) − γ(tf )]

}}
which in

turn yields the terminal-value conditions as Υ(tf ; θ) = θQf ,

η(tf ; θ) = −θQfγ(tf ), ̺(tf ; θ) = exp
{
θγT (tf )Qfγ(tf )

}
,

and υ(tf ; θ) = θγT (tf )Qfγ(tf ).

Remark 1: The expression for cumulant-generating func-

tion (9) for the generalized performance-measure (5) in-

dicates that additional affine and trailing terms take into

account of dynamics mismatched in the transient responses.

By definition, higher-order statistics that encapsulate the un-

certain nature of tracking performance can now be generated

via a MacLaurin series of (9)

ψ (α, xα; θ) �

∞∑

i=1

κi(α, xα)
θi

i!
, (15)

=

∞∑

i=1

∂(i)

∂θ(i)
ψ(α, xα; θ)

∣∣∣∣
θ=0

θi

i!

from which κi(α, xα) is denoted as the ith-performance-

measure statistics or the ith-cumulant. Moreover, the se-

ries expansion coefficients are thus obtained by using the

cumulant-generating function (9)

∂(i)

∂θ(i)
ψ(α, xα; θ)

∣∣∣∣
θ=0

= xT
α

∂(i)

∂θ(i)
Υ(α; θ)

∣∣∣∣
θ=0

xα

+ 2xT
α

∂(i)

∂θ(i)
η(α; θ)

∣∣∣∣
θ=0

+
∂(i)

∂θ(i)
υ(α; θ)

∣∣∣∣
θ=0

. (16)

In view of the results (15) and (16), the ith-cumulant for the

generalized tracking problem therefore follows

κi(α, xα) = xT
α

∂(i)

∂θ(i)
Υ(α; θ)

∣∣∣∣
θ=0

xα

+ 2xT
α

∂(i)

∂θ(i)
η(α; θ)

∣∣∣∣
θ=0

+
∂(i)

∂θ(i)
υ(α; θ)

∣∣∣∣
θ=0

, (17)

for any finite 1 ≤ i < ∞.

For notational convenience, the following definitions

Hi(α) �
∂(i)

∂θ(i)
Υ(α; θ)

∣∣∣∣
θ=0

,

D̆i(α) �
∂(i)

∂θ(i)
η(α; θ)

∣∣∣∣
θ=0

,

Di(α) �
∂(i)

∂θ(i)
υ(α; θ)

∣∣∣∣
θ=0

are introduced so that the next theorem illustrates a tractable

procedure of generating cumulants or performance-measure

statistics in time domain. This calculation is preferred to that

of (17) for the reason that the resulting cumulant-generating

equations now allow the incorporation of classes of linear

feedback controllers in risk-averse tracking design synthesis.

Theorem 2: Generalized Performance-Measure Statistics.

The tracking dynamics governed by (4)-(5) attempt to follow

the set-point signals γ(t) and ρ(t) with the generalized

performance-measure (5). For k ∈ Z
+, the kth-cumulant is

given by the closed-form

κk = xT
0 Hk(t0)x0 + 2xT

0 D̆k(t0) + Dk(t0) (18)

wherein the cumulant-generating components {Hi(α)}k
i=1,

{D̆i(α)}k
i=1, and {Di(α)}k

i=1 evaluated at α = t0 satisfy the

time-backward differential equations (with the dependence of
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Hi(α), D̆i(α), and Di(α) upon lf and K suppressed)

d

dα
H1(α) = − [A(α) + B(α)K(α)]

T
H1(α)

− H1(α) [A(α) + B(α)K(α)]

− Q(α) − KT (α)R(α)K(α) , (19)

d

dα
Hi(α) = − [A(α) + B(α)K(α)]

T
Hi(α)

− Hi(α) [A(α) + B(α)K(α)] (20)

−

i−1∑

j=1

2i!

j!(i − j)!
Hj(α)G(α)WGT(α)Hi−j(α) ,

d

dα
D̆1(α) = − [A(α) + B(α)K(α)]

T
D̆1(α)

− H1(α)B(α) [lf (α) + ρ(α)]

− KT (α)R(α)lf (α) + Q(α)γ(α) , (21)

d

dα
D̆i(α) = − [A(α) + B(α)K(α)]

T
D̆i(α)

− Hi(α)B(α) [lf (α) + ρ(α)] , (22)

d

dα
D1(α) = −Tr

{
H1(α)G(α)WGT (α)

}

− 2D̆T
1 (α)B(α) [lf (α) + ρ(α)]

− lTf (α)R(α)lf (α) − γT (α)Q(α)γ(α) , (23)

d

dα
Di(α) = −Tr

{
Hi(α)G(α)WGT (α)

}

− 2D̆T
i (α)B(α) [lf (α) + ρ(α)] (24)

where terminal-value conditions H1(tf ) = Qf , Hi(tf ) =
0 for 2 ≤ i ≤ k; D̆1(tf ) = −Qfγ(tf ), D̆i(tf ) = 0 for

2 ≤ i ≤ k; and D1(tf ) = γT (tf )Qfγ(tf ), Di(tf ) = 0 for

2 ≤ i ≤ k.

III. PROBLEM STATEMENTS

Within the structure of cumulants (18), all the cumulant

values depend in part of the known initial condition x(t0).
Although the different states x(t) will result in different

values for the “performance-to-come” (5), the cumulant

values are however, functions of time-backward evolutions

of the cumulant-generating components Hi(α), D̆i(α) and

Di(α) and thus do not take into account of all the in-

termediate values x(t). Consequently, this fact makes the

new optimization problem particularly unique as compared

with the more traditional dynamic programming class of

investigations. In other words, the time-backward trajectories

(19)-(24) are therefore considered as the “new” dynamical

equations from which the resulting Mayer optimization [3]

and associated value function in dynamic programming now

depend on these “new” states Hi(α), D̆i(α) and Di(α), not

the states x(t) as traditionally expected. Furthermore, it is

important to see that this mathematical representation (19)-

(24) underlies the conceptual structure to extract the knowl-

edge of intrinsic performance variability introduced by the

process noise stochasticity in definite terms of performance-

measure statistics (18).

Next, it is convenient to introduce k-tuple variables H,

D̆, and D as follows H(·) � (H1(·), . . . ,Hk(·)), D̆(·) �

(
D̆1(·), . . . , D̆k(·)

)
, and D(·) � (D1(·), . . . ,Dk(·)) for each

element Hi ∈ C1([t0, tf ]; Rn×n) of H, D̆i ∈ C1([t0, tf ]; Rn)
of D̆, and Di ∈ C1([t0, tf ]; R) of D having the representa-

tions Hi(·) � Hi(·), D̆i(·) � D̆i(·), and Di(·) � Di(·) with

the right members satisfying the dynamic equations (19)-(24)

on the horizon [t0, tf ].
The problem formulation is considerably simplified if the

following mappings are introduced accordingly

Fi : [t0, tf ] × (Rn×n)k × R
m×n �→ R

n×n

Ği : [t0, tf ] × (Rn×n)k × (Rn)k × R
m×n × R

m �→ R
n

Gi : [t0, tf ] × (Rn×n)k × (Rn)k × R
m �→ R

where the actions are given by

F1(α,H,K) � − [A(α) + B(α)K(α)]
T
H1(α)

−H1(α) [A(α) + B(α)K(α)] − Q(α) − KT(α)R(α)K(α)

Fi(α,H,K) � − [A(α) + B(α)K(α)]
T
Hi(α)

−Hi(α) [A(α) + B(α)K(α)]

−
i−1∑

j=1

2i!

j!(i − j)!
Hj(α)G(α)WGT (α)Hi−j(α)

Ğ1

(
α,H, D̆,K, lf

)
� − [A(α) + B(α)K(α)]

T
D̆1(α)

−H1(α)B(α) [lf (α) + ρ(α)]

− KT (α)R(α)lf (α) + Q(α)γ(α)

Ği

(
α,H, D̆,K, lf

)
� − [A(α) + B(α)K(α)]

T
D̆i(α)

−Hi(α)B(α) [lf (α) + ρ(α)]

G1

(
α,H, D̆, lf

)
� −Tr

{
H1(α)G(α)WGT (α)

}

− 2D̆T
1 (α)B(α) [lf (α) + ρ(α)]

− lTf (α)R(α)lf (α) − γT (α)Q(α)γ(α)

Gi

(
α,H, D̆, lf

)
� −Tr

{
Hi(α)G(α)WGT (α)

}

− 2D̆T
i (α)B(α) [lf (α) + ρ(α)] .

For even more compactness of notations, the next product

mappings are further needed

F1×· · ·×Fk : [t0, tf ] × (Rn×n)k×R
m×n �→ (Rn×n)k

Ğ1×· · ·×Ğk : [t0,tf ]×(Rn×n)k×(Rn)k×R
m×n×R

m�→(Rn)k

G1×· · ·×Gk : [t0, tf ] × (Rn×n)k× (Rn)k×R
m �→ R

k

along with the corresponding notations F � F1 × · · · × Fk,

Ğ � Ğ1×· · ·×Ğk, and G � G1×· · ·×Gk. Thus, the dynamic

equations of motion (19)-(24) can be rewritten as follows

d

dα
H(α) = F(α,H(α),K(α)) , H(tf ) ≡ Hf

d

dα
D̆(α) = Ğ(α,H(α), D̆(α),K(α), lf (α)), D̆(tf )≡D̆f

d

dα
D(α) = G(α,H(α), D̆(α), lf (α)), D(tf ) ≡ Df

where the k-tuple final values Hf � (Qf , 0, . . . , 0), D̆f �

(−Qfγ(tf ), 0, . . . , 0), and Df � (γT (tf )Qfγ(tf ), . . . , 0).
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Note that the product system uniquely determines H, D̆
and D once the admissible affine input lf and feedback gain

K are specified. Hence, they are considered as H = H(·,K),
D̆ = D̆(·,K, lf ) and D = D(·,K, lf ). The risk-averse

performance index is defined by these control parameters

lf and K.

Definition 1: Performance Index.

Fix k ∈ Z
+ and the sequence µ = {µi ≥ 0}k

i=1 with µ1 > 0.

Then, for the given (t0, x0), the performance index in risk-

aversion, i.e., φtk : {t0} × (Rn×n)k × (Rn)k × R
k �→ R+

for the generalized tracking problem is defined as follows

φtk

(
t0,H(t0,K), D̆(t0,K, lf ),D(t0,K, lf )

)
� (25)

k∑

i=1

µi[x
T
0 Hi(t0,K)x0 + 2xT

0 D̆i(t0,K, lf ) + Di(t0,K, lf )] .

The real constant scalars µi represent different degrees of

freedom to shape the distribution of closed-loop tracking per-

formance wherever they matter the most by a means of plac-

ing particular weights on any specific performance-measure

statistics (i.e., mean, variance, skewness, flatness, etc.) as-

sociated with (5). The unique solutions {Hi(t0,K)}
k
i=1,{

D̆i(t0,K, lf )
}k

i=1
, and {Di(t0,K, lf )}k

i=1 evaluated at

α = t0 satisfy the time-backward equations of motion

d

dα
H(α) = F(α,H(α),K(α)) , H(tf ) (26)

d

dα
D̆(α) = Ğ

(
α,H(α), D̆(α),K(α), lf (α)

)
, D̆(tf ) (27)

d

dα
D(α) = G

(
α,H(α), D̆(α), lf (α)

)
, D(tf ) . (28)

For given terminal data (tf ,Hf , D̆f ,Df ), the classes of

admissible affine inputs and feedback gains are then defined.

Definition 2: Admissible Inputs and Feedback Gains.

Let compact subsets L ⊂ R
m and K ⊂ R

m×n be the sets

of allowable linear control inputs and gain values. For the

given k ∈ Z
+ and the sequence µ = {µi ≥ 0}k

i=1 with

µ1 > 0, the set of admissible affine inputs Ltf ,Hf ,D̆f ,Df ;µ

and feedback gains Ktf ,Hf ,D̆f ,Df ;µ are respectively assumed

to be the classes of C([t0, tf ]; Rm) and C([t0, tf ]; Rm×n)
with values lf (·) ∈ L and K(·) ∈ K for which solutions

to the dynamic equations (26)-(28) exist on the interval of

optimization [t0, tf ].
Definition 3: Optimization Problem.

Suppose that k ∈ Z
+ and the sequence µ = {µi ≥ 0}k

i=1

with µ1 > 0 are fixed. Then, the risk-averse control opti-

mization problem over [t0, tf ] is given by the minimization

of (25) over lf (·) ∈ Ltf ,Hf ,D̆f ,Df ;µ, K(·) ∈ Ktf ,Hf ,D̆f ,Df ;µ

and subject to the dynamic equations of motion (26)-(28).

The subsequent results will then illustrate a construction of

potential candidates for the value function.

Definition 4: Reachable Set.

Let reachable set Q �

{ (
ε,Y, Z̆,Z

)
∈ [t0, tf ]×(Rn×n)k×

(Rn)k ×R
k
}

such that Lε,Y,Z̆,Z;µ 
= 0 and Kε,Y,Z̆,Z;µ 
= 0.

By adapting to the initial cost problem and the terminolo-

gies present in the risk-averse control, the Hamilton-Jacobi-

Bellman (HJB) equation satisfied by the value function

V
(
ε,Y, Z̆,Z

)
is given as follows.

Theorem 3: HJB Equation-Mayer Problem.

Let
(
ε,Y, Z̆,Z

)
be any interior point of the reachable set Q

at which the value function V
(
ε,Y, Z̆,Z

)
is differentiable.

If there exist optimal affine signal l∗f ∈ Lε,Y,Z̆,Z;µ and

feedback gain K∗ ∈ Kε,Y,Z̆,Z;µ, then the partial differential

equation of dynamic programming

0 = min
lf∈L, K∈K

{
∂

∂ε
V

(
ε,Y, Z̆,Z

)
(29)

+
∂

∂ vec(Y)
V

(
ε,Y, Z̆,Z

)
vec (F (ε,Y,K))

+
∂

∂ vec
(
Z̆

)V
(
ε,Y, Z̆,Z

)
vec

(
Ğ

(
ε,Y, Z̆,K, lf

))

+
∂

∂ vec(Z)
V

(
ε,Y, Z̆,Z

)
vec

(
G

(
ε,Y, Z̆, lf

)) }

is satisfied together with the terminal-value condition

V
(
t0,H0, D̆0,D0

)
= φtk

(
t0,H0, D̆0,D0

)
.

Theorem 4: Verification Theorem.

Fix k ∈ Z
+ and let W

(
ε,Y, Z̆,Z

)
be a continuously dif-

ferentiable solution of the HJB equation (29) which satisfies

the boundary condition

W
(
t0,H0, D̆0,D0

)
= φtk

(
t0,H0, D̆0,D0

)
. (30)

Let (tf ,Hf , D̆f ,Df ) be in Q; (lf ,K) in Ltf ,Hf ,D̆f ,Df ;µ ×

Ktf ,Hf ,D̆f ,Df ;µ; H, D̆ and D the corresponding solu-

tions of (26)-(28). Then, W(α,H(α), D̆(α),D(α)) is a

time-backward increasing function of α. If (l∗f ,K∗) is in

Ltf ,Hf ,D̆f ,Df ;µ × Ktf ,Hf ,D̆f ,Df ;µ defined on [t0, tf ] with

corresponding solutions, H∗, D̆∗, and D∗ of (26)-(28) such

that for α ∈ [t0, tf ]

0 =
∂

∂ε
W

(
α,H∗(α), D̆∗(α),D∗(α)

)

+
∂

∂vec(Y)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec (F (α,H∗(α),K∗(α)))

+
∂

∂vec(Z̆)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec
(
Ğ

(
α,H∗(α), D̆∗(α),K∗(α), l∗f (α)

))

+
∂

∂ vec(Z)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec
(
G

(
α,H∗(α), D̆∗(α), l∗f (α)

))
, (31)

then both l∗f and K∗ are optimal. Moreover, it follows that

W
(
ε,Y, Z̆,Z

)
= V

(
ε,Y, Z̆,Z

)
(32)

where V
(
ε,Y, Z̆,Z

)
is the value function.
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IV. OPTIMAL RISK-AVERSE TRACKING SOLUTION

Because the optimization problem considered herein is

in “Mayer form”, it is therefore solved by applying an

adaptation of the Mayer form verification theorem of dy-

namic programming given in [3]. Consequently, it requires

to parameterize all starting times and states of a family of

optimization problems as
(
ε,Y, Z̆,Z

)
. For instance, the

states of the system (26)-(28) defined on [t0, ε] with the

terminal values are now denoted by H(ε) ≡ Y , D̆(ε) ≡
Z̆ , and D(ε) ≡ Z . Furthermore, with the observation of

performance index (25) being quadratic affine in terms of the

arbitrarily fixed x0, a candidate solution to the HJB equation

(29) may be sought in the form of

W
(
ε,Y, Z̆,Z

)
= xT

0

k∑

i=1

µi (Yi + Ei(ε)) x0

+ 2xT
0

k∑

i=1

µi

(
Z̆i + T̆i(ε)

)
+

k∑

i=1

µi (Zi + Ti(ε)) (33)

where the parametric functions Ei ∈ C1([t0, tf ]; Rn×n),
T̆i ∈ C1([t0, tf ]; Rn) and Ti ∈ C1([t0, tf ]; R) are yet

to be determined. One can then obtain the derivative of

W
(
ε,Y, Z̆,Z

)
with respect to ε as

d

dε
W

(
ε,Y, Z̆,Z

)
= xT

0

k∑

i=1

µi

(
Fi(ε,Y,K)+

d

dε
Ei(ε)

)
x0

+ 2xT
0

k∑

i=1

µi

(
Ği

(
ε,Y, Z̆,K, lf

)
+

d

dε
T̆i(ε)

)

+
k∑

i=1

µi

(
Gi

(
ε,Y, Z̆, lf

)
+

d

dε
Ti(ε)

)
(34)

provided that lf ∈ L and K ∈ K. Trying this candidate for

the value function (33) into the HJB equation (29) yields

0 ≡ min
lf∈L, K∈K

{
xT

0

k∑

i=1

µi

(
Fi(ε,Y,K) +

d

dε
Ei(ε)

)
x0

+ 2xT
0

k∑

i=1

µi

(
Ği

(
ε,Y, Z̆,K, lf

)
+

d

dε
T̆i(ε)

)

+

k∑

i=1

µi

(
Gi

(
ε,Y, Z̆, lf

)
+

d

dε
Ti(ε)

) }
. (35)

Since the initial condition x0 is an arbitrary vector, the

necessary condition for an extremum of (25) on [t0, ε] is

obtained by differentiating the expression within the bracket

of (35) with respect to the control parameters lf and K as

follows

lf (ε, Z̆) = −R−1(ε)BT (ε)

k∑

r=1

µ̂rZ̆r , (36)

K(ε,Y) = −R−1(ε)BT (ε)

k∑

r=1

µ̂rYr (37)

where the weightings µ̂r � µi/µ1 are normalized by µ1 > 0.

Replacing (36) and (37) into the HJB equation (35) leads to

the value of the minimum

xT
0

[
k∑

i=1

µi

d

dε
Ei(ε) − AT (ε)

k∑

i=1

µiYi −

k∑

i=1

µiYiA(ε)

− µ1Q(ε) +

k∑

r=1

µ̂rYrB(ε)R−1(ε)BT (ε)

k∑

i=1

µiYi

+
k∑

i=1

µiYi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sYs

− µ1

k∑

r=1

µ̂rYrB(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sYs

−

k∑

i=2

µi

i−1∑

j=1

2i!

j!(i − j)!
YjG(ε)WGT (ε)Yi−j

]
x0

+ 2xT
0

{
k∑

i=1

µi

d

dε
T̆i(ε) − AT (ε)

k∑

i=1

µiZ̆i + µ1Q(ε)γ(ε)

+

k∑

r=1

µrYrB(ε)R−1(ε)BT (ε)

k∑

i=1

µiZ̆i

−
k∑

i=1

µiYiB(ε)

[
−R−1(ε)BT (ε)

k∑

r=1

µ̂rZ̆r + ρ(ε)

]

− µ1

k∑

r=1

µ̂rYrB(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sZ̆s

}

+

k∑

i=1

µi

d

dε
Ti(ε) −

k∑

i=1

µiTr
{
YiG(ε)WGT (ε)

}

− 2

k∑

i=1

µiZ̆
T
i B(ε)

[
−R−1(ε)BT (ε)

k∑

r=1

µ̂rZ̆r + ρ(ε)

]

− µ1γ
T(ε)Q(ε)γ(ε)

− µ1

k∑

r=1

µ̂rZ̆
T
r B(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sZ̆s . (38)

What remains is to exhibit the time parametric functions for

the candidate function W
(
ε,Y, Z̆,Z

)
of the value function,

i.e., {Ei(·)}
k
i=1,

{
T̆i(·)

}k

i=1
, and {Ti(·)}

k
i=1 which yield a

sufficient condition to have the left-hand side of (38) being

zero for any ε ∈ [t0, tf ], when {Yi}
k
i=1 and

{
Z̆i

}k

i=1
are

evaluated along the solutions of the cumulant-generating

equations (26)-(28).

With a careful examination of (38), one can infer that

{Ei(·)}
k
i=1,

{
T̆i(·)

}k

i=1
and {Ti(·)}

k
i=1 may be chosen to

satisfy the time-forward differential equations as follows

d

dε
E1(ε) = AT (ε)H1(ε) + H1(ε)A(ε) + Q(ε)

−H1(ε)B(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sHs(ε)
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−

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)H1(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) (39)

d

dε
Ei(ε) = AT (ε)Hi(ε) + Hi(ε)A(ε)

−Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)Hi(ε)

+

i−1∑

j=1

2i!

j!(i − j)!
Hj(ε)G(ε)WGT (ε)Hi−j(ε) (40)

d

dε
T̆1(ε) = AT (ε)D̆1(ε) − Q(ε)γ(ε)

−

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆1(ε)

+ H1(ε)B(ε)

[
−R−1(ε)BT (ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]

+

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sD̆s(ε) (41)

d

dε
T̆i(ε) = AT (ε)D̆i(ε)

−

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆i(ε)

+ Hi(ε)B(ε)

[
−R−1(ε)BT(ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]
(42)

d

dε
T1(ε) = Tr

{
H1(ε)G(ε)WGT (ε)

}
+ γT(ε)Q(ε)γ(ε)

+ 2D̆T
1 (ε)B(ε)

[
−R−1(ε)BT (ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]

+

k∑

r=1

µ̂rD̆
T
r (ε)B(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sD̆s(ε) (43)

d

dε
Ti(ε) = Tr

{
Hi(ε)G(ε)WGT (ε)

}

+ 2D̆T
i (ε)B(ε)

[
−R−1(ε)BT(ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]
(44)

The affine control input and feedback gain specified in (36)

and (37) are now applied along the solution trajectories of

the time-backward Riccati-type equations (26)-(28)

d

dε
H1(ε) = −AT (ε)H1(ε) −H1(ε)A(ε) − Q(ε)

+ H1(ε)B(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sHs(ε)

+

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)H1(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) (45)

d

dε
Hi(ε) = −AT (ε)Hi(ε) −Hi(ε)A(ε)

+ Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)Hi(ε)

−

i−1∑

j=1

2i!

j!(i − j)!
Hj(ε)G(ε)WGT (ε)Hi−j(ε) (46)

d

dε
D̆1(ε) = −AT (ε)D̆1(ε) + Q(ε)γ(ε)

+

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆1(ε)

−H1(ε)B(ε)

[
−R−1(ε)BT (ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]

−

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sD̆s(ε) (47)

d

dε
D̆i(ε) = −AT (ε)D̆i(ε)

+

k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆i(ε)

−Hi(ε)B(ε)

[
−R−1(ε)BT (ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]
(48)

d

dε
D1(ε) = −Tr

{
H1(ε)G(ε)WGT (ε)

}
− γT (ε)Q(ε)γ(ε)

− 2D̆T
1 (ε)B(ε)

[
−R−1(ε)BT (ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]

−

k∑

r=1

µ̂rD̆
T
r (ε)B(ε)R−1(ε)BT (ε)

k∑

s=1

µ̂sD̆s(ε) (49)

d

dε
Di(ε) = −Tr

{
Hi(ε)G(ε)WGT (ε)

}

− 2D̆T
i (ε)B(ε)

[
−R−1(ε)BT(ε)

k∑

r=1

µ̂rD̆r(ε) + ρ(ε)

]
(50)

where the terminal-value conditions H1(tf ) = Qf , Hi(tf ) =
0 for 2 ≤ i ≤ k; D̆1(tf ) = −Qfγ(tf ), D̆i(tf ) = 0 for

2 ≤ i ≤ k; and D1(tf ) = γT (tf )Qfγ(tf ), Di(tf ) = 0 for

2 ≤ i ≤ k.

The boundary condition of W(ε,Y, Z̆,Z) implies that

xT
0

k∑

i=1

µi (Hi0 + Ei(t0)) x0 + 2xT
0

k∑

i=1

µi

(
D̆i0 + T̆i(t0)

)
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+

k∑

i=1

µi (Di0 + Ti(t0))

= xT
0

k∑

i=1

µiHi0x0 + 2xT
0

k∑

i=1

µiD̆i0 +

k∑

i=1

µiDi0 .

The initial conditions for the equations (39)-(44) are given as

follows Ei(t0) = 0, T̆i(t0) = 0, and Ti(t0) = 0. Finally, the

optimal linear input (36) and feedback gain (37) minimizing

the new performance index (25) become optimal

l∗f (ε) = −R−1(ε)BT (ε)

k∑

r=1

µ̂rD̆
∗
r (ε) ,

K∗(ε) = −R−1(ε)BT (ε)

k∑

r=1

µ̂rH
∗
r(ε) .

Theorem 5: Optimal Risk-Averse Tracking Solution.

Suppose (A,B) is uniformly stabilizable and (C,A) is

uniformly detectable where CT (t)C(t) � Q(t). Assume

further k ∈ Z
+ and the sequence µ = {µi ≥ 0}k

i=1

with µ1 > 0 fixed. The optimal tracking solution for the

generalized tracking problem whose the state dynamics x(t)
and control inputs u(t) governed by (1) and (2) will track

closely the desired trajectory γ(t) and reference command

inputs ρ(t), is given by the risk-averse policy

u∗(t) = K∗(t)x∗(t) + l∗f (t) + ρ(t) , (51)

K∗(α) = −R−1(α)BT (α)

k∑

r=1

µ̂rH
∗
r(α) , (52)

l∗f (α) = −R−1(α)BT (α)

k∑

r=1

µ̂rD̆
∗
r (α) (53)

where the normalized weightings µ̂r � µi/µ1 emphasize on

different design freedom of shaping the probability density

function of the generalized performance-measure (5).

The optimal cumulant-generating solutions {H∗
r(α)}

k
r=1,

and
{
D̆∗

r(α)
}k

r=1
respectively satisfy the time-backward

matrix-valued differential equations

d

dα
H∗

1(α) = − [A(α) + B(α)K∗(α)]
T
H∗

1(α)

−H∗
1(α) [A(α) + B(α)K∗(α)]

− Q(α) − K∗T (α)R(α)K∗(α) ; H∗
1(tf ) = Qf (54)

and, for 2 ≤ r ≤ k with H∗
r(tf ) = 0

d

dα
H∗

r(α) = − [A(α) + B(α)K∗(α)]
T
H∗

r(α)

−H∗
r(α) [A(α) + B(α)K∗(α)]

−

r−1∑

s=1

2r!

s!(r − s)!
H∗

s(α)G(α)WGT(α)H∗
r−s(α) (55)

finally, the time-backward vector differential equations

d

dα
D̆∗

1(α) = − [A(α) + B(α)K∗(α)]
T
D̆∗

1(α)

−H∗
1(α)B(α)

[
l∗f (α) + ρ(α)

]

− K∗T (α)R(α)l∗f (α) + Q(α)γ(α) (56)

d

dα
D̆∗

r (α) = − [A(α) + B(α)K∗(α)]
T
D̆∗

r (α)

−H∗
r(α)B(α)

[
l∗f (α) + ρ(α)

]
, 2 ≤ r ≤ k (57)

with the terminal-value conditions D̆∗
1(tf ) = −Qfγ(tf ) and

D̆∗
r (tf ) = 0 for 2 ≤ r ≤ k.

Remark 2: Note that the optimal feedback gain (52) and

affine control input (53) operate dynamically on the time-

backward histories of the cumulant-supporting equations

(54)-(55) and (56)-(57) from the final to the current time.

Moreover, it is important to see that these dynamical equa-

tions are functions of the noise process characteristics, i.e.,

second-order statistic W . Hence, the high confident tracking

paradigm consisting optimal feedback gain (52) and affine

input (53) has traded the certainty equivalence property, as

one may normally obtain from the special case of traditional

linear-quadratic tracking, for the adaptability to deal with

uncertain environments and performance variations.

V. CONCLUSIONS

The present paper proposes an advanced solution concept

and a novel paradigm of designing feedback controls for a

class of stochastic systems to simultaneously track reference

trajectory and command input in accordance of the so-

called, risk-averse performance index that is now composed

of multiple selective performance-measure statistics beyond

the traditional statistical average. A numerical procedure of

calculating higher-order statistics associated with the Chi-

squared performance-measure is also obtained. The robust-

ness and uncertainty of tracking performance is therefore,

maintained compactly and robustly. The complexity of the

feedback controller may however increase considerably, de-

pending on how many performance-measure statistics of the

target probability density function are to be optimized.
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