
  

  

Abstract—We compared four algorithms for controlling a 

MEMS deformable mirror of an adaptive optics (AO) scanning 

laser ophthalmoscope. Interferometer measurements of the 

static nonlinear response of the deformable mirror were used to 

form an equivalent linear model of the AO system so that the 

classic integrator plus wavefront reconstructor type controller 

can be implemented. The algorithms differ only in the design of 

the wavefront reconstructor. The comparisons were made for 

two eyes (two individuals) via a series of imaging sessions. All 

four controllers performed similarly according to estimated 

residual wavefront error not reflecting the actual image quality 

observed. A metric based on mean image intensity did 

consistently reflect the qualitative observations of retinal image 

quality. Based on this metric, the controller most effective for 

suppressing the least significant modes of the deformable 

mirror performed the best. 

I. INTRODUCTION 

DAPTIVE optics has received considerable attention 

for vision science applications since it was first applied 

to the eye in 1997 and shown the first images of single cone 

photoreceptors in a living human eye [1]. Similar to how the 

earth’s atmosphere degrades the image quality of ground-

based telescopes, aberrations due to the eye’s optical 

imperfections degrade image quality making it difficult for 

clinicians and scientists to observe microscopic structures of 

the retina. Adaptive optics (AO) aims to remove most of 

these degradations by measuring the aberrations with a 

wavefront sensor (WFS), and through a feedback policy, 

adjust the surface profile of a deformable mirror (DM) to 

minimize the residual wavefront error. 

The first AO retinal imager was a standard flood 

illuminated fundus camera [1, 2] and since then, AO has 

been successfully combined with other technologies such as 

the scanning laser ophthalmoscope (AOSLO) [3, 4] and 

optical coherence tomography [5]. But in comparison to 

astronomical AO systems, the refinement of system 

performance, particularly at the control system level, has not 

been rigorously addressed. As the number of applications 
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increase, we can expect increases in the diversity of users 

and in the number of patients with more challenging optics 

(i.e. post-surgery, dry eyes, etc.). Improvements in system 

performance and robustness can significantly increase the 

clinical and scientific throughput (better quality images from 

a larger pool of patients) of an AO retinal imaging system. 

Earlier control systems used in vision science AO systems 

often exhibited immediate clipping (saturation in one 

direction) and excessively long convergence times which 

made them impractical for clinical deployment [1, 4]. Many 

of these problems were patient dependent (fixation stability, 

tear quality, retinal reflectivity, etc.), so there is a large 

variability in retinal image quality among subjects which 

further complicates clinical investigations. The standard 

basis for AO control loop design, which involves modeling 

the plant (DM and WFS) with a static interaction matrix, was 

adopted somewhat recently in vision science [2]. The control 

law is an integrator in series with some type of inverse of the 

plant called the wavefront reconstructor. The interaction 

matrix is generated experimentally through a series of open 

loop measurements of each actuator’s spatial response, and 

either the standard pseudo-inverse or regularized inverse is 

used to compute the wavefront reconstructor. 

We expanded on the standard AO controller design by: 1) 

incorporating the static nonlinear actuator response into an 

input linearization step and 2) implementing four different 

control algorithms on a AOSLO that use a MEMS DM [4]. 

Each algorithm optimizes a particular quadratic cost function 

in the design of the wavefront reconstructor and uses the 

standard integrator update law. We imaged two patients 

using each algorithm and quantified our findings using two 

different image quality metrics. 

II. DESCRIPTION OF THE AOSLO 

The control loop operates over the optical path of the 

AOSLO shown in Fig. (1). The infrared beam is provide by 

an 840 nm superluminescent diode (SLD) (Superlum Ltd., 

Russia) and a photomultiplier tube (PMT) (Hamamatsu, 

Japan) is used for light detection. The MEMS DM (Boston 

Micromachines Corporation, USA) has a 12 by 12 actuator 

array minus the corner pixels making a total of 140 inputs. 

Based on measurements made using a phase shifting 

interferometer (PSI), a single actuator has a stroke range of 

about 1.2 µm. The WFS is a Shack-Hartmann type with a 

subaperture diameter of 400 µm and a maximum frame rate 

of about 25 Hz. For a 6 mm diameter pupil, the wavefront is 
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sampled at 213 locations. 

The infrared beam is coupled into the imaging path by a 

beam splitter and passes through a series of relay optics, 

DM, and scanning mirrors before being focused onto the 

retina. The reflected light from the retina returns along the 

same path reaching the same beam splitter. Most of the light 

passes through the beam splitter and is focused on the plane 

of the confocal pinhole. Light reaching the PMT is converted 

into a voltage signal that is digitized by a framegrabber to 

one 8-bit pixel value in the final image (512 by 512 pixels). 

Only a small area of the retina is illuminated at any point in 

time, so the pixel value depends on the amount of reflection 

from that area and the quality of the optics the light passes 

through before reaching the confocal pinhole. The PMT is 

synchronized with the scanning mirrors’ timing mechanism 

(HS and VS in Fig. (1)), so images are constructed pixel by 

pixel from raster scanning the retina. 

The intensity point spread function (PSF) is the 

autocorrelation of the single-pass PSF (two-dimensional 

impulse response of the imaging system). 

( , ) ( ', ') ( ' , ' ) ' 'dpH x y H x y H x x y y dx dy= + +∫∫  (1) 

Where Hdp and H are the double-pass and single-pass PSFs 

respectively. The double-pass PSF is imaged onto the plane 

of the circular confocal pinhole modeled here with a 

rectangle function: 

( )2 2( , )c x y rect x y D= +  (2) 

where D is pinhole diameter (50 to 80 µm). The PMT 

integrates light transmitted by the pinhole, so the value of a 

pixel is always proportional to the integrated intensity at that 

point in the raster scan [6]: 

( , ) ( , )pixel dpI c x y H x y dxdy∝ ∫∫  (3) 

Minimizing the residual wavefront error condenses the 

spatial distribution of the PSF so more light passes through 

the pinhole increasing the pixel value.  

 
Fig. 1. Schematic diagram of the AOSLO (PMT – photomultiplier tube, CP 

– confocal pinhole, BS – beam splitter, WFS – wavefront sensor, SLD – 

superluminescent diode, DM – deformable mirror, HS – horizontal scanner, 

VS – vertical scanner). 

III. PROBLEM FORMULATION 

A. AO System Loop  

The wavefront from the eye is combined with the wavefront 

modulated by the DM surface profile to produce the residual 

wavefront seen at the WFS plane. According to the block 

diagram in Fig. (2), the error vector, which is the output of 

the WFS, is given by: 
1 1( ) ( ) ( ) ( )k z k z

− −= +e H Gu H w  (4) 

where u(k) and w are the input vector and the eye’s wave 

aberrations respectively. The WFS does not measure the 

wavefront directly but acquires a digital image, using a CCD 

camera, where wavefront gradients are estimated via an 

image processing algorithm. For the purpose of this study, 

we assume this algorithm to be sufficiently accurate. The 

best correction is achieved when the residual wavefront is 

flat or the gradient is zero. Since the DM is nearly 

instantaneous [7], the only plant dynamics are due to the 

CCD integration time of the WFS. 

The DM and WFS in eq. (4) are modeled by the 

interaction matrix T mapping the input vector to the 

wavefront gradients corresponding to the DM surface: 

( ) ( 1)k k= −Ty Tu  (5) 

The one step delay is due to the integration time of the 

WFS. When combined with the gradients of the incoming 

wavefront from the eye, eq. (4) simplifies to: 

( ) ( 1)k k= − + we Tu y  (6)  

where yw is the vector of sampled gradients of the eye’s 

aberrated wavefront. The standard integrator law employed 

by most AO systems is: 

( ) ( 1) [ ( ) ( )]k k k k= − + +u u L e v  (7)  

where L is the wavefront reconstructor matrix and v(k) is 

photon and CCD readout noise. From eq. (6) and eq. (7), we 

find the error update equation to be: 

( 1) [ ] ( ) ( )k k k+ = + +e I TL e TLv  (8) 

When noise appears to be dominating the measurement 

signal, the CCD camera’s integration time is heuristically 

adjusted in real-time by the operator to detect more light 

from the retina increasing signal to noise ratio. The tradeoff 

is a reduction in temporal bandwidth which appears to be 

less critical than the accuracy in estimating the error vector.  

 
Fig. 2. Block diagram of the closed loop AO system. I is the 140 by 140 

identity matrix and L is the wavefront reconstructor 
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B. Input linearization 

The system described by eq. (6) through eq. (8) assumes the 

mapping between the input and measurement vectors to be 

linear. When the input is voltage, this model only applies to 

linear DMs such as the piezoelectric DMs employed in 

several other systems [1, 3]. For MEMS, a linearization step 

is required to approximate an equivalent linear system. 

Deflection is achieved via electrostatic actuation, so a bias 

voltage needs be applied to the entire DM in order to actuate 

in both directions. The biased position should accommodate 

a maximum positive and negative single actuator deflection 

of equal magnitude, and the bias voltage was found using a 

PSI to be about 190 V. From this position, a single actuator 

is first released to 0 V and then driven incrementally to 265 

V while measuring the deflection every 20 V (except from 

260 V to 265 V). Deflections for six different actuators, 

averaged and normalized to range from -1 to 1, are shown in 

Fig. (3) with a second order polynomial fit. Defining the 

input vector as a set of normalized deflections better 

approximates the desired linear system model. The 

corresponding actuator voltages are found by solving for the 

roots of the fitted polynomial. 

 
Fig. 3. Normalized deflection versus voltage curve. Error bars denote one 

standard deviation for six different actuators.  

C. Interaction Matrix 

Identification of the interaction matrix T is done by 

introducing a nearly flat wavefront into the system with a 

model eye (lens and a diffuse scatterer positioned at the focal 

point) and measuring the static response of all the actuators 

[8]. The DM is set at the biased state and each actuator is 

pushed and pulled while measurements are made with the 

WFS. Letting 
i

t
+

 denote the gradients measured when an 

input of 1 (0 V) is applied to the i
th

 actuator and 
i

t
−

 the 

gradient measured when -1 (265 V) is applied to the same 

actuator, the i
th

 column of the interaction matrix is: 

( ) 2i it t
+ −= −it  (9) 

and the interaction matrix is defined as: 

[ ]= 1 2 140T t t t…  (10) 

Since there are 213 subapertures and each subaperture 

estimates both x and y derivatives, the dimensions of T are 

426 by 140. The final model used is based the average of 

several generated interaction matrices. 

IV. WAVEFRONT RECONSTRUCTION 

A. Standard Regularization 

A naive solution to the AO control problem seeks only to 

minimize the 2-norm of the error vector which results in a 

reconstructor that is the pseudo-inverse of the interaction 

matrix. However, the interaction matrix is ill-conditioned 

and the resultant reconstructor has been verified to be 

unstable in practice. A widely used technique for the 

inversion is the truncated singular value decomposition 

(SVD) where the smallest singular values of T are dropped. 

A more practical alternative to the SVD method is standard 

regularization where instead of dropping the smallest 

singular values, a constant regularization factor α is added to 

all the singular values [9]. This is equivalent to adding an 

input penalty to the standard cost function:  
2 22

2 2
( ) ( ) ( )J k k kα= +e u  (11) 

Minimizing J with respect to u(k) obtains the reconstructor: 
2 1( )α −= − +T TL T T I T  (12) 

Note that the design parameter α is the noise to signal ratio 

of the system.  

B. Local Waffle Penalty 

Waffle modes are created by driving adjacent actuators in 

opposite directions producing a voltage map resembling a 

checkerboard pattern. Patches of this pattern are often 

observed when SVD or standard regularization methods are 

used. Since they are not well sensed by the WFS, they can 

slowly build up in the control loop degrading retinal image 

quality in the process. 

The suppression of waffle modes is a spatial frequency 

shaping problem. The following finite impulse response 

(FIR) filter is used to model local waffle structure [9]: 

1 1

1 1

−

−
 

which is simply a first derivative operation. By implementing 

this convolution operation as a matrix multiplication applied 

to the input vector u(k), the cost function and its 

corresponding reconstructor can be derived as: 
2 2 2

2
( ) ( ) ( ) ( )J k k k kα η = + + 

T T T
e u F F VV u  (13) 

2 2 1( )α η −= − + +T T T TL T T F F VV T  (14)  

where F is the convolution matrix form of the FIR filter for 

local waffle. Matrix V is designed to span the nullspace of F 

(required for 2 2 0α η+T TF F VV ≻ ). In principle, piston is 

the only mode that needs to be included in V but empirical 

observations of tip and tilt mode buildup during closed loop 

operation lead to their inclusion as well. The structures of 

piston, tip and tilt modes are shown in Fig. (4). 

C. Kolmogorov Penalty 

In astronomy, statistical models for noise and atmospheric 

turbulence are routinely used to optimize the design of the 

reconstructor matrix [9, 10]. Atmospheric turbulence is often 
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modeled to follow Kolmogorov theory, but there is evidence 

that the spatial power spectrum of the eye’s wave aberrations 

also follow the classical Kolmogorov model [11]. Assuming 

the wavefront is proportional to the actuator commands, a 

sparse approximation for the inverse wavefront covariance 

matrix for the Kolmogorov model exists [12]: 
1−Λ ≈ T

ww C C  (15) 

where C is the convolution matrix form of the FIR filter for 

the discrete Laplacian operator: 

0 1 0

1 4 1

0 1 0

−  

Denoting the noise covariance matrix by Λvv
, which we 

assume to be both white and constant in variance across the 

pupil, the cost function and its corresponding reconstructor 

become very similar to those for the previous design: 
1 1 2

2 2 2

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

J k k k k k

k k k

η

α η

− − = Λ + Λ + 

 = + + 

T T T

vv ww

T T T

e e u VV u

e u C C VV u

 (16) 

2 2 1( )α η −= − + +T T T TL T T C C VV T  (17) 

The nullspace of C is spanned by piston, tip and tilt so these 

modes make up the columns of V. It is worth noting that this 

reconstructor under integral control is the minimum variance 

controller for nearly ideal imaging conditions [13]. 

 
Fig. 4. From left to right: piston, tip and tilt input modes. 

D. Zernike Polynomials 

Zernike polynomials, a set of two dimensional polynomials 

that are orthogonal over the unit circle, are almost 

exclusively used to quantify the eye’s wave aberrations [11, 

14, 15]. If a finite set of Zernike modes can accurately 

represent the eye’s aberrations, projecting the input vector 

onto a Zernike spanned subspace should improve system 

robustness during less-than-ideal experimental conditions. 

Furthermore, this method can allow for the correction of 

certain Zernike modes (i.e. defocus, astigmatism, etc.) while 

leaving all others intact which may be useful for certain 

applications such as vision performance testing. 

An input vector defined by the first N Zernike modes can 

be described by: 
1

0

N

i i

i

c Z
−

=

= =∑u Zc  (18) 

Where ci and Zi are the i
th

 Zernike coefficient and mode 

vector (evaluated at each actuator point) respectively, and 

the matrices are defined as: 

[ ] 140

3 4 1

N

NZ Z Z
×

−= ∈ℜZ …  (19) 

[ ] 140

3 4 1Nc c c −= ∈ℜ
T

c …  (20) 

Z0 through Z2 correspond to piston, tip and tilt and are 

therefore not included in Z. N is 66 for the 10
th

 order 

correction used in this study. Substituting eq. (18) into eq. 

(6) obtains the relationship between the error vector and the 

Zernike coefficient vector: 

( ) ( 1)k k= − + we TZc y  (21) 

The Zernike polynomial reconstructor minimizes the cost 

function with respect to the Zernike coefficient vector: 
2 22

2 2
( ) ( ) ( )J k k kα= +e c  (22) 

2 1]α −= − +T TL Z[(TZ) (TZ) I (TZ)  (23) 

 It is worth noting from an implementation standpoint that 

the Zernike polynomials lose their orthogonality when 

discretized and extrapolated over a nearly square actuator 

array. For this reason, matrix Z is ill-conditioned, so the 

Gram-Schmidt procedure is applied to the columns of Z 

before evaluating eq. (23). 

V. STABILITY 

Stability for the closed loop system described by eqs. (7) and 

(8) can be addressed by analyzing the behavior of the 

Lyapunov function: 

( ( 1)) ( 1) ( 1)

( )[ ] [ ] ( )

V k k k

k k

+ = + +

= + +

T

T T

e e e

e I TL I TL e
 (24) 

Letting W be the weighting matrix on u(k) (c(k) for the 

Zernike polynomial case), it can be shown that: 

( ( 1)) ( ) ( ) ( ) ( 2 ) ( )

( ( )) ( ) ( 2 ) ( )

V k k k k k

V k k k

+ = − +

⇒ ∆ = − +

T T T

T T T

e e e e L T T W Le

e e L T T W Le
 

Matrix W must be positive definite because the lack of 

weighting on input u(t) would create unbounded input 

magnitudes leading to actuator saturation. For the standard 

regularization and Zernike polynomial cases, W was 

proportional to identity so positive definiteness was trivial. 

For the other two designs, we manually identified specific 

modes that needed to be explicitly penalized in order to 

establish positive definiteness. It follows immediately that: 

2 0+T
T T W ≻  (25) 

But since L is a weighted inverse of T, it cannot have full 

column rank ( 140 426×∈ℜL ). Therefore, 

( 2 ) 0

( ( )) 0V k

+ ≥

⇒ ∆ ≤

T TL T T W L

e
 (26)  

so the system is stable in the sense of Lyapunov regardless of 

which reconstructor is used. However, this is enough to 

guarantee that the control signal and wavefront error signals 

do not go unbounded. 

 A more thorough stability analysis would require accurate 

modeling of electrostatic actuation coupled with the 

membrane deformation properties of the DM. A 

mathematical model of the type of MEMS device used in this 
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study has been assessed [16]. It was not adopted for this 

study because the model’s predicted membrane response did 

not match the actual membrane response of our MEMS 

device at high voltages. 

VI. RESULTS 

The imaging sessions were kept short (~20 seconds) and 

administered minutes apart to minimize subject fatigue 

which may bias the comparisons. The center of the raster 

scan was placed approximately 0.4 degrees outside of the 

subjects preferred fixation point. The scanning was 

performed over approximately 0.9 degrees retinal 

eccentricity which corresponds to about 0.265 mm for 

subject 1 and 0.279 mm for subject 2 since eye sizes differ 

among individuals. The two image quality metrics used to 

quantify system performance are the root-mean-square 

(RMS) wavefront error and the mean pixel value of the 

retinal image. The RMS wavefront error was computed in 

real-time and logged for each experiment. Mean pixel values 

were computed offline. 

The sampled wavefront gradients from output vector e(k) 

were integrated to estimate the two-dimensional wavefront 

maps used to compute the RMS wavefront error [17]. 

According to Fig. (5), the RMS error converged in all four 

cases for both subjects and remained near the best corrected 

state over the entire imaging session. However, performance 

traces based on the mean pixel value of each acquire frame, 

shown in Fig. (6), displayed a much greater level of 

diversity. The retinal image pixel values are more direct 

indicators of image quality since certain aberration profiles 

from either the DM or the eye can lie beyond the sampling 

capabilities of the WFS. 

The temporal mean and standard deviation for both image 

quality metrics during closed loop operation are tabulated in 

Fig. (7). The results suggest that the Kolmogorov penalty 

reconstructor modeled the power spectrum of the eye’s wave 

aberrations most accurately out of the four tested 

reconstructors. The Zernike polynomial reconstructor 

performed the worst overall for the two subjects in this 

study, but we have experienced imaging conditions where 

measurements were poor, and only the Zernike polynomial 

reconstructor was robust enough to make an effective 

correction. 

A set of acquired cone mosaic images are shown in Fig. 

(8). They correspond to the data in Fig. (5) and Fig. (6) for 

subject 2, stabilized and frame averaged (100 manually 

selected frames) to improve contrast. The round spots with 

varying intensities packed in a nearly hexagonal array are 

cone photoreceptors. For this particular subject, these 

features are noticeably more blurry in images acquired using 

the Zernike polynomials and the local waffle penalty 

reconstructors, which is consistent with the observed mean 

pixel value traces. Cones become much smaller and more 

tightly packed at the fovea center [18], and further system 

refinements are needed to reliably resolve them. 

 
Fig. 5. Performance based on the estimated RMS of the residual wavefront 

error for subject 1 (left) and subject 2 (right). SR – standard regularization; 

LWP – local waffle penalty; KP – Kolmogorov penalty; ZP – Zernike 

polynomials 

 

 
Fig. 6. Performance based on the mean pixel value of the retinal images 

 

RMS error (nm) Mean pixel value  

Subject 1 Subject 2 Subject 1 Subject 2 

SR 76 ± 16 63 ± 11 50.92 ± 1.58 82.12 ± 4.28 

LWP 76 ± 11 57 ± 8 53.60 ± 1.50 75.34 ± 4.92 

KP 65 ± 11 59 ± 16 53.85 ± 1.28 90.32 ± 4.33 

ZP 94 ± 14 62 ± 5 48.36 ± 3.42 76.74 ± 2.40 

Fig. 7. Temporal mean and standard deviation of the RMS wavefront error 

and the mean pixel value beginning from about two seconds after closing 

the control loop 

VII. CONCLUSION 

The work presented in this paper marks the first step to 

improving the resolution of a vision science AO imaging 

systems by using more advanced controllers; an important 

design component that is often overlooked based on relevant 

literature. We have addressed the AO control problem 

focusing primarily on implementation and testing and 

demonstrated that sharper images of the human cone mosaic 

can be obtained by improving the control system. For 

countering the static nonlinear properties of the MEMS 

device, we have added an input linearization step based on 

deflection measurements made using a PSI. A critical design 

component of the integrator type controller for AO systems 

is the wavefront reconstructor. Four reconstructors based on 

the optimization of quadratic cost functions were described 

and tested on two real eyes. In addition to the standard 

regularization method, we considered two designs using 

spatial frequency shaped DM modes and also a modal 

reconstructor based on a finite set of Zernike polynomials [9, 

12, 19]. 

Two quantitative image quality metrics were used to 

evaluate the performance of the control algorithms: 1) RMS 

residual wavefront error and the 2) mean pixel value of the 

acquired retinal image. Even though the four controllers 

performed similarly according to the computed RMS 
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wavefront error, they did not all produce retinal images of 

similar quality. The mean pixel value is a more sensitive 

indicator of retinal image quality because it is directly related 

to the system’s PSF. The Kolmogorov penalty reconstructor 

performed the best according to the mean pixel value 

suggesting that it makes a reasonable approximation of the 

statistics of the eye’s wave aberrations. Even though the 

Zernike polynomial reconstructor did not outperform the 

other methods in most cases, it can be a practical alternative 

during less than ideal imaging conditions. 
 

 
Fig. 8. Examples of AOSLO images from subject 2 acquired with each of 

the four control algorithms (top left: SR, top right: LWP, bottom left: KP 

and bottom right: ZP). Each image subtends from approximately 0 (fovea 

center) to 0.8 degrees (0.25 mm) eccentricity. 
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