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Abstract–We propose a randomized algorithm aimed at
reaching, in finite time, exact consensus among a set of agents
that are linked though a connected, possibly time-varying,
graph. The information exchanged among neighboring agents
is limited in size, by randomly selecting the content from an
agent internal state. The time needed to reach the agreement
is a random variable, whose empirical cumulative distribution
function is utilized to determine a stopping rule that ensures
consensus is achieved with a prescribed confidence level.
Simulation results show that the consensus-reaching time ob-
tained with a prescribed confidence level compares relatively
well to local-averaging-based algorithms. The algorithm is
shown to be robust, to some extent, to lossy communications
and is demonstrated on a weapon-target assignment problem.

I. Introduction

Motivated by the desire to implement distributed
cooperative optimization schemes in realistic operating
conditions, an agreement-reaching algorithm is proposed
to ensure consistency of the state variables exchanged
among agents despite limited communications band-
width. Distributed cooperative optimization may be
needed for weapon-target assignment strategies and
multiagent path planning [1]. Typically, such strategies
require that each agent solves a local optimization
problem using information obtained from neighboring
agents. Inter-agent communications are needed to reach
a so-called agreement or consensus. Consensus ensures
that the action taken by any agent in the team is
consistent with that of its neighbors. Algorithms that
enable such consensus reaching for a set of agents
belong typically to two classes: Distributed Averaging-
Based Algorithms (DABAs) [2], [3], [4], and probabilistic
counting approaches, such as randomized gossip mecha-
nisms [5]. Applications of consensus-reaching algorithms
include coordination of groups of vehicles [6], and belief
propagation in network of sensors [7]. See [2] for an
extended bibliography on the literature on consensus.
Most algorithms yield asymptotic convergence to a

consensus value. Yet, three approaches have been re-
cently proposed to ensure finite-time convergence to
consensus. The first one is based on normalized and
signed gradient descent flows [8]. It leads to nonsmooth
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dynamics. Discrete-time implementation of such algo-
rithms may thus exhibit chattering when the states are
in the vicinity of the consensus value. A second approach
is derived by calculating weights in DABAs so that the
observability matrix of the network is contained in some
defined space [9]. Such strategy is time optimal in fixed-
topology communication graphs. Weight computation
necessitates that the topology of the graph be fixed and
that an initialization phase be carried out before the
consensus reaching phase. Robustness to intermittent
losses of communication links and of computing nodes
is not guaranteed, however. A third approach leverages
properties of de Bruijn’s graph and block Kronecker
product to show that the average consensus can be
reached in finite time if the number of nodes is an exact
power of the maximum in-degree of the graph [10].
We propose a discrete-time, probabilistic algorithm,

labeled as Finite-Time, Reaching-at-Risk Consensus
(FTRaRC), that allows reaching, in finite time and in
a distributed manner, the exact value of an average-
based agreement among connected agents with a pre-
scribed level of confidence (LoC). Our results have to
be contrasted with those of [8]. Indeed, the proposed
FTRaRC is not a discretization of a continuous-time
algorithm, the real-time implementation of FTRaRC is
free of chattering, and the performance of FTRaRC
is independent of the sampling period. We show by
means of simulations that FTRaRC is able to reach
consensus even though the communication graph is
temporarily unconnected. Contrary to DABAs, FTRaRC
does not require agents to update and communicate
a local estimate of the consensus, but rather entails
aggregation of the information of all agents and then
computes the consensus once the integral information is
available to every agent. The amount of data sent by
each agent is kept constant during each communication
event, and is selected randomly from an internal state,
which stores the information relevant to the mission
of interest. Such randomness motivated us to employ
the expression reaching-at-risk. The proposed FTRaRC,
however, requires additional memory when compared to
DABAs, which makes it unsuitable for relatively large
networks of agents, and for consensus that involves
interagent exchanges with high-dimension matrices.

II. Definitions, Assumptions, and Objectives

A set F of p ∈ N+ agents, Fi, where i ∈ {1, ..., p} = B,
is considered. Let EB represent the set of all pairs of

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThB19.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3286



agents Fi and Fj such that Fi communicates with Fj , and
vice versa. A neighbor of Fi is thus defined as the agent
Fj such that (Fi, Fj) ∈ EB . The communication graph
Gc = (F , EB) is assumed time invariant, undirected, and
connected, although not necessarily complete. The terms
agent and graph node are taken as synonyms in this
paper. 0p and 1p stand for the 1 × p zero and unitary
vectors, respectively.
Assumption 1 (Information available to Fi) At the initial
time, M1,i,1 and M2,i,1 are available to Fi, i ∈ {1, ..., p}.
M2,i,1 is either a scalar, a vector or a matrix, which
is utilized to compute the consensus (1/p)

Pp
i=1M2,i,1.

M1,i,1 represents an identity number, to which M2,i,1 is
associated.
Assumption 2 (Communications). The time is discretized
as tk, where t1 < ... < tk < tk+1 < ... for all
k ∈ N+. During time interval [tk, tk+1), which is not
necessarily periodic, each Fi updates and communicates
{M1,i,k,M2,i,k} to its neighbors. To comply with usual
communication bandwidth constraints, it is assumed
that the amount of data exchanged between any pair
of agents over [tk, tk+1) during the entire consensus-
reaching process has a fixed size given by the dimensions
of M1,i,k and M2,i,k.
Although we assume a time-invariant Gc, numerical

simulations include intermittent losses of communica-
tions. The results of Section IV indicate that FTRaRC
displays a certain level of robustness to intermittent
losses of communications.
Information Consensus Objective. From Assumptions
1 and 2, find a consensus reaching-at-risk mechanism
that is distributed over the set of agents Fi, i ∈
{1, ..., p}, and that relies on the exchange of information
{M1,i,k,M2,i,k} through Gc such that, given a prescribed
LoC, every agent Fi ∈ F is able to compute, in a finite
number of iterations, the exact consensus value defined
as (1/p)

Pp
i=1M2,i,1. Note that although NEWTAS mo-

tivated us to focus on average consensus, the proposed
FTRaRC remains valid for consensus that involves any
function of M2,i,1.

III. Consensus Algorithm

Most information consensus algorithms proposed in
the last few years ensure asymptotic convergence, in
the time domain, of the variables shared through a
connected, possibly time-varying, graph Gc [2], [3]. The
reader is referred to Fig. 1(a). Information state Ii,k of
Fi at iteration step k is usually updated by means of the
following rule (see (15) in [2])

Ii,k = Ii,k−1 + ε
X
l∈Ni

(Il,k−1 − Ii,k−1), (1)

where Ni denotes the set of neighbors of i, and ε is the
sample period associated with the discrete-time consen-
sus algorithm. Such rules enable each node’s information
state to approach (1/p)

Pp
i=1 Ii,1 as t→∞.

FTRaRC is based on the following observation. As-
sume that the size of data communicated among each
pair of adjacent nodes in Gc is allowed to vary, as opposed
to Assumption 2. An agent stores, at each tk, the data
communicated from its neighbors and publishes, at tk+1,
the content of its internal memory. It is straightforward
to notice that the connectedness of the communication
graph implies that a consensus will be reached after a few
iterations since all agents are in possession of the same
content. To see this, consider the graph of Fig. 1(a),
which is composed of 8 agents. Assume that one aims at
agreeing about the mean value of a variable Ii indexed by
i = arg(Fi), which is the identity of Fi. At iteration step
k = 0, Fi’s internal memory, Mi, is set to i. At k > 0,
Fi communicates to its neighbors the content of Mi and
the set of all I∗, where index ∗ belongs to Mi. It can be
easily shown that consensus is reached after four steps;
i.e., Mi = B is obtained, at k = 4, for all i ∈ {1, ..., 8}.
Each agent is thus able to compute (1/8)

P8
k=1 Ik. To

satisfy Assumption 1, we propose to constrain the size
of the amount of data that is communicated by Fi to
its neighbors, and to randomly select such information
from Mi, as explained in the sequel. Let u

j
1,i,k and u

j
2,i,k

be the input variables of Fi communicated by Fj ∈ Ni
at tk ∈ N+, where Ni stands for the set of neighbors of
Fi. The input variable u

j
1,i,k carries the identity of only

one of the p agents selected randomly, whereas uj2,i,k
carries the state that is eventually used to compute the
agreement. FTRaRC (Fig. 1(b)) can be described as a
3-step algorithm as follows.
Step 1. (Initialization) For each agent Fi set, at time t1,

M1,i,1 = i (= argFi), M2,i,1 = Ii,1. (2)

Ii,1 denotes the information available to Fi at t1.
Step 2. (Iterations)
Task 2.1. The interconnection of Fi’s inputs with the
output of neighbor Fj ∈ Nj is described, at tk > t1, by

uj1,i,k = y1,j,k−1, U1,i,k = {uj1,i,k, j ∈ Ni},
uj2,i,k = y2,j,k−1, U2,i,k = {uj2,i,k, j ∈ Ni}.

(3)

Task 2.2. The internal memory M1,i,k and M2,i,k of Fi
are updated as follows

M1,i,k =M1,i,k−1 ∪ U1,i,k,
M2,i,k =M2,i,k−1 ∪ U2,i,k. (4)

Task 2.3. The fixed size in the amount of data commu-
nicated between Fi and the set of its adjacent agents is
guaranteed by determining the signals sent by Fi as

y1,i,k = rand(M1,i,k\Y1,i,k−1| {z }
Mi

) = i∗,

y2,i,k = Ii∗,1,

(5)

where Y1,i,k−1 = {y1,i,1, ..., y1,i,k−1}. The randomized
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selection of the output in (5) is defined as follows

y1,i,k = rand(Mi)

=

⎧⎨⎩ j if Mi = (0, ..., 0, j, 0, ..., 0),
il if Mi = (i1, ..., ip0), p0 ≤ p,

and il 6= j,
p(y1,i,k = il) = piil , ∀l ∈ {1, ..., p0},Pp0

l=1 piil = 1, piil > 0,

(6)

where subscript i refers to Fi.
Step 3. (Termination condition) The consensus is reached
at tk0 , when k

0 ∈ N+ is such that the equality

M1,i,k0 = B (7)

is satisfied for all i ≤ p. Hence, all of the agents agree
on the same information state computed as

M2,i,k =
1

p

pX
i=1

Ii,k0 . (8)

Proposition 1. Supposing Assumption 1 and Assumption
2 hold and that Gc is a connected, time-invariant graph,
then there exists k

0 ∈ N+ such that the FTRaRC
expressed in (3)-(8) satisfies P (M1,i,k0 = B) > 0 for
all i ∈ B; i.e., the probability that consensus is reached
in finite time is positive. 1
Proof. From Assumption 1, there exists a set rij(κ) =
{{Fi1 , ..., Fiκ−1} ∈ Fκ−1; (Fi, Fi1) ∈ EB, ..., (Fij , Fil) ∈
EB, ..., (Fiκ−1 , Fj) ∈ EB , j, l < κ − 1}, where κ ≤ p.
Denote κ∗ij = argmin

rij(κij)6=∅
κij and r∗ij = rij(κ

∗
ij) the set of

shortest paths from Fi to Fj , which exists since Gc is
connected. Note that r∗ij is not necessarily a singleton.
Therefore, the probability that the identity i (= M1,i,1)
of Fi at k = 1 and M2,i,1 reach any node Fj ∈ r∗ij after
κ∗ij iterations of (3)-(8) is given by

P (i ∈ Fj , Fj ∈ r∗ij)
= 1− Q

(Fi1 ,...,Fiκ∗
ij
−1 )∈r∗ij

(1− pi,i1pi1,i2 ...piκ∗ij−1,j), (9)

where pij ,il stands for the probability that variable i
(= M1,i,1) is communicated to il by ij . By construction
of the algorithm, pij ,il > 0, which in turn implies that
P (i ∈ Fj , Fj ∈ r∗ij) > 0. Denote κ∗i = max

j∈B,j 6=i
κ∗ij and

r∗i = {r∗ij , j ∈ B\{i}}. Thus for all κ0 ≥ κ∗i and for all
Fj ∈ F\{Fi}, (9) implies that P (i ∈ Fj , Fj ∈ r∗i ) > 0.
Letting k

00
= (p−1)max

i∈B
κ∗i yields P (M1,i,k00 = B) > 0 for

a given i ∈ B. The factor (p− 1) in k00 comes from the
communication constraint in Assumption 2. Similarly,
letting k0 = pk00 leads to P (M1,i,k0 = B) > 0 for all
i ∈ B. Expression of k0 is conservative since, depending
on Gc topology, M1,i,k00 = B and M1,j,k00 = B may occur
for some i, j ∈ B. 1
Next, Proposition 1 is extended to a class of jointly

connected time-varying graphs Gc(t) [6].
Assumption 3. The p agents of B are assumed to be
linked together across time intervals [τν , τν+1), ν ∈
N+where τν+1 − τν ∈ (0, T ] for some fixed T > 0;

i.e., the time-varying communication graph Gc(t) is a
jointly connected for all t ∈ [τν , τν+1). Gc(t) is jointly
connected over [τν , τν+1) if for allmν ∈ N+ time instants
tk ∈ [τν , τν+1), Gc(tk) is an element of {G1, ..., Gmν

;Gi =
(F , Ei), i = 1, ...,mν}, whose corresponding graph union
G = {F ,∪mν

i=1Ei} is connected.
Proposition 2. Supposing that Assumptions 1, 2, and 3
hold, then there exists K ∈ N+ such that P (M1,i,K =
B) > 0 for all i ∈ B. 1
Proof. The proof is similar to that of Proposition 1.
Indeed, when Gc is time invariant, the transition of the
identity variable i between two connected nodes depends
on the probability that i is selected, for communication
purpose, by one of the two nodes, which can be carried
out at least in one iteration step. With Assumption 3,
two nodes may be temporarily unconnected. The set
of paths linking two nodes over which the transition
probability in (9) has to be computed is no longer
fixed and thus no longer known a priori but is built
through a series of time intervals [τν , τν+1). Assumption
3 implies that there exits νij ∈ N+ such that Fi and
Fj are linked together over each interval [τo, τo+1) with
o = 1, ..., νij −1. Suppose without loss of generality that
at least one communication occurs in [τo, τo+1). Denote
tk(o) as the occurrence time of the communication. By
virtue of Assumption 3, there is a positive probability
pitk(o) ,itk(o+1) that the identity variable i is communicated
from Fk(o) to Fk(o+1), where Ftk(o) is the agent that
broadcasts i at tk(o). It is thus possible to find a
sufficiently large integer νij such that Fj = Ftk(νij) and
pi,itk(1)pitk(1) ,itk(2) ...pitk(νij−1) ,j

> 0. The probability that

i reaches any Fj ∈ F\{Fi} from Fi in Kij steps that is
greater than or equal to νij is bounded from below by
pi,itk(1)pitk(1) ,itk(2) ...pitk(νij−1) ,j

. Letting Ki = max
j∈B\{i}

Kij ,

there is a positive probability that i ∈ Fj for all j ∈
B\{i}. Adopting K = p(p − 1) max

j∈B\{i}
Kij , one obtains

P (M1,i,K = B) > 0 for all i ∈ B. 1
Remark 1. The algorithm in (3)-(8) reaches an exact
agreement among the agents in finite time, although at
the expense of a requirement on data storage. Indeed,
each agent should be capable of storing p values of
M1,i,k and M2,i,k. While M1,i,k is an integer, storage
requirement is likely to become a critical issue when, for
instance, M2,i,k is a large matrix.
Remark 2. To implement the termination condition in
Step 3, {M1,1,k, ...,M1,i,k, ...,M1,p,k}, should be available
to agent Fi. This is not usually the case as only M1,i,k

is available to Fi. A possible solution consists of incor-
porating additional input, state, and output variables to
(3)-(8); namely, uj2,i,k, M3,i,k, and y3,i,k, respectively. To
do so, the following termination mechanism is proposed.
First, initialize M3,i,1 to 0p. Second, set the first entry
of M3,i,k to 1, for some k ∈ N+, when M1,i,k = B or
M1,j,k = B, where j is such that Fj ∈ Ni. In the latter
case, Fj communicates the information that M1,j,k = B
by setting its output, y3,j,k, to 1; y3,j,k is set to 0
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otherwise. Updates of M1,i,k and M2,i,k, i = 1, ..., p,
are computed by means of sequential executions of
FTRaRC’s Step 2. Updates are stopped when M3,i,k =
1p, which means that Fi knows that all of the agents
in F\{i} have reached the agreement. This proposed
mechanism, however, increases the execution time.
Remark 3. To constrain execution time, set k

0
introduced

in Step 3 to a specified value, which allows reaching
agreement with a prescribed LoC δ; i.e., the probability
that the agreement is not reached within k

0
iterations is

less than or equal to 1− δ. Stochasticity in the number
of iterations necessary to reach the agreement depends
on the random selection of y1,i,k in (5).

IV. Numerical Simulations

A. 8-node, 16-node, and 24-node Graphs

We implement (3)-(8) in Fi, i = 1, ..., 8. Gc is shown
in Fig. 1(a). At k = 1, M2,i,1 is initialized to i1p.
The computation piil in (6) can be carried out, in an
optimal sense, first, by expressing the objective as a
total expected reward over a finite horizon, and then
by solving the corresponding Bellman’s equation [11],
which is not shown due to lack of space. However, this
computation is intricate when the communication graph
is not trivially small. To avoid analyzing FTRaRC from
scratch, Bellman’s equation is solved for a simple 3-node
tree. This step yields a uniform distribution, which is
applied as a randomized, although not an optimal, policy
over Mi in (6). The consensus, M2,i,1 = 4.51p, for all
i ∈ B, is reached at tk0 . The empirical frequency of
the number of iterations k0 that are necessary to reach
consensus is computed after 1000 simulation runs (Fig.
2(a)). The cumulative distribution function (solid line)
in Fig. 2(b) shows that a 95% LoC with FTRaRC is
achieved with k

0
= 50. Robustness of FTRaRC is tested

with intermittent loss of communication links. Edges
(F2, F5) and (F3, F5) are disabled when k is even, whereas
edges (F1, F4), and (F6, F7) are disabled when k is odd.
Despite the fact that the deactivation of (F6, F7) makes
Gc temporarily unconnected, although {G2k,G2k+1} is
jointly connected, a consensus is reached for every
simulation run. As expected, the cumulative distribution
function (dashed line) in Fig. 2(b) shows that a 95%
LoC with FTRaRC is achieved with a greater number
of iterations (k

0
= 63) when compared to the case of

healthy communication links. Fig. 3 displays Fi’s state
m2,i,k (M2,i,k = m2,i,k1p), which is substituted for Ii,k in
(1). As shown in Fig. 3, the state of each agent reaches as-
ymptotically the agreement 4.5 = (1/8)

P8
i=1 i. After 142

iterations, the worst relative error between multiagent
state and the agreement value is less than 1%. By worst
relative error, it is meant the error Fi∗ − 4.5 obtained
with Fi∗ , where i∗ = argmax

i∈{1,...,p}
(m2,i,1 − (1/p)

Pp
i=1 i).

Fi∗ corresponds to F8. FTRaRC with a 95% LoC and
a time-invariant graph reaches the consensus almost
three times as fast as that obtained with DABA [2]

with a 1% worst relative error. To achieve a LoC of
99%, the number of iterations increases to 67 (time-
invariant graph) and to 79 (graph with communication
losses). Furthermore, the simulations showed that the
relative errors obtained with a time-invariant graph, and
with 50 and 67 iterations of DABA are 15% and 8%,
respectively. The application of FTRaRC, on the same
time-invariant graph resulted in worst-case relative errors
of 22% and 13% with an empirical frequency of 5% and
1%, respectively. The selection of one particular approach
for consensus reaching thus depends on the application’s
constraints and on the amount of risk one is willing
to tolerate. FTRaRC achieves exact consensus reaching
with a prescribed LoC. A given LoC implies a certain
number of iterations. With DABA, the relative error can
be used as a stopping rule. In such case, a given relative
error would imply a certain convergence time.
Consider a more complex case. Denote G(3)c =

{G(2)c ,Gc} and G(2)c = {Gc,Gc}, where connection between
G(2)c and Gc results from the bidirectional connection of
F1 in Gc and the only one-degree vertex F8 of G(2)c . The
same applies to connection between Gc and Gc. Table
1 summarizes the results obtained with FTRaRC and
DABA applied to time-invariant graphs Gc, G(2)c , and
G(3)c , where Gc is depicted in Fig. 1(a). The average degree
of Gc, G(2)c , and G(3)c are 2.25, 2.37, and 2.41, respectively.
FTRaRC allows reaching in finite time the exact value
of agreement with a prescribed LoC of 95% and of 99%
for which the number of iterations is, in all three cases,
less than that obtained with DABA [2], [3]. The ratio of
consensus-reaching time (local averaging with respect to
FTRaRC) is maintained within [2.8, 3.0].

B. 100-node Ring Graph

A 100-node graph is taken from [2]. For such graph,
each agent is connected to its two nearest neighbors.
Execution of DABA yields the state evolution shown
in Fig. 4(a), where 10498 and 6421 iterations are re-
quired so that the worst relative error is under 1% and
5%, respectively. The cumulative distribution function
obtained with FTRaRC (Fig. 4(b)) shows that 5457
and 6012 iterations are necessary to achieve a LoC
of 95% and 99%, respectively, without communications
failures. Robustness of FTRaRC is tested with a peri-
odic loss of a single communication link, which is the
same throughout the simulation. The link is disabled
whenever k is odd. Note that Assumption 3 holds. A
zero-order-hold device is applied to DABA whenever
the communication between two adjacent nodes is lost.
With a time-varying graph, the cumulative distribution
function is shifted to the right (Fig. 4(b)). To achieve
a LoC of 95%, 6135 iterations are required, whereas
6575 iterations are necessary to achieve a LoC of 99%.
When compared to the non-faulty case, such numbers
correspond to increases of 12% (LoC of 95%) and 9%
(LoC of 99%). Robustness of DABA (not shown) is
more pronounced than with FTRaRC since the rate

3289



of convergence and the consensus value of DABA have
marginally changed (< 0.1%). It is to be noted that
the worst performance obtained with FTRaRC (LoC of
99%) when communication is unreliable is similar to
that of DABA (relative error of 5%) when performed
with an ideal ring graph. As noticed in Remark 1, the
price to pay for a reduced number of iterations with
FTRaRC, when compared to DABA, is an increased
requirement on the storage capability. Each agent should
be capable of storing 100 values ofM2,i,k andM1,i,k; i.e.,
[M2,1,1, ...,M2,100,1] and [M1,1,1, ...,M1,100,1].

C. 100-node Random Geometric Graph

100 nodes are distributed uniformly at random on
a plane. Two nodes are connected if their distance is
less than or equal to r > 0. As shown in Fig. 5(a)
with r = 0.15, this graph captures the realness of many
applications such as a network of communication stations
[12]. The average degree of the graph is 6.44 compared to
2 with a ring graph. The cumulative distribution function
obtained with FTRaRC shows (Fig. 5(b)) that 1053 and
1346 iterations are necessary to achieve LoC of 95% and
99%, respectively, when internode communications are
operative, compared to 131 (5% relative error) and to
312 (1% relative error) with DABA. Keeping in mind
the results obtained with the ring graph, it is clear
that DABA outperforms FTRaRC when the average
degree of the graph increases. To test the robustness
to random loss of nodes, at each iteration k ∈ N+,
a node is selected uniformly at random and disabled
during time interval [tk, tk+1). Intermittent loss of a node
represents malfunction of onboard electronic devices,
which temporarily disables a node considered here as
a communication station. 1149 and 1377 iterations are
necessary to achieve a LoC of 95% and 99%, respectively,
representing increases over the non-faulty communica-
tions cases equal to 9% and 2%, respectively. The same
experiment has been conducted with the ring graph
where consensus reaching has been noticed only when the
failure is periodically triggered with a period Tloss greater
than 15p iterations, where p ∈ N+. While Assumption 3
still holds, the number of iteration stepsK in Proposition
2 needed to obtain a positive probability of consensus
is likely to be prohibitively high when Tloss < 15p.
A possible explanation of the observed variability of
FTRaRC’s performance sensitivity regarding the type of
graph may be attributed to the high average degree of the
graph. The ring graph is unconnected at each iteration
step, thus preventing consensus reaching for small K.

D. Application to NEWTAS

Consider a network of formations of unmanned combat
vehicles (UCVs) which have to visit a set of targets
so that a global utility function is maximized while
complying to constraints on the autonomy of the UCVs.
Each target has to be visited at least once. Formations of
vehicles are allowed to split into smaller formations or to

merge into larger formations in order to manage risk of
being killed. The states of the formations are governed
by a probabilistic attrition model. Decision making is
the solution to a combinatorial optimization problem.
We proposed in [1] a parallelized Cross-Entropy-Based
Algorithm (CEMBA) to provide the UCVs with fast,
near-optimal decision making. It consists of the paral-
lelization of the cross-entropy method applied to a vehicle
multirouting problem. Fig. 6 shows the architecture of
the distributed target assignment, which is obtained
by duplicating in every formation the process detailed
in Fi’s block. Every formation Fi executes FTRaRC
in (3)-(8) and CEMBA sequentially. FTRaRC becomes
the first step of CEMBA, whose transition matrix is
computed iteratively and then broadcast as the first step
of FTRaRC to Fj , where j ∈ Ni. The fast-rate subsystem
is composed of FTRaRC operating at hf . The slow-rate
subsystem corresponds to CEMBA. The formation com-
municates at the fast rate. Once FTRaRC has reached
a consensus about the entries of the transition matrix,
CEMBA computes a new policy. Distributed weapon-
target assignment complies with Assumption 2 since the
consensus variable is a Markov chain transition matrix
of the entire set of formations. Distributed NEWTAS
is applied to networked formations whose connection
graph is defined by {{F1, F2, F3, F4}, EB}, where EB =
{(F4, F1), (F1, F2), (F2, F3)}. Each formation comprises
16 vehicles, with an autonomy of 240 units. The opposing
team is composed of 15 targets randomly located over a
square urban theater with edge length of 100 units. The
utility assigned to each target is uniformly randomized
over [0, 1]. The peak of the global utility is 7.86. Ground
units are located randomly. NEWTAS is implemented on
a 3.2-GHz Pentium 4 processor with 2 GB RAM. The
execution time of the distributed algorithm implemented
with Matlab compiled code is 70 seconds. 31 iterations
are needed for NEWTAS to converge. The length of the
routes followed by F1, F2, F3, and F4 are 226, 225, 174,
and 219, respectively. At the end of the mission, the
average number of healthy vehicles within F1, F2, F3, and
F4 are 3.9, 4.6, 11.5, and 6.5, respectively, which gives
a total average number of 26.5 healthy vehicles. The
extremum of the global utility is reached. NEWTAS is
compared numerically with the solution to a Traveling
Salesman Problem (TSP), where the 64 vehicles consti-
tute a single formation yielding a total route length of 309
units, which means that each vehicle has to travel over
309 units of distance. The number of healthy vehicles
that reach the last target is 22 with the solution to
TSP, representing a 26% increase in route length with
respect to the worst route length (226) obtained with
NEWTAS, and a loss of 17% more vehicles with respect
to NEWTAS’s total average number of vehicles that
remain healthy until the end of the mission.
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Fig. 1. Consensus: (a) Graph Gc, (b) Information through Fi.
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Fig. 2. FTRaRC: (a) Steps for consensus, (b) Cumulative
distribution functions.
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Fig. 3. Time evolution of Fi’s state obtained with DABA.
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Fig. 4 Agreement in 100-node ring graph: (a) Time evolu-
tion of Fi’s state (i=1,...,100) with DABA, (b) Cumulative
distribution functions Pr(k

0
< x) with FTRaRC.
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Fig. 5. Agreement in 100-node random geometric graph: (a)
Random graph with connections determined by r = 0.15, (b)
Cumulative distribution functions with FTRaRC.
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Fig. 6. NEWTAS instantiated in Fi and Fj .
Table 1. Number of iterations to reach agreement.

Gc G(2)c G(3)c
FTRaRC LoC 95% | 99% 50|63 210|242 447|543
DABA relative error: 1% 142 599 1334
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