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Abstract— In the paper, the k-switching reachability set Rk

of a single-input positive switched system is introduced, and
conditions for the chain of this sets {Rk, k ∈ N}, to stop
increasing after some finite index k are given. For the special
class of positive switched systems, which commute among n
single-input n-dimensional systems, sufficient conditions that
ensure that the n-switching reachability set coincides with the
positive orthant Rn+ are given. In particular, it is proved that
when the system is reachable and n = 2, 3, this is always true,
namely Rn = Rn+.

I. INTRODUCTION

“Switched linear systems” are systems whose describing
equations change, according to some switching law, within
a (possibly infinite) family of (linear) subsystems. Research
efforts in this context were first oriented to the investigation
of stability and stabilizability issues [4], and it was only
a few years later that structural properties, like reachability,
controllability and observability, were initially addressed [3],
[9], [11]. This class of systems can be viewed as a good com-
promise between accuracy and complexity, and, indeed, it
provides a valuable alternative to complex nonlinear models.
In fact, it is often preferable and more efficient to replace a
single complex model with several simple and linear models,
each of them suitable for describing the system evolution
under specific working conditions.

On the other hand, the positivity requirement is often
introduced in the system models whenever the physical
nature of the describing variables constrains them to take
only positive (or at least nonnegative) values. Positive linear
systems naturally arise in various fields such as bioengi-
neering (compartmental models), economic modelling, be-
havioral science, and stochastic processes (Markov chains or
hidden Markov models), where the state variables represent
quantities, like pressures, population levels, concentrations,
probabilities, that have no meaning unless nonnegative [2].

In this perspective, switched positive systems are mathe-
matical models which keep into account two different needs:
the need for a system model which is obtained as a family
of simple subsystems, each of them accurate enough to
capture the system laws under specific operating conditions,
and the need to introduce the nonnegativity constraint the
physical variables are subject to. This is the case when
trying to describe certain physiological and pharmacokinetic
processes, like the insulin-sugar metabolism.

Of course, the need for this class of systems in specific
research contexts has stimulated an interest in theoretical
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issues related to them, and, in particular, structural properties
of continuous-time positive switched systems have been
recently investigated in [6], [7], [8], [10]. In this paper, we
assume a different perspective, and introduce the concept
of k-switching reachability set Rk for the class of single-
input positive switched systems. It is shown that the chain
of this sets {Rk, k ∈ N} is a non-decreasing one, and if at
some stage it stops increasing then it cannot increase further.
For the special class of positive switched systems, which
commute among n single-input n-dimensional systems, in
section III sufficient conditions that ensure that the n-
switching reachability set coincides with the positive orthant
Rn+ are given. Finally, in section IV, it is proved that when
the system is reachable and n = 2, 3, this is always true,
namely Rn = Rn+.

Before proceeding, we introduce some notation. For every
k ∈ N, we set 〈k〉 := {1, 2, . . . , k}. In the sequel, the
(i, j)th entry of a matrix A is denoted by [A]i,j . In the
special case of a vector v, we let [v]i denote its ith entry.
R+ is the semiring of nonnegative real numbers. A matrix
A with entries in R+ is a nonnegative matrix (A ≥ 0); if
A ≥ 0 and A 6= 0, A is a positive matrix (A > 0), while
if all its entries are positive it is a strictly positive matrix
(A � 0). The same notation is adopted for nonnegative,
positive and strictly positive vectors. A Metzler matrix, on
the other hand, is a real square matrix, whose off-diagonal
entries are nonnegative. Every Metzler matrix has a real
eigenvalue λmax(A) satisfying λmax(A) > Re(λ) for every
other λ ∈ σ(A).

Given any matrix A ∈ Rq×r, by the nonzero pattern of A
we mean the set of index pairs corresponding to its nonzero
entries, namely ZP(A) := {(i, j) : [A]i,j 6= 0}. Conversely,
the zero pattern ZP(A) is the set of indices corresponding
to the zero entries of A. The adaptation of these concepts to
the vector case is straightforward.

We let ei denote the ith vector of the canonical basis in
Rn (where n is always clear from the context), whose entries
are all zero except for the ith which is unitary. We say that
a vector v ∈ Rn+ is an ith monomial vector if ZP(v) =
ZP(ei) = {i}. For any set S ⊆ 〈n〉, we set eS :=

∑
i∈S ei

and we let PS be the n × |S| selection matrix that singles
out the columns of the identity matrix In corresponding to
the indices in S . Consequently, given any vector v ∈ Rn+,
with ZP(v) = S, [v]S := PTS v is the restriction of v to its
positive components. If S = 〈n〉, eS is denoted by 1n.

Basic definitions and results about cones may be found, for
instance, in [1]. We recall here only the few facts used within
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this paper. A set K ⊂ Rn is said to be a cone if αK ⊂ K
for all α ≥ 0. A cone K is said to be polyhedral if it can be
expressed as the set of nonnegative linear combinations of a
finite set of generating vectors. This amounts to saying that
k ∈ N and C ∈ Rn×k can be found, such that K coincides
with the set of nonnegative combinations of the columns of
C. In this case, we adopt the notation K := Cone(C).

II. REACHABILITY PROPERTY AND k-SWITCHING
REACHABILITY SETS

A single-input (continuous-time) positive switched system
is described by the following equation

ẋ(t) = Aσ(t)x(t) + bσ(t)u(t), t ∈ R+, (1)

where x(t) and u(t) denote the n-dimensional state variable
and the scalar input, respectively, at the time instant t, and
σ is a switching sequence, taking values in a finite set P =
{1, 2, . . . , p}.

We assume that the switching sequence is piece-wise
constant, and hence in every time interval [0, t[ there is a
finite number of discontinuities, which corresponds to a finite
number (say k, including the initial time instant) of switching
instants 0 = t0 < t1 < . . . < tk−1 < t. Also, we assume
that, at each switching time t`, σ is right continuous. For each
i ∈ P , the pair (Ai, bi) represents a continuous-time positive
system, which means that Ai is an n×n Metzler matrix and
bi is an n-dimensional nonnegative column vector.

As a first step, we recall the definition of monomial reach-
ability and of reachability for positive switched systems.

Definition 1: [7], [8] A state xf ∈ Rn+ is said to be
reachable if there exist some time instant t > 0, a switching
sequence σ : [0, t[→ P and an input u : [0, t[→ R+ that lead
the state trajectory from x(0) = 0 to x(t) = xf .

A positive switched system is said to be monomially
reachable if every monomial vector (equivalently, every
vector ei, i ∈ 〈n〉) is reachable. A positive switched system
is said to be reachable if every state xf ∈ Rn+ is reachable.

Clearly, monomial reachability is a necessary (but, un-
fortunately, not sufficient) condition for reachability [6].
While reachability property is hard to test [8], [10], even
in the simpler case when P = 〈n〉, monomial reachability
admits a rather easy characterization. Indeed, system (1) is
monomially reachable if and only if [6] p ≥ n and there
exists a relabeling of the p subsystems (Ai, bi), i ∈ P , such
that that the first n subsystems satisfy

Aiei = αiei and bi = βiei, (2)

for suitable αi ≥ 0 and βi > 0. Notice that if this is the case,
then eAitbi = eαitβiei for every i ∈ 〈n〉 and every t > 0.

We introduce the definition of k-switching reachability
set1.

1We would like to remark that, due to the assumption that the switching
sequence can be arbitrarily chosen, the reachability sets obtained in this
paper are in general strictly larger than the reachability sets one would
obtain by imposing that the switching sequence is state-driven. This would
be the case, for instance, when approximating nonlinear systems by means
of switched systems, as in that case the switching would always be state-
dependent.

Definition 2: Given a positive switched system (1) and
a positive integer k, we define the k-switching reachability
set, and denote it by Rk, as the set of states that can be
reached in finite time by the system, by making use (of a
nonnegative input signal u(·) and) of a switching sequence
σ that commutes no more than k−1 times, meaning that the
switching instants of the switching sequence are no more
than k (i.e., 0 = t0 < t1 < . . . < t`−1 with ` ≤ k).

Notice that for a non-switching system (equivalently, P =
{1}) the reachable set would coincide with R1. It is easily
seen that Rk is a cone, since if xf belongs to Rk then α ·xf
surely does, for every α ≥ 0. However, in general, it is
neither convex nor polyhedral. Of course, we are interested
in investigating how the cone Rk varies, as k varies over
the positive integers. To this end, we recall that the state at
the time t, starting from the zero initial condition, under
the action of the soliciting input u(τ), τ ∈ [0, t[, and of
the switching sequence σ : [0, t[, with switching instants
0 = t0 < t1 < . . . < tk−1 < t and switching values
i0, i1, . . . , ik−1 (meaning that i` = σ(t) for t ∈ [t`, t`+1[),
can be expressed as follows:

x(t) = e
Aik−1 (t−tk−1)

...eAi1 (t2−t1)

Z t1

t0

eAi0 (t1−τ)bi0u(τ)dτ +

+ e
Aik−1 (t−tk−1)

...eAi2 (t3−t2)

Z t2

t1

eAi1 (t2−τ)bi1u(τ)dτ +

+ . . .+

Z t

tk−1

e
Aik−1 (t−τ)

bik−1u(τ)dτ. (3)

Therefore, a vector xf belongs to Rk if and only if it can
be expressed as in (3), for suitable u(·) ≥ 0, t, t` ∈ R+, and
i` ∈ P, ` ∈ {0, 1, . . . , k − 1}. Even more, it is easily seen
that xf ∈ Rk if and only if

xf = e
Aik−1 (t−tk−1)

w +

Z t

tk−1

e
Aik−1 (t−τ)

bik−1u(τ)dτ, (4)

for some 0 < tk−1 < t, some ik−1 ∈ P , a nonnegative
signal u(·) and some vector w ∈ Rk−1. Clearly, Rk ⊆
Rk+1, and hence

R1 ⊆ R2 ⊆ . . . ⊆ Rk ⊆ .....

Moreover, if the above chain of subsets of Rn+ stops at some
stage, namely Rk = Rk+1 for some k ∈ N, then it cannot
increase any more. The proof is omitted for the sake of
brevity as it is rather straightforward.

Proposition 1: Given a positive switched system (1), if
Rk = Rk+1 for some k ∈ N, then Rk+1 = Rk+2, and
hence the set of all states which are reachable in finite time
by the switched positive system coincides with Rk.

We want to investigate under which conditions an index
k ∈ N can be found, such that Rk = Rk+1. To this end, we
denote by Rt(Ai, bi) the cone of (positive) states which are
reachable at time t > 0 by the single subsystem

ẋ(t) = Aix(t) + biu(t),
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(by means of nonnegative inputs). Notice that, differently
from what happens with standard linear systems, Rt(Ai, bi)
typically grows with t [2], [5]. As an immediate consequence
of equation (4), we obtain the following identity

Rk+1 = ∪i∈P ∪t>0

(
eAitRk +Rt(Ai, bi)

)
, (5)

which leads to the following result.

Proposition 2: Given a positive switched system (1), com-
muting among p subsystems, the following facts are equiv-
alent:

i) there exists k ∈ N such that Rk = Rk+1;
ii) there exists k ∈ N such that Rk is eAit-invariant for

every t > 0 and every i ∈ P .
Proof: ii) ⇒ i) If Rk is eAit-invariant for every

i ∈ P and every t > 0, then for every t > 0, eAitRk +
Rt(Ai, Bi) ⊆ Rk + Rt(Ai, Bi). On the other hand, it is
easily seen that Rt(Ai, Bi) ⊆ R1 ⊆ Rk for every t > 0,
every index i ∈ P and every k ∈ N. So, if ii) holds, then (by
(5)), Rk+1 ⊆ ∪i∈P ∪t>0 Rk = Rk, and since the converse
inclusion is always true, this implies that i) holds.
i) ⇒ ii) If Rk = Rk+1, then the set of states which are
reachable (in finite time) coincides with Rk. Clearly, if a
state xf > 0 is reachable, then eAitxf is reachable, too, for
every i ∈ P and every t > 0. Indeed, once xf has been
reached, it is sufficient to switch to the ith subsystem and
leave the system freely evolve for a lapse of time equal to t.
This ensures that Rk is eAit-invariant for every i ∈ P and
every t > 0.

At this stage of our research, it is not clear, yet, whether,
for a reachable system (1) an index k can always be found
such that Rk = Rn+. There are classes of systems, however,
for which this is surely true and it turns out that reachability
ensures that Rn = Rn+. This analysis will be the object
of the next section. Before moving to this investigation,
we conclude the section by showing that if a system is
monomially reachable, then all strictly positive states belong
to Rn. This preliminarily requires to recall a couple of
technical results proved in [6] and in [10], respectively.

Lemma 1: [6] Given an n× n Metzler matrix A, for every
ε > 0 there exists τ > 0 such that ∀ i, j ∈ 〈n〉,

In ≤ eAτ ≤ In + ε1n1Tn , (6)

which amounts to saying that

1 ≤ [eAτ ]ii ≤ (1 + ε),
0 ≤ [eAτ ]ij ≤ ε, for i 6= j.

Consequently, for every xf � 0 there exists τ > 0 such that
xf is an internal point of Cone(eAτ ), namely xf = eAτz
for some z� 0.

Proposition 3: [10] Consider a monomially reachable
positive switched system (1), and assume that its first n
subsystems (Ai, bi), i ∈ 〈n〉, satisfy (2) for suitable αi ≥ 0
and βi > 0. Given a time instant t > 0, a positive vector
xf ∈ Rn+, k ∈ Z+, k + 1 time instants 0 = t0 < t1 < . . . <
tk−1 < t and k indices i0, i1, . . . , ik−1 ∈ 〈n〉, the following

facts are equivalent ones:
i) there exists a nonnegative input u(·) such that:

xf = eAik−1 (t−tk−1)...eAi1 (t2−t1)
∫ t1

t0

eAi0 (t1−τ)bi0u(τ)dτ

+ . . .+
∫ t

tk−1

eAik−1 (t−τ)bik−1u(τ)dτ.

ii) xf belongs to

Cone[e
Aik−1 (t−tk−1)

bik−1 |e
Aik−1 (t−tk−1)

e
Aik−2 (tk−1−tk−2)·

·bik−2 | . . . |e
Aik−1 (t−tk−1)

. . . eAi1 (t2−t1)eAi0 (t1−t0)bi0 ].

Proposition 4: Consider an n-dimensional positive
switched system (1), commuting among p single-input
subsystems (Ai, bi), i ∈ P. If the system is monomially
reachable, then every strictly positive vector belongs to Rn.

Proof: If the system is monomially reachable, then
we have seen that, possibly after a suitable relabelling, its
first n subsystems (Ai, bi), i ∈ 〈n〉, satisfy (2) for suitable
coefficients αi ≥ 0 and βi > 0. Under this assumption, by
suitably adjusting Proposition 3, we can claim that every
positive vector xf ∈ Rn+, with |ZP(xf )| ≥ 2, is reachable if
(but, if p > n, not necessarily “if and only if”) we can find
k ∈ N, indices i0, i1, . . . , ik−1 ∈ 〈n〉 ⊆ P and positive time
intervals τ1, τ2, . . . , τk−1 such that such that xf belongs to

Cone[eik−1 |e
Aik−1τk−1eik−2 | . . . |e

Aik−1τk−1 . . . eAi1τ1ei0 ].

We want to prove that, when xf is a strictly positive vector,
then xf ∈ Rn. This amounts to saying that n indices and n−
1 time intervals can always be found such that the previous
condition holds. Indeed, we will show that by choosing k =
n and ih = h+1, h = 0, 1, . . . , n−1, positive time intervals
τ1, τ2, . . . , τn−1 can be found such that xf belongs to

Cone[en|eAnτn−1en−1| . . . |eAnτn−1 . . . eA2τ1e1].

By Lemma 1, once a positive number ε has been chosen, for
every Metzler matrix Ai there exists τi−1 > 0 such that

In ≤ eAiτi−1 ≤ In + ε1n1Tn ,

This implies that

en−1 ≤ eAnτn−1en−1 ≤ (In + ε1n1Tn )en−1,
en−2 ≤ eAnτn−1eAn−1τn−2en−2 ≤ (In + ε1n1Tn )2en−2,

...
e1 ≤ eAnτneAn−1τn−2 . . . eA2τ1e1 ≤ (In + ε1n1Tn )n−1e1.

We may notice that, for every k ∈ 〈n− 1〉,

(In + ε1n1Tn )ken−k =

 k∑
j=0

(
k

j

)
εj(1n1Tn )j

 en−k

= en−k +

 k∑
j=1

(
k

j

)
εjnj−11n1Tn

 en−k

= en−k +
(1 + εn)k − 1

n
1n.
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Consequently, once we set

pk :=
(1 + εn)k − 1

n
,

we get en−k ≤ eAnτn−1eAn−1τn−2 . . . eAn−k+1τn−ken−k ≤
en−k + pk1n. Even more, it is easily seen that p1 < p2 <
. . . < pn−1, and that, when ε is sufficiently small

Cone[en|eAnτn−1en−1| . . . |eAnτn−1 . . . eA2τ1e1]

≈ Cone[en|en−1 + p11n| . . . |e1 + pn−11n]

⊇ Cone[en + pn−11n|en−1 + pn−11n| . . . |e1 + pn−11n].

So, we are remained to prove that for every vector xf � 0
there exists ε > 0 such that

xf ∈ Cone[en+pn−11n|en−1 +pn−11n| . . . |e1 +pn−11n].

But this is obvious, since by suitably choosing ε, pn−1 :=
(1+εn)n−1−1

n can be made arbitrarily small.

III. SINGLE-INPUT n-DIMENSIONAL SYSTEMS
SWITCHING AMONG n SUBSYSTEMS

The goal of this section is that of investigating under which
conditions, given a reachable single-input positive switched
system (1), commuting among n subsystems of size n, a
positive integer k can be found such that Rk = R+. Clearly,
as previously remarked, monomial reachability is a necessary
condition for reachability. So, in this section we will steadily
assume that the n subsystems (Ai, bi), i ∈ 〈n〉, satisfy (2),
for suitable αi ≥ 0 and βi > 0. Under this assumption,
Rt(Ai, bi) ≡ Cone(ei) = {α · ei, α ≥ 0} for every i ∈ 〈n〉
and every t > 0, so that

R1 = ∪t>0 ∪i∈〈n〉 Rt(Ai, bi) = ∪i∈〈n〉Cone(ei).

Also, for every S ( 〈n〉, we introduce the index set

IS := {i ∈ 〈n〉 : ZP(eAieS) = S}.

As it has been shown in [10], a necessary condition for a
vector xf , with ZP(xf ) = S , to be reachable, is that IS 6= ∅.
Of course, this condition needs to be verified only for the
proper subsets of 〈n〉, since for S = 〈n〉 its is always true
(with IS = 〈n〉). In order to prove the first two results, we
need the following technical lemma.

Lemma 2: Let A := {A1, A2, . . . , An} be a set of n× n
Metzler matrices. Let xf be a positive vector in Rn+ and set
S := ZP(xf ). For every i ∈ IS there exists τ = τ(i) > 0
and a positive vector w, with ZP(w) = S, such that xf =
eAiτw.

Proof: We preliminarily notice that if i ∈ IS then the
following facts are equivalent ones2:
• xf = eAiτw, for some w, with ZP(w) = S;
• [xf ]S = eP

T
S AiPSτ [w]S , for some [w]S � 0,

where [v]S is the restriction of the vector v to the entries
corresponding to the indices in S, and PS is the selection
matrix corresponding to S. So, in order to prove the lemma,

2Notice that the former statement always implies the latter, while the
converse is true only if i ∈ IS .

we have to simply show that every strictly positive vector
is an internal point of Cone(eÃiτ ), the exponential cone of
any Metzler matrix Ãi, provided that τ > 0 is small enough.
But this is just stated in Lemma 1.

Proposition 5: Consider a single-input positive switched
system (1), commuting among n subsystems (Ai, bi) of size
n, that satisfy (2) for suitable αi ≥ 0 and βi > 0. Also,
suppose that for every set S ( 〈n〉, there exists3 i ∈ IS
such that i ∈ S. Then every vector xf > 0 with |ZP(xf )| =
k belongs to Rk and it can be reached by resorting to a
switching sequence σ taking values only in ZP(xf ). As a
consequence, every positive vector can be reached by using
at most n switching values and commuting no more than
n− 1 times (i.e., Rn = Rn+).

Proof: We prove the result by induction on the cardi-
nality k of ZP(xf ). If k = 1, then xf is a monomial vector,
say ZP(xf ) = {i}, and hence it can be reached by resorting
to the subsystem (Ai, bi) alone. So, it can be reached by a
switching sequence taking a single value which is just the
unique element, i, of ZP(xf ).

Suppose, now, that the result is true for every vector w′ >
0, with |ZP(w′)| < k. We want to prove that the result holds
for every vector xf > 0 with S := ZP(xf ) of cardinality
|S| = k > 1. By exploiting the proposition’s assumptions,
we may find an index i ∈ IS such that i ∈ S . Now, by
applying Lemma 2, we can find τ > 0 and w > 0, with
ZP(w) = S, such that xf = eAiτw.

Express, now, w as w = w′+w′i, where ZP(w′) = S\{i}
and w′i := w −w′ satisfies the constraint ZP(w′i) = {i} (
S. Consequently,

xf = eAiτw′ + eAiτw′i = eAiτw′ + vi.

By the reachability of the system and the inductive assump-
tion, w′ belongs to Rk−1 and it can be reached by means
of a switching sequence taking values in ZP(w′), while vi
has nonzero pattern {i} and hence it can be reached at time
τ by making use of subsystem (Ai, bi) alone (i.e. belongs to
Rτ (Ai, bi)). Consequently, (see (4)), xf belongs to Rk and
it can be reached by means of a switching sequence taking
values in ZP(w′) ∪ {i} = S.

The next result requires, in turn, a technical lemma.

Lemma 3: Consider a single-input positive switched sys-
tem (1), commuting among n subsystems of size n, that
satisfy (2) for suitable αi ≥ 0 and βi > 0. If a positive
vector xf can be reached through the switching sequence
σ, ordinately taking the values i0, i1, . . . , ik−1 ∈ 〈n〉, then
upon setting S := ZP(xf ), we have ik−1 ∈ IS .

Proof: If xf is reachable by means of the aforemen-
tioned switching sequence, then (see (4)),

xf = eAik−1τk−1w + wik−1 ,

3Notice that surely eAi preserves the set {i}, meaning that ZP(eAiei) =
{i}. This assumption amounts to saying that for every set S there is at least
one index i such that both eAi preserves S, i.e. S = ZP(eAieS), and
i ∈ S.
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where ik−1 ∈ 〈n〉, τk−1 > 0, wik−1 is a state
reachable by the subsystem (Aik−1 , bik−1), and w is
a reachable state. Clearly, both ZP(eAik−1τk−1w) and
ZP(wik−1) are subsets of S. If ZP(eAik−1τk−1w) =
S, then [8] ik−1 ∈ IS . On the other hand, if
ZP(eAik−1τk−1w) ( S , it must be wik−1 6= 0,ZP(wik−1) =
{ik−1}, and ZP(eAik−1τk−1w) = S \ {ik−1} =:
S∗. Consequently, [8], again, ZP(eAik−1τk−1eS) =
ZP(eAik−1τk−1

(
eS∗ + eik−1

)
) = ZP(eAik−1τk−1eS∗) ∪

ZP(eAik−1τk−1eik−1) = S∗ ∪ {ik−1} = S, which ensures,
again, that ik−1 ∈ IS .

Proposition 6: Consider a single-input positive switched
system (1), commuting among n subsystems (Ai, bi) of size
n, that satisfy (2) for suitable αi ≥ 0 and βi > 0. If the
system is reachable and for every S ( 〈n〉, |IS | = 1, then
every vector xf > 0 with |ZP(xf )| = k belongs to Rk and it
can be reached by resorting to a switching sequence σ taking
values only in ZP(xf ). As a consequence, Rn = Rn+.

Proof: We prove the result by induction on the cardi-
nality k of ZP(xf ). If k = 1, then xf is a monomial vector,
and, by resorting to the same reasoning adopted within the
proof of Proposition 5, we can claim that it can be reached
by a switching sequence taking the single value ZP(xf ).

Suppose, now, that the result is true for every vector v
with |ZP(v)| < k. We want to prove that the result holds
for every vector xf > 0 with S := ZP(xf ) of cardinality
k, with 1 < k < n. Since the system, and hence xf , is
reachable, then

xf = eA`τ`v + v`,

where τ` > 0, v` is a (possibly zero) state reachable by the
subsystem (A`, b`), and v is a reachable state. Clearly, both
ZP(eA`τ`v) and ZP(v`) are subsets of S.

Two cases may occur:
i) v` 6= 0;

ii) v` = 0.
Case i): if v` 6= 0, then {`} = ZP(v`). On the other

hand, as a consequence of (2), ZP(eA`e`) = {`}. So, we
can express v as v = v′ + v′`, where ZP(v′) = S \ {`} and
v′` := v − v′ is either the zero vector or, if not, it satisfies
the constraint ZP(v′`) = {`}. Consequently,

xf = eA`τ`v′ + (eA`τ`v′` + v`).

By the reachability of the system and the inductive assump-
tion, v′ belongs to Rk−1 and it can be reached by means
of a switching sequence taking values in ZP(v′), while
eA`τ`v′` + v` has nonzero pattern {`} and hence belongs
to Rτ`

(A`, b`). Consequently, xf belongs to Rk and it can
be reached by means of a switching sequence taking values
in ZP(v′) ∪ {`} = S.

Case ii): if v` = 0 and ZP(v) ( S, then we can resort,
as for Case i), to the inductive assumption and claim that
xf ∈ Rk. So, the only hypothetical case remaining is the
case when v` = 0 and ZP(v) = S , so that ` ∈ IS . We
want to show that this is not possible, under the proposition’s

assumptions4. Indeed, if this were the case, then vector v,
being reachable, could, in turn, be expressed as

v = eAjτjw + wj ,

where j ∈ P, j 6= `, τj > 0, wj is a state reachable by the
subsystem (Aj , bj), and w is a reachable state. By Lemma
3, however, this would imply that j ∈ IS , but since j 6= `
this is not possible.

Finally, if |ZP(xf )| = n, namely xf � 0, then xf ∈ Rn,
as a consequence of Proposition 4.

Remark 1: We would like to underline similarities and
differences between Propositions 5 and 6. In both propo-
sitions we assume that the system is monomially reachable,
and hence its n subsystems obey (2) for suitable values of
the coefficients, and that for every proper subset S of 〈n〉
the index set IS is not empty. However, in Proposition 5,
we suppose that for every S the intersection IS ∩ S is not
empty, and we deduce that the system is reachable and that
every vector xf > 0 belongs to R|ZP(xf )|. In Proposition 6
we assume reachability and that for every proper subset S
of 〈n〉 the index set IS consists of a single element. This
allows to say that every vector xf > 0 belongs to R|ZP(xf )|.
It is thus worth to remark that reachability is a consequence
in the former proposition, and an assumption in the latter.

IV. SINGLE-INPUT POSITIVE SWITCHED SYSTEMS OF
DIMENSION 2 OR 3

To conclude the paper, we want to show that, at least for
the class of 2-dimensional and 3-dimensional single-input
positive switched systems, reachability always implies that
every vector xf belongs to R|ZP(xf )| and hence Rn = Rn+,
where n is either 2 or 3, depending on the class of systems
we are considering.

Specifically, if we are dealing with 2-dimensional sys-
tems commuting among an arbitrary number of single-input
systems, we can show that reachability is equivalent to
monomial reachability and that R2 = R2

+.

Proposition 7: Consider a positive switched system (1),
commuting among p single-input subsystems of size 2. If
the system is monomially reachable, then it is reachable and
R2 = R2

+.

Proof: If the system is monomially reachable, we can
assume that (2) holds and hence that

(A1, b1) =

([
α1 ?
0 ?

]
,

[
β1

0

])
,

(A2, b2) =

([
? 0
? α2

]
,

[
0
β2

])
,

where α1, α2 ≥ 0, β1, β2 > 0, while ? denotes a non-
specified entry (nonnegative if off-diagonal).

4We want to underline that this is not a contradiction w.r.t the result of
Lemma 2. Indeed, it is possible to have xf = eA`τ`v, for some v with
ZP(v) = ZP(xf ). What we are denying here is the possibility that v may
be reachable.
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Clearly, all monomial vectors belong to R1. Consider now
any vector xf � 0. In order to show that it is reachable, by
Proposition 3, we can simply show that there exist indices
i0, i1 ∈ 〈2〉 and a time interval τ1 > 0 such that

xf ∈ Cone[ei1 eAi1τ1ei0 ]. (7)

Set i0 = 1 and i1 = 2. Since eAi1τ1ei0 = eA2τ1e1, and, by
Lemma 1, the first column of eA2τ1 can be made arbitrarily
close to the direction of the coordinate axis associated with
e1, it follows that by suitable choosing τ1 we can always
ensure that (7) holds.

We now address the specific case n = 3, namely when we
have a 3-dimensional positive switched system, commuting
among 3 single-input positive subystems. We want to show
that if the system is reachable, then R3 = R3

+.

Proposition 8: Consider a positive switched system (1),
commuting among 3 subsystems of size 3. If the system is
reachable, then R3 = R3

+.
Proof: Assume w.l.o.g. that (2) holds for suitable αi ≥

0 and βi > 0, and consider any positive vector xf ∈ R3
+.

If |ZP(xf )| = 1, namely xf is a monomial vector, then it
can be reached by using the single subsystem (Ai, bi), with
{i} = ZP(xf ). Consequently, xf ∈ R1.

If |ZP(xf )| = 3, namely xf is a strictly positive vec-
tor, then it can be reached by using the three subsystems
(Ai, bi), i ∈ 〈3〉, as shown in Proposition 4. This ensures
that xf ∈ R3.

So, we want to show that all vectors xf , with |ZP(xf )| =
2, belong to R2. Set S := ZP(xf ). Two cases possibly
occur: either (a) there exists an index i ∈ 〈3〉 such that i ∈ IS
and i ∈ S, or (b) for every index i ∈ 〈3〉 such that i ∈ IS ,
it follows that i 6∈ S. In the first situation, as in the proof of
Proposition 5, by resorting to Lemma 2, we can claim that,
since i ∈ IS , then xf = eAiτw, for some τ > 0 and some
positive vector w with ZP(w) = S. On the other hand, as
i ∈ S, then one can also write xf = eAiτw′+vi, for suitable
w′ and vi, with ZP(w′) = S \{i} and ZP(vi) = {i}. Since
w′ is a monomial vector, and hence belongs to R1, this
implies that xf belongs to R2.

Suppose, now, that we are in case (b) and hence IS ∩S =
∅. This implies that every index i ∈ IS must belong to 〈3〉\S
which is a set consisting of a single index, say d. In other
words, in this case it must be IS = {d}. As the system is
reachable, then xf can be expressed (see, also, the proof of
Lemma 3) as

xf = eAdτv + vd,

where τ > 0, vd is a state reachable by the subsystem
(Ad, bd), and v is a reachable state. By applying the same
reasoning we resorted to within the proof of Proposition 6,
we can claim that two cases may occur:

(b1) vd 6= 0;
(b2) vd = 0.

Case (b1): if vd 6= 0, then it would be {d} = ZP(vd) ⊂ S,
thus contradicting the assumption corresponding to case (b)
(as it would be d ∈ IS ∩ S). So, we must be in case (b2):

vd = 0. If ZP(v) ( S, then v is a monomial vector and
hence it belongs to R1. This ensures that xf belongs to R2.
So, the only hypothetical case remaining is the case when
vd = 0 and ZP(v) = S. If so, by proceeding as in the proof
of Proposition 6, we can claim that vector v, in turn, could
be expressed as v = eAjτjw + wj , where j ∈ 〈3〉, j 6= d,
τj > 0, wj is a state reachable by the subsystem (Aj , bj),
and w is a reachable state. By Lemma 3, however, this would
imply j ∈ IS , but since j 6= d this is not possible.

V. CONCLUSIONS

In this paper we addressed the reachability problem for
the class of single-input positive switched systems. We have
shown that the sequence of the k-switching reachability sets,
{Rk, k ∈ N}, is a non-decreasing one and if at some stage it
does not increase, namely Rk = Rk+1 for some k ∈ N, then
it cannot further increase, namely all states reachable in finite
time belong to Rk. A necessary and sufficient condition for
this to happen has also been provided.

By restricting our attention to the class of n-dimensional
single-input positive switched systems that commute among
n subsystems, we have provided sufficient conditions that
ensure that every vector xf > 0 with |ZP(xf )| = k belongs
to Rk and it can be reached by resorting to a switching
sequence σ taking values only in ZP(xf ). As a consequence,
under these conditions, Rn = Rn+.

Finally, we have proved that this result is always true when
restricting our attention to 2-dimensional and 3-dimensional
reachable systems belonging to this class.
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