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Abstract— An important feature of linear model predictive
control (MPC) is the ability to provide offset-free control
through integral action. Linear MPC can utilize a steady-state
target optimizer (SSTO) in conjunction with a dynamic opti-
mization in order to manage systems that are non-square, have
integrating modes, or encounter infeasible setpoints. Integral
action does not ensure that the feasible steady-state target
is closest to the true optimum when the desired setpoint is
infeasible. This paper describes the modifications necessary to
linear state-space MPC algorithms in order to address this
problem (assuming systems with no integrating modes). The
solution employs features of the Integrated System Optimization
and Parameter Estimation (ISOPE) algorithm: the SSTO cost
is modified by a term that results in matching of the true
plant and model conditions necessary for optimality. This work
combines well with prior work [19], [20] which has determined
the situations where the modification is actually necessary.

I. INTRODUCTION

Model predictive control (MPC) refers to a control tech-

nique that makes use of the predicted evolution of a plant

in determining an open-loop optimal set of future control

trajectories. Usually the control law is computed using an

optimization program which is solved on-line at every time-

step. MPC has been employed widely in the process control

industry, its popularity being largely attributed to its ability

to consider both current and future constraints in the problem

formulation and handle multivariable systems systematically.

Linear MPC is by now well understood [9], [17], [3],

but there remain some issues with the well-established

algorithms. Systems that are non-square, have integrating

modes, or encounter infeasible setpoints require special man-

agement to obtain the true optimal behavior, and this has

generally been achieved by a steady-state target optimizer

(SSTO) that exists locally just above the dynamic MPC

optimization in the system hierarchy [12]. Integral action

is a key ingredient of MPC, which requires disturbance

modeling for systems with a SSTO. Latter methods have

preferred augmenting an estimator (required anyway for

state-space MPC with unmeasured states) with disturbance

states [11], [13]. However, even with all of these standard

MPC ingredients, the established algorithms fail to find the

correct target with infeasible setpoints, and uncertainty in

the process model. Prior work [19], [20] has identified that

very accurate information of the active process-dependent
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Fig. 1. Architecture diagram.

constraints is usually required for “constrained offset-free

control” (although there are instances where this is not nec-

essary). Disturbance modeling techniques can fail to provide

constrained offset-free control through integral action with

active steady-state constraints because they identify only a

linear shift to reconcile plant with model once converged,

and do not provide constraint gradient information.

However, in the field of real-time process optimization

(which may not assume MPC) adaptive methods have been

developed to compensate for model uncertainty in the de-

termination of optimal setpoints as reviewed in [4]. Two-

step approaches utilize parameter estimation to determine the

true plant information upon which the subsequent setpoint

optimization is based. However, to avoid issues of interaction

between the two steps, modifier-adaption algorithms such

as the Integrated System Optimization and Parameter Esti-

mation (ISOPE) approach [16] have been introduced which

alter the setpoint optimization program by adding in true

process derivative information. It can be proved that such

a modified optimization program leads to the solution of

the hypothetical true plant setpoint optimization [22]. A key

component of modifier-adaption techniques is the algorithm

used to determine true process model derivative information.

A natural choice would be systems identification methods

such as recursive (generalized/extended) least squares for

estimating the gradients, requiring some sort of persistent

excitation. Also applicable are simpler algorithms that make

use of the past input/output setpoints, applicable because

only the steady-state model is relevant. However, these

algorithms still require a form of persistent excitation.

The contribution of this paper is to make sufficient ad-

justments to modern non-square MPC algorithms for ensur-

ing constrained offset-free control, relying on developments

made in the field of real-time process optimization. The

objective of the work is to select from the various features of
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the adaptive methods those which are required assuming that

they are utilized in conjunction with a modern dynamic MPC

algorithm, estimator, disturbance model and SSTO. A novel

algorithm is proposed, which builds on the developments

of offset-free MPC, making only sufficient adjustments to

the standard MPC algorithm to ensure constrained offset-

free control with infeasible setpoints. Integration of MPC and

process optimization was developed in [1] where an adaptive

scheme was implemented using systems identification meth-

ods. The method presented in this paper does not attempt

to introduce adaptive methods unnecessarily, concentrating

only on estimation of the steady-state process model equality

constraint gradients needed to avoid constrained offset-free

control, and relying otherwise on the integral action provided

by the disturbance modeling.

Other prominent work on unreachable setpoints in linear

MPC [15] has focused on the dynamic advantages of posing

the MPC cost in terms of deviation from the desired setpoint

as opposed to deviation from an optimal steady-state target,

yet an optimal steady state normally still exists (and is

included in [15] as a terminal constraint for guaranteeing

stability). The work in this paper is concerned with a different

problem: ensuring that the steady-state target set by a SSTO

based on an uncertain process model is actually optimal.

II. MPC BACKGROUND

This section presents the MPC mathematical background

necessary to discuss the main issues in this paper.

A. Modeling, feedback, and prediction

Consider the following discrete-time system with an un-
structured disturbance model:

xk+1 = Axk + Buk + Bddk + wk

yk = Cxk + Cddk + vk, zk = Hyk
(1)

where u ∈ R
m, (x, w) ∈ R

n, (y, v) ∈ R
l, z ∈ R

p , and
dk is a disturbance vector, d ∈ R

nd and (w, v) are process
and output noise vectors respectively. H selects linear com-
binations of measured outputs as controlled variables (CVs),
z. Following the guidelines of [13] for the specification
of the disturbance model in (1), an estimator is designed
through the choice of (Bd, Cd) and noise weighting matrices

(Rv, Qw) based on augmenting (1) with disturbance states d̃
where nd = l:

[
x̃k+1

d̃k+1

]

=

[
A Bd

0 I

] [
x̃k

d̃k

]

+

[
B
0

]

uk (2)

Use of estimates (x̃, d̃) are assumed henceforth. If (C, A) is
detectable, and (Bd, Cd) are chosen such that the augmented
system (2) is detectable, then a stable linear estimator exists.
System (2) is detectable if:

rank

[
I − A −Bd

C Cd

]

= n + nd (3)

Let the ‘predicted’ control law [18] for sample times k be:

(uk − us) =

{
−K(x̃k − xs) + ck k ∈ [0, nc − 1]
−K(x̃k − xs) k ≥ nc

(4)

where ck are the d.o.f. (or control moves) available for
constraint handling and (xs, us) are the expected steady-state

input/state required to give offset-free tracking in the steady
state. In order to determine (xs, us), a separate SSTO is
usually performed, such as that in [12]:

J
∗(x∗

s , u
∗
s) = min

xs,us

‖r − Hys‖
2
Qs

+ ‖ûs − us‖
2
Rs

(5)

s. t.

[
(I − A) −B

C 0

] [
xs

us

]

=

[
Bdd̃

ys − Cdd̃

]

(6)





0 Au

Ax 0
AyC 0





[
xs

us

]

−





bu

bx

by − AyCdd̃



 ≤ −col(ǫ) (7)

where Au, bu, Ax, bx and Ay, by represent the inequality

constraints on the input, state and output respectively, and

col(x) = [xT xT . . .]T . Note that the SSTO assumes that d̃

is constant for each execution.

B. Constraint handling and target optimization

Vectors of predictions x−→, y
−→

, u−→ corresponding to simu-

lating (1),(4) can then be written in concise form, e.g.:

x
−→

= Pxx̃k + Pc c
−→k + Ps[x

T
s , u

T
s ]T + Pddk (8)

for suitable Px, Ps, Pd, Pc (note that more sophisticated
steady-state parameterizations are possible, e.g. [21]). Let
the constraints be linearly time invariant:

diag(Ax) x
−→

≤ col(bx); diag(Au) u
−→

≤ col(bu);

diag(Ay) y
−→

≤ col(by); diag(X) =






X 0 . . .

0 X . . .
..
.

..

.
. . .






(9)

Consequently the dynamic feasible region can be defined
by substituting the predictions into (9), which together with
the steady-state inequality constraints (7) takes the form:

x̃ : ∃ c
−→

s. t. Mxx̃ + Mc c
−→

+ Ms[x
T
s , uT

s ]T + Mdd̃ ≤ q (10)

This set is an inner approximation to the Maximal Con-
trolled Admissible Set (MCAS) [7]1, which can be thought
of as the set corresponding to a finite horizon of constraints,
beyond which only redundant constraints are added (as it is
predicted that ‖x̃k − xs‖ is vanishing). A typical dynamic
optimization is the following QP:

J∗
c ( c
−→

∗) = arg min c
−→

‖ c
−→

‖2
WD

s.t. (x̃, c
−→

) ∈ MCAS

where: WD = diag(W ), W = BT ΣB + R

Σ − ΦT ΣΦ = CT HT QHC + KT RK

(11)

Some selections of (xs, us), as determined by the SSTO

according to r and/or û, may result in infeasibility of (11).

Such a situation can be avoided by either reference governor

approaches, incorporating the MCAS into the SSTO (more

restrictive on the setpoint and dynamics), or combining the

SSTO and dynamic optimizations [21], [8], [23]. Softening

of output constraints may also be appropriate.

Even if the targets of the SSTO are feasible, and are

achieved at steady-state, the SSTO may have failed in its task

of determining the constrained target closest to an infeasible

desired setpoint because of uncertainty in the process model.

In the following sections we focus on the issue of modifying

1If is ǫ small but > 0 then the selected steady-state (effectively the origin

being regulated to) is in the interior of the feasible region [7, Theorem 4.1],

which is important for finite determination of the MCAS.
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the SSTO such that it is able to determine a (feasible) target

which is the true minimum weighted least-squares distance

to the steady-state setpoint when nested within the feedback

configuration of figure 1.

III. MODIFYING THE SSTO

Techniques for modifying the steady-state target in real-

time optimization have been reviewed in [4], identifying the

following approaches for overcoming issues with steady-state

model uncertainty:

1) Model-adaption methods

2) Modifier-adaption methods

3) Direct-input-adaption methods

Model-adaption methods perform an on-line adaption of the

process model by adjusting parameters of the process model

that produce the same output as that measured. Once the

model has been updated, the optimization is performed with

the new model. Interaction between the model update and

reoptimization steps could mean that the true optimum is

not found when there is uncertainty in the process model,

unless the model adaption leads to a matching of the KKT

conditions for the model and the plant. Modifier-adaption

methods are a more direct way of ensuring that the KKT

conditions do match. Modifier-adaption methods were orig-

inally introduced in [16] with the standard ISOPE method.

This method involves modifying the objective function of the

model-based optimization program (OP) such that the mod-

ified objective function actually solves the problem relevant

to the true plant. Direct-input-adaption methods select CVs

which when tracked enforce optimal plant operation, thus

providing a “self-optimizing control structure”.
In general, a modifier-adaption method shall be tailored to

the MPC algorithm in order to provide constrained offset-free
control with infeasible setpoints, which involves expressing
the SSTO in a suitable form. Assuming no integrating modes
or state constraints and a full rank linear steady-state gain
matrix (and omitting ǫ for the purposes of analysis), the
SSTO can be simplified to the following:

J
∗(u∗

s) = min
us

‖Hys − r‖2
Qs

+ ‖us − û‖2
Rs

(12)

s. t. ys = f(us, d̃) (linear steady-state model) (13)

= C(I − A)−1
B

︸ ︷︷ ︸

G

us + C(I − A)−1
Bd + Cd

︸ ︷︷ ︸

Gd

d̃ (14)

gu(us) = Auus − bu ≤ 0
gy(ys) = Ayys − by ≤ 0

(15)

Expressing the SSTO in this way emphasizes that the cost

need not be considered a function of the process model,

which is now explicitly expressed in the equality constraint,

(14). Assuming choices have been made such that ∇2
us

(J) >

0, us can be chosen that results in a unique xs that is

used as a feed-forward term in the dynamic MPC algorithm,

and is eventually reached by xk . Uncertainty in the steady-

state process model (14) can be therefore represented as

uncertainty in G for linear systems.
The KKT conditions of optimality can be examined to

determine whether uncertainty in these values results in

a sub-optimal target. The SSTO lagrangian and necessary
optimality conditions are:

L (us, ys, λ) = J(us, ys) +
(
ys − f(us, d̃)

)T
λ

+gu(us)
T τu + gy(ys)

T τy

(16)

∇usL = ∇usJ −∇usf
T
λ + A

T
u τu = 0 (17)

∇ysL = ∇ysJ + λ + A
T
y τy = 0 (18)

∇λL = ys − f(us, d̃) = 0, λ ≥ 0 (19)

∇τuL = gu ≤ 0, τu ≥ 0, diag(τu)gu = 0
∇τyL = gy ≤ 0, τy ≥ 0, diag(τy)gy = 0

(20)

Substituting (18) into (17) by eliminating λ we have:

∇usL = ∇usJ + [∇ysJ + A
T
y τy].∇usf + A

T
u τu = 0 (21)

A. Situations with inactive constraints

If constraints (13-15) are inactive → (τu, τy, λ) = 0
then (20) can be ignored, and equation (18) shows that if
λ = 0,∇ys

J = 0, and then from (21) it can be seen that
the model equality constraint gradients ∇us

fm = Gm do
not need to match the true plant gradients ∇us

fp = Gp in
order to satisfy the KKT optimality conditions. The equality
constraint gradients are as follows for the particular SSTO
that has been defined in (12-15):

∇ysJ = 2(Hys − r)T
QsH (22)

∇usJ = 2(us − û)T
Rs (23)

These gradients are zero when the setpoints are feasible

and compatible through the model equality constraint. The

convergent estimator ensures that the model equality con-

straint is satisfied for both plant and model with the same

values of us and ys, even though d and d̃ may differ. This

analysis reinforces the conclusion that integral action works

for situations with inactive constraints. Papers such as [22]

specify that it is necessary for the true plant and model

equality constraint gradients to match, but this is not true

in this case.

However, with non-square thin systems (when Rs is usu-

ally set to 0) or systems where (û, r) have not been chosen to

be compatible with respect to (13), the gradients will be non-

zero, some lagrange multipliers will be positive, and it may

then be necessary for the gradients to match for optimality

with respect to the true plant. In this case the least-squares

deviation from the target to setpoint is only the same as that

of the true plant if the gradients ∇us
fm,∇us

fp match.

B. Application of the ISOPE method to a standard SSTO QP

The ISOPE method traditionally consists of iterating the

following 3 steps [22], [6], where (·)i indexes iterations:

1) A modified model-based OP (MMOP):

J∗
mod(us, u

i
s, d̃, αi) = arg minus

J(us, ys)

−µ(ui
s, α

i)T us s. t. ys = fm(us, d̃, αi)
(24)

where: µ(ui
s, α

i)T = [∇ysJ(ui
s, ys) + AT

y τy].
[

∇usfm(ui
s, d̃, αi) −∇usfp(u

i
s, d)

]
(25)

2) A model parameter (α) estimation:

fm(ui
s, d̃, α

i) = fp(ui
s, d) = yp (26)
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3) Dampening the setpoint changes:

u
i+1
s = u

i
s + Ks[us − u

i
s], Ks ∈ (0, 1] (27)

Note that i is iterated at a slower rate than k, with each
iteration corresponding to having attained a steady state.
A key insight in reconciling process optimization with the
standard MPC approach presented in Section II is that
the disturbance modeling through the use of the estimator

ensures that fm(ui
s, d̃, α) → fp(u

i
s, d) where α is fixed2

This is a trivial extension to [13, Thm. 1]: with nd = l
it follows that the estimator error is zero, and so predicted
and corrected augmented state estimates are equal, leading
to the conclusion that x̃k → xs, uk → us and critically that
yk → ys. Thus neither the parameter estimation step nor the
function modification term proposed in [22] is needed, and
the method is called an iterative gradient-based modification
optimization, IGMO problem. The usual arguments regarding
optimality of the modified objective function are still appli-
cable without adaption (estimation) of the model parameters,
which are that once converged, the KKT conditions of the
modified OP match those of the original OP (17) objective
function with the true plant:

Lmod(us, u
i
s, d̃) = J(us, ys) +

(
ys − fm(us, d̃)

)T
λ (28)

+ g
T
y τy + g

T
u τu − µ(ui

s)
T
us

∇usLmod(us, u
i
s, d̃) = ∇usJ(us, ys) −∇usfm(us, d̃)T

λ

+ A
T
u τu −

[

∇ysJ(ui
s, ys) + A

T
y τy

]

. (29)
[

∇usfm(ui
s, d̃) −∇usfp(ui

s, d)
]

The cost modification does not change the identity in
(18) and so ∇ys

Lmod = ∇ys
L . Hence substituting the

expression for λ in (18) into (30):

∇usLmod(us, u
i
s, d̃) = ∇usJ(us, ys) + ∇usfm(us, d̃).

[∇ysJ(us, ys) + A
T
y τy] + A

T
u τu (30)

−
[

∇ysJ(ui
s, ys) + A

T
y τy

]

.
[

∇usfm(ui
s, d̃, α

i) −∇usfp(ui
s, d)

]

As us → u
i
s : ∇usLmod(ui

s, d̃) → ∇usJ(ui
s, ys) (31)

+ A
T
u τu +

[

∇ysJ(ui
s, ys) + A

T
y τy

]

.∇ui
s
fp(u

i
s, d)

C. Other issues with active steady-state constraints

When steady-state inequality constraints become active,

which is the case for infeasible setpoints, it is likely that

the model equality constraints need to match. There are

situations where they need not match, which have been

investigated in [20], [5]. These conditions, based on the un-

certainty in G and the current setpoint and steady-state target,

should be checked to determine whether SSTO modification

is actually necessary whenever a steady-state is reached.

It is also possible to modify the model-based constraint

function [6] if necessary. If the inequality constraints are not

a function of the process model (requiring omission of the

state constraints and MCAS), then only the model equality

constraint gradients need match. In a typical SSTO formu-

lation such as in [12], [14], the inequality constraints are a

2i.e. α is determined a priori as a decision of the process model.

function of d̃ only, and so constraint gradient modification

is not necessary.

In section II-B it was suggested that it may be suitable

to incorporate MCAS constraints into the SSTO. MCAS

constraints are not based on easily measurable quantities,

and so the method for dealing with them proposed in [6] is

not appropriate. An alternative way to approach this issue

would be to employ model-adaption methods to improve

the accuracy of many-step ahead predictions. However, a

simpler approach is to incorporate the MCAS into the SSTO

(subsuming (15)) and accept the loss of optimality in the

target that may occur due to active MCAS constraints.

D. Determination of derivative information

The MMOP relies on determination of the derivative
∇us

fp(u
i
s, d). There are a number of methods ranging from

generalized recursive least squares (requiring some sort
of excitation/perturbations) to simpler methods using past
setpoint information. To avoid the necessity for persistent
additional perturbations/excitation, the simple derivative esti-
mation method proposed in [6] shall be considered, although
it is noted that systems identification methods may provide
faster convergence [10]. The gradient shall be approximated
using the following formula:

∇usfp(ui
s, d) ≈ (Sa(i))†.







y(i)
p − ya(i)

p

y(i)
p − y(i−1)

p

.

.

.

y(i)
p − y(i−nw−1)

p







(32)

S
a(i) = [u(i)

s − u
a(i)
s u

(i)
s − u

(i−1)
s . . . u

(i)
s − u

(i−nw−1)
s ]T

(33)

where (·)† is the matrix pseudo-inverse obtained from its
singular value decomposition (SVD) and nw is the size of the
window of past inputs/outputs used in the calculation. More

setpoints u
a(i)
s are added if necessary (based on the condition

number, γ, of S i), in order to keep S i well conditioned. It is
recommended in [6] that this be chosen through use of the
following non-linear OP:

u
a(i)∗
s = arg max

u
a(i)
s

{

(γ−1)a(i) = σmin(Sa(i))

σmax(Sa(i))

}

s. t. u
(i−1)
s − ∆us ≤ u

a(i)
s ≤ u

(i−1)
s + ∆us

Steady-state constraints: (14, 15)

(34)

Where ∆us is chosen to limit how far the new steady-

state can deviate. There is a trade-off in choosing this value

between the conditioning of S and deviating too far from

the current best estimate of the optimal steady-state. In [6]

S is chosen to be square, but this is not necessary: more

than nw = m points can be used, making the necessity

for perturbations less frequent. However, too long a window

should not be used or it will become difficult to recover the

condition number of S with a single additional point.

Model gradients could possibly be used as extra points for

forming S initially. It should be noted that as the non-linear

optimization (34) cost may be non-convex, local minima

solutions could result in the new point not changing at all.

An alternative to the non-linear OP would be to rely on

the statistical properties of a feasible random perturbation

bounded in the same way by ∆us, or to use this random
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pertubation as the initial seed for the non-linear OP (rec-

ommended). Modification of the actual SSTO to include a

constraint on condition number has not been pursued as this

would make the SSTO itself non-linear and possibly non-

convex (for higher dimension problems) [2].

E. Use of a transitory perturbation SSTO

There is a problem with the direct use of the method

proposed in [6]. The determination of u
a(i)
s by the condition

number optimization in (34) assumes that d̃ will remain
constant. However, one of the main roles of the SSTO is to
provide integral action through d̃, and if there is a setpoint

change, it is likely that d̃ will change in order to take into

account the model uncertainty. Consequently u
a(i)
s may not

be feasible. One solution would be to make the new steady-

state u
a(i)
s the desired steady state, and to modify the SSTO

cost to find a feasible us as close as possible to u
a(i)
s . The

new perturbation SSTO would be as follows:

J
∗(u∗

s , y
∗
s) = arg min

us

‖us − u
a(i)
s ‖2

s. t. (14, 15) (35)

This would be employed until a new steady state is achieved.

F. Damping

Because the SSTO determines values of (xs, us) that reject
unmeasured disturbances to the system, it is unsuitable to
dampen ui

s in the same way as with the standard ISOPE
algorithm. Damping should be performed earlier in the
algorithm where the damping of µ i is the most appropriate:

µ
i+1 = µ

i + Ks[µ − µ
i] (36)

G. The proposed algorithm

The modified architecture is depicted in figure 2, illustrat-

ing the following proposed algorithm:
Algorithm 3.1: 1) Initialize all states, with µ0 = 0; perturba-

tion flag (PF) = 0; converged flag (CF) = 0;

2) If PF = 0 perform modified SSTO; .

3) If PF = 1 perform perturbation SSTO;

4) Perform dynamic MPC optimization;

5) Estimate x̃, d̃ using a Kalman filter or otherwise → ỹ;

6) If CF = 1 and ‖[rT
k , ûT

k , d̃T
k ]− [rT

con, ûT
con, d̃T

con]‖ < ǫrestart

goto step 2;

7) Determine whether at steady-state using either/and/or ỹ, x̃, ũ;

If not steady goto (2);

8) If PF = 0, and sufficient conditions for zero offset [20] have

been met, and the choice of H has not resulted in a non-

square thin system, and r and û are compatible w.r.t. (13)

then goto (2);

9) Calculate Si using (32). If ill-conditioned then determine new

steady-state using a feasible random bounded perturbation;

10) Use feasible random bounded perturbation as a seed for non-

linear optimization (34) (optional);

11) If PF = 1 goto step 2;

12) Estimate derivatives and calculate µ using (33).

13) Dampen µ using µi giving µi+1;

14) If ‖µ−µi‖ < ǫcon then set CF = 1; Record rcon, ûcon, d̃con;

15) Goto step 2;

If µ has stopped changing appreciably (determined by ǫcon),

IMGO is deactivated until there is a significant change in the

setpoints or disturbances (determined by ǫrestart).

Fig. 2. Modified architecture diagram.

Remark 3.1: The IMGO technique can easily be applied to

single-stage algorithms [21] if necessary simply by combining steps

2/3 and 4 with the cost being switched as necessary. The cost is

only switched once a steady-state has been achieved, and so will

not affect stability.

IV. SIMULATIONS

A motivating example for the problem of constrained steady-

state offset with the MPC formulation of Section II is given in [19].

This system was contrived with simple input bounds to demonstrate

constrained offset for infeasible setpoints. Replication of the results

of the standard SSTO (5 - 7) + MPC algorithm (11) applied to

this problem are given in figure 3. (y∞ =)y∗
sm is the (achieved)

target set by the SSTO (unmodified in this case), whereas y∗
sp is the

true optimal target. The IGMO algorithm has then been applied to

remove the constrained offset. It was found that it was necessary to

have a damping value for Ks = diag(ks), ks ≤ 0.5 or the setpoints

would not converge. nw was chosen to be 10, and inclusion of the

MCAS as opposed to (15) only did not affect the results (as the

MCAS fully spanned the steady-state solution space). The results

are shown in figure 4, depicting convergence to the true optimum.

V. CONCLUSIONS AND FUTURE WORK

This paper has made clear the changes required to a modern MPC

algorithm for achieving constrained offset-free control. Existing

literature has not tended to discuss setpoint optimization in the

context of modern MPC algorithms; hence other IMGO algorithms

may include features (such as parameter estimation) which are not

necessary. This paper therefore shows how IMGO approaches may

be adapted to the context of modern MPC.

It has been identified in this work that provided that process-

dependent constraints are not incorporated in the standard SSTO

(which assumes a linear model with no integrating modes), an

IMGO approach comprising on-line estimation of the process gradi-

ent and a suitable adjustment to the SSTO cost are all that is needed

for constrained offset-free control. The cost adjustment proposed
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Fig. 3. Motivating example, with setpoint of (-10, 50), showing discrepancy

between resulting simulated steady state and setpoint.

Fig. 4. Application of the IMGO algorithm, showing convergence to the

constrained true optimum.

in [22] has been generally adopted in the literature, but this is

not necessary for MPC algorithms that utilize an estimator. The

proposed algorithm includes novel adjustments to those proposed

previously, and includes valuable discussion of how modern MPC

features (such as the MCAS) combine with the IMGO algorithms.

An essential element that has been included is the conditions for

constrained offset-free control in the problem formulation, which

depend on the general accuracy of the process model: given a level

of uncertainty, certain setpoints do not require activation of the

IMGO algorithm, and so the necessary sub-optimal perturbations

for numerical conditioning are then avoided. This advantage relies

on full development of the conditions for offset-free control in a

wide variety of scenarios, which has begun in [19], [20], and will

be the main focus of future work.
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