
  

  

Abstract— This paper examines an adaptive control scheme 
for tubular linear motors with micro-metric positioning 
tolerances. Uncertainties such as friction and other electro-
magnetic phenomena are approximated with a radial basis 
function network, which is trained online using a learning law 
based on Lyapunov design. Differently from related literature, 
the approximator is trained using a composite adaptation law 
combining the tracking error and the model prediction error. 
Stability analysis and bounds for both errors are established, 
and a report on an extensive experimental investigation is 
provided to illustrate the practical advantages of the proposed 
scheme. 

I. INTRODUCTION 
Irect-drive tubular linear synchronous motors (TLSM) 
are increasingly widespread in miniaturized robotics 

and automation applications, because the absence of 
mechanical reduction and transmission devices (gears, lead 
screws, etc.) permits to obtain higher precision, higher 
acceleration/deceleration, and reduced dimensions with 
respect to rotary actuators. However, the lack of reduction 
gears emphasizes the influence of other uncertainties such as 
friction, cogging forces and load disturbances. In particular, 
the compensation of these uncertainties indispensable in 
ultra-precise positioning systems, in which the TLSM must 
be able to track a position reference with micro-metric 
(dynamic and steady state) precision.  

Existing literature can be broadly classified in two main 
topics, namely off-line identification and adaptive 
compensation. Off-line identification consists of obtaining 
an accurate parametric model of the phenomena of interest 
(friction, backlash, hysteresis, etc.) which is later 
incorporated in a compensation mechanism. For instance, 
state of art methods for friction compensation employ 
dynamic models such as the LuGre [3], the Leuven [16] and 
the Generalized Maxwell-Slip [1] models. These methods 
show a remarkable accuracy, but on the other hand they are 
often computational demanding, both in the identification 
[17] and in the compensation stage (since they feature one or 
several unmeasurable states, discretized nonlinear observers 
with adequate sampling times have to be implemented in the 
control law [3], [19]).  

Moreover, there are many practical applications in which 
obtaining a model with the accuracy required for effective 
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cancellation is not possible [5], since the characteristics of 
the phenomena of interest may vary with time, temperature, 
and other uncertain factors. These cases need adaptive 
approaches in which the uncertain phenomena are identified 
and simultaneously compensated online. Generally, domain-
specific models (e.g., dead-zones [9], LuGre [7], [19] 
continuously differentiable models [11]) are adopted when 
exact knowledge of the remaining dynamics is available. To 
compensate for further residual uncertainties, literature 
proposes either robust-control techniques (e.g. backstepping 
[20]) or adaptive approaches based on universal 
approximators. More specifically, nonlinear approximators 
such as neural networks [14] or fuzzy systems [5] are 
considered when the system features other uncertainties as 
unknown payload, load forces, etc., which can be effectively 
captured by a joint model of all unmodeled phenomena, as 
for the case of the TLSM application considered in this 
paper.  

Adaptive compensation with universal approximators 
relies on feedback linearization and Lyapunov design 
arguments, which permit to obtain robust learning 
algorithms [4, Section 4.6] driving tracking and parameter 
errors to exponentially decrease outside a compact set C. 
This set practically represents a theoretical lower bound for 
tracking performance, and reducing its size remains an open 
problem, not only for micrometric positioning systems. The 
size of C depends on a number of fundamental factors, such 
as the minimum functional approximation error (MFAE) 
guaranteed by the selected approximator, the knowledge 
about bounds for the uncertain terms (also necessary for 
stability proof), the characteristics of the parameter 
adaptation law, and the influence of noise and other 
stochastic phenomena.  

Literature has investigated a number of possible strategies 
to refine the asymptotical behavior, each with its own merits 
and limitations. These include truncated Taylor series 
expansion to achieve adaptation of the nonlinear parameters 
of the approximator (e.g., [18]) or formulations in which the 
size of C is made inversely proportional to the learning rate 
[7], [14]. Unfortunately, it is difficult to exploit these 
strategies in micro-metric positioning systems. In fact, 
schemes based on Taylor expansion need to define 
conservative bounds for the higher order terms of the series. 
These bounds increase the controller gain, and consequently 
cause a nervous control action (the current fed to the linear 
drive), inducing overheating, mechanical resonances and 
other undesirable effects. The same considerations apply to 
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schemes requiring high learning rates. After some threshold, 
further increases of this parameter tends to worsen the 
closed loop performance or even cause instability [5]. 

This paper suggests a different way to overcome these 
problems and obtain further improvements of the tracking 
performance based on composite learning laws [15]. In 
contrast to adaptive compensation schemes proposed in the 
mentioned literature (which use learning laws only based on 
the tracking error), composite adaptation employs both 
tracking error and prediction error to guide the learning of 
approximator parameters. Composite adaptation should 
contribute to obtain faster adaptation processes which, in 
turn, should lead to a further reduction of the tracking error. 
This type of hybrid learning method has been sparsely 
considered in recent literature [2], [12], [13] but, to author’s 
best knowledge, its application to nonlinearity compensation 
in micrometric tracking has not been explored.  

The reminder of this paper is organized as follows. 
Section II introduces the problem and related assumptions. 
Section III discusses the main peculiarities arising from 
composite adaptation. Finally, Section IV and V summarize 
the experimental investigation, and the conclusive remarks, 
respectively. 

 

II. PROBLEM AND ASSUMPTIONS 
The TLSM is a three-phase linear motor composed of a 
mover containing the three phase windings and a tubular rod 
containing the permanent magnets, as depicted in Fig.1. The 
permanent magnets are cylindrically shaped, axially 
magnetized and uniformly distributed in sequence of 
permanent magnets and spacers. The three-phase windings 
are wrapped around the rod and the mover does not contain 
magnetic material, so cogging forces are avoided. The motor 
is driven by a PWM voltage source inverter, and the id and iq 
control loops are controlled by two identical PI controllers 
that make the current transients negligible with respect to the 
mechanical dynamics (i.e. * 0d di i= = and * ( )q qi i u t= =  
where asterisks denote reference signals and u indicates 
controller output). 
 

ROD (contains axial-flux 
permanent magnet) 

 
Fig, 1. A prototype of tubular linear synchronous motor illustrating the main 
components. 

 
The mechanical dynamics of the TLSM can be described 

as follows: 

 * * *( , ) ( , ) ( )mx f x t d x t k u t+ + =&& &  (1) 

where m is the overall mass of the moving equipment (sum 
of masses of mover and payload) * ( , )f x t&  is the friction 

force, * ( , )d x t  is a bounded disturbance modeling nonlinear 
elastic forces generated by coupling and protective covers, 
measurement noise and other uncertainties, and k* is the 
control gain (the force constant). For convenience of 
notation (1) can be normalized as follows: 

 ( , ) ( , ) ( )x f x t d x t ku t+ + =&& &  (2) 

where *( , ) ( , ) /f x t f x t m=& & , *( , ) ( , ) /d x t d x t m=  and 
* /k k m= . We assume that k is known precisely, but the 

proposed adaptive scheme could be easily extended to cases 
in which k is unknown (e.g., due to payload changes). 
Finally, dropping the dependence from t and grouping the 
uncertain terms in a vectorial function 

 ( ) ( , ) ( , )h x f x t d x t= +&  (3) 

with 

 [ ]Tx x x= &  (4) 

we can rewrite (2) as 

 ( )x h x ku= − +&&  (5) 

The control system must be designed so that the mover 
position accurately follows a smooth, differentiable 
reference xd with first and second derivatives smooth and 
bounded. The control action must also ensure that the state 
and adapted parameters remain bounded. Moreover, an 
additional design goal is to obtain controllers with limited 
bandwidth because high-frequency oscillations of the 
current may generate excessive overheating under stressed 
operating conditions.  

A. General assumption 
Let us define the tracking error 

 de x x= −  (6) 

and the filtered tracking error  

 1 2 0
( )

t

Fe e c e c e dτ τ= + + ∫&  (7) 

where c1 and c2 are two design parameters.  
Derivating (7) and using (5)-(6), we obtain  

 1 2 ( )F de x c e c e h x ku= + + + −& && &  (8) 

Since ( )h x  is unknown, we introduce the following 
parametrized approximator 

 ˆ ˆ ˆ( ) ( , )Th x xθ φ σ= . (9) 
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In (9), vector σ̂  indicates the parameters having a nonlinear 
influence on the output while θ̂  indicates the parameters 
with linear influence on the output. In this paper, we 
consider a radial basis function neural network (RBNN) as a 
function approximator, although the method could be easily 
implemented with any other linear-in-the-parameter 
approximator (see [4] for a comprehensive discussion). The 
RBNN is also augmented with an extra node containing a 
finite jump function as proposed in [5] or [14]) to better 
describe the typical discontinuity of the friction force around 
zero velocity, Similarly to most of the mentioned literature, 
the vector σ̂  will be fixed a priori, while θ̂  will be subject 
to online learning.  

For a given specified vector of parameters σ̂ , let us 
consider the ideal parameter vector *θ  for which a suitable 
norm of the residual error of approximation *( ; )h h xε ε θ=  
of the unknown function ( )h x  is minimum [4], and write 

 *( ) ( )T
hh x xθ φ ε= +  (10) 

Let us define the following control action: 

 ( )1 2
1 ˆ( ) ( ) ( )F du t e x c e c e h x v t
k

λ= + + + + +&& &  (11) 

where λ is a design parameter v(t) is an auxiliary control 
action that will be specified later on. Substituting (10)-(11) 
into (8) and after straightforward manipulations, we obtain 
the filtered error dynamics 

 ( ) ( )T
F F he e x v tλ θ φ ε+ = + −%&  (12) 

where * ˆθ θ θ= −% . 
 

B. Nonlinear predictor and filtered prediction error 
The prediction error is a complementary form of information 
that can be exploited to improve the approximation of ( )h x . 
Since the acceleration is not directly available for 
measurement (it has to be obtained by applying twice direct 
differentiation of position), it is convenient to adopt a 
filtered prediction scheme [2], [4]. Let us define the 
predicted acceleration as the output of the following filtered 
estimator 

  ˆˆ ˆ ( ) ( )x x x h x ku tα α= − − − +&& & &  (13) 

in which x̂&  is the predicted velocity, and α  is a positive 
user defined constant. Moreover, let us introduce the filtered 
prediction error  

 ˆ
Pe x x= −& & . (14) 

in which x&  is the measured speed. It has to be noted that 
also the measured speed is obtained from direct 
differentiation of the position, so the filtered estimator is 

mainly introduced to avoid the need of performing this 
operation twice. Finally, differentiating (14), and using (5) 
and (13) we obtain 

 ( )T
P P he e xα θ φ ε+ = +%&  (15) 

in which the similarity with (12) can be easily observed.  
 

C. Learning Laws 
The parameter adaptation laws are based on Lyapunov 
design arguments. The main result is summarized in the 
following theorem. 
 
Theorem 1. Consider the system (1) with the control given 
by (11), the parameter update rule 

 ˆ ˆ( ) Ax eθ γφ νθ= −& , (16) 

and the auxiliary control term 

 ( ) Pv t eρ= , (17) 

where A F Pe e eρ= +  is the augmented error, ,γ ν  and 
2ρ α< are three positive design constants.  

Then, the tracking error e, the filtered errors eF and eP and 
the approximator parameters *θ  are Uniformly Ultimately 
Bounded (UUB). 
 
The proof is in the appendix.  
 

III. DISCUSSION OF DESIGN ISSUES 
The proposed adaptive scheme has some peculiarities with 
respect to other approximation-based compensators 
described in literature [7], [8], [14]. First, it can be noted that 
the filtered error (7) includes an integral term, which makes 
the control action in (11) interpretable as a PID control 
augmented with further compensation terms. The use of an 
integral action in positioning systems subject to friction has 
been frequently discussed. Some papers [7],[8] consider the 
integral action counterproductive in micro-metric 
positioning systems due to the risks of limit cycles (the so-
called hunting effect). On the contrary, recent studies [6] 
have confirmed that under proper tuning the integral term 
does not induce limit cycles, and is useful to guarantee a 
zero steady state error also under the effects of disturbances. 
For this reason, it has been introduced in (7).  

Clearly, the integral action makes the filtered error eF 
nonzero (and consequently may force the approximator 
parameters to change) even when both tracking and 
prediction errors are zero. Therefore, in order to prevent an 
excessive parameter drift, an adequate joint tuning of the 
gains ν  and γ  in adaptive law (16) (also known as sigma-
modification [4]) is necessary in our scheme (see Fig.5).  
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Another important issue regards the inclusion of the 
prediction error in the adaptation law. It can be noted that 
the stability proof in the appendix leads to exponential 
bounds for the tracking and prediction error that are not 
decreasing for higher learning rates (in contrast to what is 
obtained in [7] and [14]). In other words, since the term d2 in 
(25)-(27) contains the factor 2 2hγε , we cannot claim that 
higher learning rates determine better asymptotical 
performance. However, also this aspect should not be 
considered a shortcoming, because various studies (see next 
section or [5]) confirm that the learning rate cannot be set 
arbitrarily large in practical implementations. For this 
reason, even if it would be possible to make the asymptotical 
bounds of our approach inversely dependent from the 
learning rate (e.g., the adaptive bounding scheme in [7]), we 
do not consider their application useful to further enhance 
the precision of our control scheme.  

It can be also noted that our approach uses the direct 
differentiation of the position as the velocity signal. This 
issue has also been frequently discussed in literature on 
precision motion control, and various types of observers 
have been proposed to obtain smoother velocity measures. It 
has to be mentioned that an experimental investigation has 
shown that a velocity observer does not improve the quality 
of the tracking of the TLSM. On the contrary, an empirical 
comparison showed that the inherent limited noisiness of the 
signal obtained by direct differentiation may be even 
beneficial, as it acts as a form of additional dithering [21] 
contrasting the effects of static friction.  

IV. EXPERIMENTAL RESULTS 
The experimental tests are performed on single degree of 
freedom linear positioning system with a TLSM having the 
following rated specifications: rated isq current 4A, R=4.9Ω, 
L=1.15mH, mass of the mover 2.75kg. In all the 
experiments reported in this paper, the maximum q-axis 
current has been limited to the rated current. The adaptive 
control algorithms are executed on a dSPACE 1104 board 
based on a 250 MHz Motorola Power PC microprocessor, 
which discretizes the continuous-time control laws with 
Euler method and a sampling time Ts=250 µs. The output 
provided by the control board is a voltage signal acting as 
reference for the current control loop. The position of the 
linear drive is measured with an encoder having a resolution 
of 1.25µm. 

The reference trajectories (see Fig.2) are obtained by 
filtering a repeating sequence of variable amplitude steps 
with a nonlinear filter that shapes its output so as to keep the 
maximum speed and acceleration within the selected limits 
[10]. In our experiments, the maximum acceleration is 4m/s2 
and the maximum speed is 0.5m/s. The approximator is a 
RBNN with 20 neurons. Inputs are normalized with respect 
to their maximum values and the radial basis functions are 
uniformly spread in the square [-1,1]×[-1,1]. The remaining 

configuration parameters are empirically chosen as follows: 
λ=100, γ=0.2, ρ=0.2, α=20. 

The left-hand side of Fig. 3 shows the typical 
performances of a well-tuned linear PID controller. Without 
nonlinear compensation, the tracking precision is generally 
below 50 µm (with the error peak occurring during the 
longest moves), and the steady state error during constant 
references is not eliminated. The feedforward compensation 
contributes to obtain a smoother tracking performance, but 
the amplitude of errors remains almost unvaried. The 
performance of a standard adaptive compensation scheme 
(with a RBNN approximator and a learning law based only 
on the tracking error) is shown in the right-hand side of 
Fig.3. The tracking performance is significantly improved 
with respect to PID controllers, with a position error peak 
below 25µm and a zero steady state error. Increasing the 
learning rate does not produce further enhancements of the 
tracking performance, but generates nervous, oscillatory 
responses.  

Fig.4 shows the position and speed tracking achieved 
with composite adaptation. The peak of tracking error is 
nearly 50% lower than the case of learning based on filtered 
tracking only. Fig.5 shows that in spite of the integral term 
in the filtered error, the parameters reach a trend with 
constant average once learning is completed. Finally, the 
response to sinusoidal references is used to evaluate the 
characteristics of the control action. Fig.6 shows the RMS of 
the control action (applied current) during tracking of 
sinusoidal waves of increasing frequencies, obtained with 
standard and composite adaptation laws. For each law, we 
used the learning rate corresponding to the best tracking 
performance. It can be easily noted that composite 
adaptation has also a generally lower RMS current effort, 
and thus a higher overall efficiency. 
 

V. CONCLUSIONS 
This paper proposed an adaptive compensation scheme for 
linear actuators with micro-metric positioning tolerances. 
The uncertainties are approximated with a radial basis 
function network, which is trained online by a learning law 
combining the tracking error and the model prediction error. 
The injection of the filtered prediction in the adaptation 
signal leads to an improvement of about 50% in terms of 
reduction of error peak for a single DOF axis. The extension 
of the method to MIMO and multi-DOF systems, the 
adoption of self-organizing approximators with adaptive and 
problem-specific structures, and a deeper investigation of 
the sensitivity of performances with respect to the design 
parameters are among the subjects of ongoing research. 

APPENDIX 
 
Proof of Theorem 1.   
Let us consider the following Lyapunov candidate function 
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 2 2 1( , , )
2 2 2

T
F P F PV e e e eγ γρθ θ θ= + +% % %  (18) 

The derivative of V is: 

 ( , , ) T
F P F F P PV e e e e e eθ γ γρ θ θ= + + &% % %& & & = 

 

( )
( )

2 2

( ) ( )

( )

( ) ( )

( )

T
F F h

T T
P P h

T
F F F h F P

T T
P P h

e e x v t

e e x

e x e e e v t e

x e e

γ λ θ φ ε

γρ α θ φ ε θ θ

γλ γθ φ γ ε γ γαρ

γθ φ ρ γρ ε θ θ

= − + + −

+ − + + + =

= − + + − −

+ + + =

%

&% % %

%

&% % %

 (19) 

( )2 2 ( )

( )

T
F P A

A h F

e e x e

e e v t

γλ γρα θ γφ θ

γ ε γ

= − − + +

+ −

&% %
 

Using (16) and since ˆθ θ= − &&%  we obtain 
 

 
2 2

8

( , , )
ˆ ( )

F P F P

T
A h F

V e e e e

e e v t

θ γλ γαρ

νθ θ γ ε γ

= − −

+ + −

%&

%
 (20) 

 
Using the following inequality 

 * *1 1ˆ
2 2

T T Tθ θ θ θ θ θ≤ − +% % %  (21) 

we obtain 

 

2 2

* *

2 2 * *

2 2

2 2 * *

2 2 2 2

1( , , )
2

1 ( )
2

1 1
2 2

( )
2 2

1 1
2 2

( ) .
2 2 2

T
F P F P

T
A h F

T T
F P

h A F

T T
F P

h F P F P F

V e e e e

e v t e

e e

e v t e

e e

e e e e v t e

θ γλ γαρ νθ θ

ν θ θ γ ε γ

γλ γαρ νθ θ ν θ θ

γ γε γ

γλ γαρ νθ θ ν θ θ

γ γ γε ρ γρ γ

≤ − − −

+ + −

≤ − − − +

+ + −

= − − − +

+ + + + −

% % %&

% %

% %

 (22) 

Using (17) we obtain 

 

2 21
2

* * 2

2 21
2

* * 2

1( , , ) ( ) ( )
2 2

1 ( )
2 2

1( ) ( )
2 2

1 .
2 2

T
F P F P

T
h F P F

T
F P

T
h

V e e e e

e e v t e

e e

ρθ γ λ γρ α νθ θ

γν θ θ ε γρ γ

ργ λ γρ α νθ θ

γν θ θ ε

≤ − − − − −

+ + + −

= − − − − −

+ +

% % %&

% %
 (23) 

Finally, introducing 
 { }1 min 2 1, 2 ,d λ α ρ ν= − −  (24) 

 * * 2
2

1 1
2 2

T
hd ν θ θ γε= +  (25) 

we obtain 1 2V d V d≤ − +& . Therefore, using standard 
arguments [4, Appendix A] we obtain 

 12 2

1 1

( ) (0) d td d
V t V e

d d
−⎛ ⎞

≤ − +⎜ ⎟
⎝ ⎠

 (26) 

Thus, for every 2

1

d
d

µ >  there exists a time Tµ such that for 

all t Tµ≥  we have ( )V t µ≤ . 

Moreover, since 2

2 FV eγ
≥ , we obtain  

 12 2

1 1

2 2| | (0) d t
F

d d
e V e

d dγ γ
−⎛ ⎞

≤ − +⎜ ⎟
⎝ ⎠

.  (27) 

Similar bounds can be found for Pe  and θ%  with an 
analogous procedure. 
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Fig. 2. The first period of position and speed references, obtained with the filter described in [10] 
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Fig.3. Position tracking performance of a well-tuned PID, and of a standard adaptive compensation. 
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Fig. 4. Position and speed tracking error with composite learning laws. The peaks of the tracking error is nearly 50% smaller than in the case of tracking-
error based learning.  
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