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Abstract— We study the adaptive control problems of a class
of discrete-time partially observed Markov decision processes
whose transition kernels are parameterized by a unknown
vector. Given a sequence of parameter estimates converging
to the true value with probability 1, we propose an adaptive
control policy and show that under some conditions this policy
is self-optimizing in the long-run average sense.

I. INTRODUCTION

During the past decade considerable effort has been in-
vested in the study of stochastic adaptive control. Special
attentions have been paid to the system with incomplete
or noisy state observation, in particular, the discrete-time
partially observable Markov decision processes (POMDPs)
with the transition probability matrix depending on some
unknown parameter vector θ ∈ Θ where Θ ∈ RNθ is the
parameter space with cardinality Nθ. The purpose of the
adaptive control of POMDPs is to optimally regulate the
modelled system in the presence of parameter uncertainty.
To achieve this, a control strategy widely used in the
linear filtering was proposed in [1], where the parameter
uncertainty in the partially observed system was handled
by deriving the filter for the conditional probabilities and
estimating the parameters at the same time, then plugging
into the filter with the most updated parameter estimates.
This adaptive estimation algorithm can be analyzed by the
ordinary differential equation method and the existence of a
convergent sequence {θ̂t}∞t=0 → θ in appropriate probability
measure can be shown (see [21]). Along with this result, a
methodology involving a set of assumptions was proposed
in [14] to show the self-optimality (defined later) of the
adaptive policy. The major assumptions mentioned there
included that a. for each θ ∈ Θ the optimal policy exists, and
b. the sequence of estimation errors between the true and the
estimated information states converges to 0. For the long-run
average cost model, positive transition matrices in [11] and
renewability condition in [16] are assumed to guarantee a.
Recently (see [19]) we propose several sufficient conditions
for the same topic and show that our results solve a wider
class of practical problems. In this paper we present one of
the condition (which leads to a.) from [19] on the structure
of the transition matrices and show that a little modification
of this condition leads to b., if the convergence {θ̂t}∞t=0 → θ
is fast enough. Hence, the self-optimizing property of the
adaptive policy is obtained according to the methodology

in [14]. We note that our conditions are either weaker or
more justifiable than those of other work in the literature.

This paper is organized as follows. Section 2 reviews
the technical preliminaries, including the ergodic and adap-
tive control problem of discrete-time POMDPs. Section 3
presents the main result of the paper. Several structural
properties of the product of non-negative matrices are proved
and applied to derive the self-optimization, in the long-run
average sense, of the proposed adaptive policy.

II. PRELIMINARIES

A. Partially Observed Markov Decision Process

A discrete-time partially observable Markov decision pro-
cess is governed by a five-tuple (S,U,U , Q, c) with the
following meanings: S = X× Y is the process’s state space
where X = {1, 2, · · · , Nx} is the finite system space and
Y = {1, 2, · · · , Ny} is the finite observable space. U is
the finite action space. Let B(V) denote the σ-algebra for
a given topological space V, then U : X→ B(U) means a set-
valued map with compact non-empty value and U(x) is the
set of feasible actions when the system is in state x ∈ X.
Q is the transition matrix of the process and c is the cost
function. Specifically, when the system state at time t is Xt

and a control Ut is taken, a cost c(Xt, Ut) is incurred and
the system moves to next state Xt+1 with observation Yt+1

according to the transition matrix Q defined by

Q(y, Ut)Xtj := Prob(Xt+1 = j, Yt+1 = y|Xt, Ut)
=Prob(Xt+1 = j, Yt+1 = y|Xk, Yk, Uk, k ≤ t)

for all t ∈ N0 (the set of nonnegative integers), j ∈X, and
y ∈Y. Note that by definition the element of Q is nonnegative
and satisfies ∑

y∈Y

∑
j∈X

Q(y, u)ij = 1

for each i ∈ X and u ∈ U. Denote Ψ := P(X), the proba-
bility (row) vector space on X. To transform the partially
observed process into its completely observed equivalent,
we apply the Bayes rule (see [20, p84]) and construct the
information state sequence {ψt} by recursively calculating

ψt+1 :=
∑
y∈Y

ψtQ(y, Ut)
ψtQ(y, Ut)1

· 1{Yt+1=y} ,
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for each ψt ∈ Ψ , Ut ∈ U, and t ∈ N0, where 1{·} is the
indicator function and 1 is a column vector of 1’s with size
Nx. Write V (ψ, y, u) = ψ · Q(y, u) · 1 as the conditional
probability and

T (ψ, y, u) :=
ψ ·Q(y, u)
V (ψ, y, u)

for V (ψ, y, u) 6= 0 ,

as the posteriori conditional distribution, then the transition
kernel for the information state is given by

K(B|ψ, u) : = Prob{ψt+1 ∈ B|ψt = ψ,Ut = u}, (1)

=
∑

Yt+1∈Y

V (ψ, Yt+1, u) · 1{T (ψ,Yt+1,u)∈B}

for each B ∈ B(Ψ), ψ ∈ Ψ , and u ∈ U. So we have the
transformed five-tuple (Ψ ,U, Ũ , K, c̃) where Ũ : Ψ → B(U)
and c̃(ψ, u) :=

∑
x∈X c(x, u)ψ(x) for all ψ ∈ Ψ and u ∈ U.

For the original history space Hi of the partially observed
process up to time i where H0 := Ψ , Ht := Ht−1 × U ×
Y for all t ∈ N (the set of positive integers), we obtain a
corresponding completely observed history space: Ĥ0 := Ψ ,
Ĥt := Ĥt−1 × U× Ψ for all t ∈ N.

An admissible strategy or admissible policy π is a se-
quence {πt}∞t=0 of Borel measurable stochastic kernels πt
on U given Ĥt satisfying πt(Ũ(ψt)|ht) = 1 for all ψt ∈ Ψ ,
ht ∈ Ĥt, and t ∈ N0. An admissible policy is called
deterministic if there exists a function f : Ψ → U such
that πt(f(ψt)|ht) = 1 for all ψt ∈ Ψ , ht ∈ Ĥt and t ∈ N0.

It is shown in [7] that for an initial distribution ψ0 ∈ Ψ
and admissible strategy π, there exists an unique probability
measure Pπψ0

induced on the sample path (Ψ×U)∞. We use
Eπψ0

to represent the corresponding expectation operator.

B. Ergodic Control

The objective of ergodic control is to decide the optimal
strategy π ∈ Π (the set of all admissible strategies) to
minimize the incurred long-run average cost:

J(ψ0, π) := lim sup
T→∞

1
T

Eπψ0

[
T−1∑
t=0

c̃(ψt, Ut)

]
. (2)

The classical vanishing discount limit method approaches
this problem by extending the result from the β-discounted
cost model:

Jβ(ψ0, π) := lim sup
T→∞

Eπψ0

[
T−1∑
t=0

βtc̃(ψt, Ut)

]
. (3)

where β is in (0,1). If πβ is the minimizing policy in the
following sense and results in a value function hβ(ψ) where

hβ(ψ) = Jβ(ψ, πβ) = inf
π∈Π

Jβ(ψ, π) , ψ ∈ Ψ , (4)

then the following assumption and its implication are well
known.

Assumption 2.1: c : X × U → R+ is the one-stage cost
function that is nonnegative, bounded and continuous. Also,
U → Q(y, U) is continuous for each y ∈ Y.

Lemma 2.1: [17, Chapter 2] Suppose Assumption 2.1
holds. The value function hβ(ψ) in (4) corresponding to

the β-discounted cost model in (3) can be characterized by
Bellman’s β-discounted optimality equation:

hβ(ψ) = min
u∈U

{
c̃(ψ, u) + β

∫
Y
hβ(ψ′)K(dψ′|ψ, u)

}
(5)

for all ψ ∈ Ψ where K is defined in (1). Any admissible
policy resulting in the value function hβ(·) is β-discounted
optimal.

It is well known that hβ(ψ) is the unique solution in
C(Ψ) (the space of continuous functions on Ψ ) for Bellman’s
β-discounted optimality equation. Also, it can be shown
(see [22]) that hβ(·) is concave. Suppose β0 is in (0,1) and
{βn}∞n=1 ⊂ [β0, 1) is a sequence with βn → 1. ψ∗ :=
arg minψ∈Ψ hβ(ψ), and hβ(ψ) := hβ(ψ)− hβ(ψ∗). A well-
known major condition (see [15]) that implies the existence
of the long-run average optimal policy characterized by
Bellman’s ergodic optimality equation follows.

Assumption 2.2: {hβn(·)}∞n=1 is uniformly bounded on
Ψ .

Theorem 2.2: Suppose Assumption 2.1 and Assump-
tion 2.2 hold. Then there exist a constant ρ, which is the
optimal ergodic cost, and a bounded, concave and continuous
function h: Ψ → R, such that (ρ, h(·)) is a solution of the
following dynamic programming equation:

ρ+ h(ψ) = min
u∈U

{
c̃(ψ, u) +

∫
Y
h(ψ′)K(dψ′|ψ, u)

}
. (6)

Also, the following is equivalent.
1) π∗ is an optimal optimal.
2) π∗(ψ) assigns a minimizer u for {·} in (6) for each

ψ ∈ Ψ .
3)

lim
t→∞

1
T

T−1∑
t=0

Eπ
∗

ψ0
{D(ψt, π∗(ψt))} = 0

where the discrepancy function D : Ψ × U → R is
defined by

D(ψ, u) := c̃(ψ, u)+
∫

Y
h(ψ′)K(dψ′|ψ, u)−ρ−h(ψ) .

Proof: The results follow from [15], and [18, Propo-
sition 5.5.5].

C. Adaptive Control

When the transition matrix Q is parameterized by a
unknown vector θ ∈ Θ, where Θ ⊆ RNθ is a compact
space, an stochastic approximation-type estimation algorithm
can be designed to form a sequence {θ̂t}∞t=0 such that
θ̂t → θ w.p. 1 as t → ∞. For simplicity we denote the pa-
rameterized transition matrix Q̂(yt, ut−1) = Q(yt, ut−1, θ̂t)
and sometimes Q(yt, ut−1) = Q(yt, ut−1, θ). Suppose for
each parameter θ ∈ Θ, there exists an associated optimal
deterministic policy written as π∗(·, θ). Define the adaptive
policy πa that generates a sequence of actions {ut}∞t=0 where
ut = π∗(ψ̂t, θ̂t) and

ψ̂t+1 :=
∑
y∈Y

ψ̂tQ̂(y, ut)

ψ̂tQ̂(y, ut)1
· 1{Yt+1=y}, (7)
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for each ψ̂t ∈ Ψ , ut ∈ U, and t ∈ N0. According to the
methodology in [14], for πa to be a self-optimizing policy in
the sense that Jθ(ψ0, π

a) = infπ∈Π Jθ(ψ0, π), one important
condition is to construct a sequence {ψ̂t}∞t=0 of information
state estimates such that under Pπaψ0

we have ‖ψ̂t−ψt‖1 → 0
as t → ∞ where ‖·‖1 is the l1 norm. In the following we
study the sufficient conditions for the convergence to hold.
Specifically, we would like to show

Eπ
a

ψ0

[
‖ψt − ψ̂t‖1

]
−→ 0 as t→∞ ∀ψ0 ∈ Ψ . (8)

D. Stochastic Matrix

Our main assumption to imply (8) is based on the ideas
of the weak ergodicity in product of nonnegative matrices
(see [24]). We now review some definitions, notations and
concepts to be used later. A nonnegative matrix is a square
matrix with all of its elements nonnegative. A row-allowable
matrix is a nonnegative matrix with all of its row sums
positive. A substochastic matrix is a nonnegative matrix with
all of its row sums no greater than 1. If every row sum
of a substochastic matrix equals 1, it is called a stochastic
matrix. It is shown in [1] that if A is a nonnegative matrix,
ψ1, ψ2 ∈ Ψ , and define

τ1(A) :=
1
2

max
i,j
‖Ai. −Aj.‖1 ,

then we have

‖(ψ1 − ψ2)A‖1 ≤ τ1(A) ‖ψ1 − ψ2‖1 .

Apparently if A is a stochastic matrix, then τ(A) ∈ [0, 1].
If τ1(A) ∈ (0, 1), then A has the property of contraction
mapping. Finally, we use the following definitions through-
out this paper: {Bk}∞k=1 is a sequence of Nx×Nx matrices;
Bm+n
m := BmBm+1 · · ·Bm+n, and Bk := B1B2 · · ·Bk.

Bi·, B·j represent the ith row and jth column of B,
respectively. ei is the ith row vector of the identity matrix
with size Nx ×Nx.

III. MAIN RESULT

In this section we first present a major condition, a weaker
version than that in [23, Assumption A.6], to guarantee
the existence of long-run average optimal policy for the
POMDP. For details on the proof and other weaker sufficient
conditions readers are referred to [19].

Assumption 3.1: There exist constants ε > 0, Nb ∈ N and
β0 < 1 such that for each β ∈ [β0, 1) we have

max
1≤k≤Nb

Pπβei {Q(Y k, Uk−1)i1j ≥ εQ(Y k, Uk−1)i2j} ≥ ε ,

where i, i1, i2, j all in X and k-step transition matrix
Q(yk, uk−1) := Q(y1, u0) · · ·Q(yk, uk−1).

Lemma 3.1: [19] Assumption 3.1 is a sufficient condition
for Assumption 2.2.

Next we present several properties concerning the prod-
uct of row-allowable matrices. These results can be easily
obtained from the definition of the row-allowable matrix
mentioned in the previous section.

Lemma 3.2: For a row-allowable matrix Bn and a positive
number ε, if (Bn)i1j ≥ ε · (Bn)i2j for each n ∈ N and
i1, i2, j ∈ X, then we have

1
(Bm+r

m )i2.1
≥ ε 1

(Bm+r
m )i1.1

where m, r ∈ N.
Corollary 3.3: Under the assumption of Lemma 3.2 we

have

(Bm)i2j(B
m+n
m+1 )j.1

(Bm+r
m )i2.1

≥ ε2 (Bm)i1j(B
m+n
m+1 )j.1

(Bm+r
m )i1.1

,

and for each ψ1, ψ2 ∈ Ψ

ψ1B
n1

ψ2Bn1
≥ ε .

Lemma 3.4: For a row-allowable matrix Bn and a positive
number ε, if (Bn)i1.1 ≥ ε · (Bn)i2.1 for each n ∈ N and
i1, i2 ∈ X, then we have

Bki1.1
Bki2.1

≥ εk .

where k ∈ N.
The next lemma is an improved version of Lemma 2.1

in [1], though it can be similarly derived.
Lemma 3.5: Under the assumption of Lemma 3.2 we have∣∣∣∣ (Bm+n

m )i1j
(Bm+n

m )i1.1
− (Bm+n

m )i2j
(Bm+n

m )i2.1

∣∣∣∣ ≤ (1− ε2)n

for each m,n ∈ N.
Lemma 3.6: If ψ1, ψ2 ∈ Ψ ,
1) under the assumption of Lemma 3.4 we have∥∥∥∥ ψ1B

n

ψ1Bn1
− ψ2B

n

ψ2Bn1

∥∥∥∥
1

≤ 2
εn
‖ψ1 − ψ2‖1 ;

2) under the assumption of Lemma 3.2 we have∥∥∥∥ ψ1B
n

ψ1Bn1
− ψ2B

n

ψ2Bn1

∥∥∥∥
1

≤ Nx
ε

(1−ε2)n−1 ‖ψ1 − ψ2‖1 ;

Proof: See Appendix.
Now we propose the main assumptions based on

Lemma 3.6.
Assumption 3.2: For each parameter θ ∈ Θ, Q(y, u, θ) is

row-allowable for each y ∈ Y and u ∈ U. Also, there exist
constants ε > 0, Nb ∈ N such that for each i1, i2, j ∈ X

max
1≤k≤Nb

Pπ
a

ψ0
{Q(Y k, Uk−1, θ)i1j ≥ εQ(Y k, Uk−1, θ)i2j} = 1

for all ψ0 ∈ Ψ , where πa is the adaptive strategy described
in (7).

Suppose Assumption 3.2 holds, then there exists an in-
creasing sequence of integers {ml}nl=0 ⊂ N0 satisfying
m0=0, ml+1 −ml ≤ Nb, for l = 0, 1, · · · , n − 1, mn ≤ t
such that

Pπ
a

ψ0
{[Q(Yml−1+1, Uml−1) · · ·Q(Yml , Uml−1)]i1j ≥
ε[Q(Yml−1+1, Uml−1) · · ·Q(Yml , Uml−1)]i2j} = 1 (9)

for each i, i1, i2, j, j1, j2 ∈ X. Let {θ̂t}∞t=0, θ̂t ∈ Θ, be a
sequence of estimates of the θ and satisfy θ̂t = θ̂ml+1 for

5637



ml + 1 ≤ t ≤ ml+1. That is, θ̂t is updated only at time
t = ml + 1, l ∈ N0. The assumption on the properties of the
sequence {θ̂t}∞t=0 is made in the following.

Assumption 3.3: The parameter space Θ is compact and
the transition matrix Q(y, u, ·) is continuously differentiable
on Θ for every y ∈ Y and u ∈ U.

Assumption 3.4: The sequence {θ̂t}∞t=0 of estimates of θ
satisfies

1) θ̂t is σ(Y0, · · · , Yt)−measurable.
2) θ̂t → θ as t→∞ in Pπaψ0

3) There exists a constant M such that

‖θ̂ml+1+1 − θ̂ml+1‖1 ≤
M

l + 1
for every l ∈ N0.

We are thus ready for the following theorem.
Theorem 3.7: Suppose Assumption 2.1, 3.2, 3.3 and 3.4

are satisfied, then for each ψ0 ∈ Ψ

Eπ
a

ψ0

[
‖ψt − ψ̂t‖1

]
−→ 0 as t→∞ .

Proof: Let {ml}nl=0 be the sequence used in (9) and
define the following: By

t

0 = I is the identity matrix with
size Nx × Nx. For 1 ≤ i ≤ n the multi-step transition
matrix: By

t

i := Q(Ymi−1+1, Umi−1) · · ·Q(Ymi , Umi−1). For
i = n+ 1 By

t

i := Q(Ymi−1+1, Umi−1) · · ·Q(Yt, Ut−1). B̂y
t

i

is similarly defined with Q(Y,U) replaced by Q̂(Y,U) for
i = 1, · · ·n + 1 and B̂y

t

0 = I . For l = 1, · · ·n + 1, new
information states are denoted by

ψ̂l :=
ψ0B̂

yt

0 · · · B̂
yt

l−1

ψ0B̂
yt

0 · · · B̂
yt

l−11
,

ˆ̂
ψl :=

ψ̂lB̂
yt

l

ψ̂lB̂
yt

l 1
, ψ̂l :=

ψ̂lB
yt

l

ψ̂lB
yt

l 1
.

Then, by triangular inequality we have with probability 1∥∥∥ψt − ψ̂t∥∥∥
1

≤
n+1∑
l=1

∥∥∥∥∥ ψ0B̂
yt

0 · · · B̂
yt

l−1B
yt

l · · ·B
yt

n+1

ψ0B̂
yt

0 · · · B̂
yt

l−1B
yt

l · · ·B
yt

n+11

−
ψ0B̂

yt

1 · · · B̂
yt

l B
yt

l+1 · · ·B
yt

n+1

ψ0B̂
yt

1 · · · B̂
yt

l B
yt

l+1 · · ·B
yt

n+11

∥∥∥∥∥
1

=
n∑
l=1

∥∥∥∥∥∥ ψ̂lB
yt

l+1 · · ·B
yt

n+1

ψ̂lB
yt

l+1 · · ·B
yt

n+11
−

ˆ̂
ψlB

yt

l+1 · · ·B
yt

n+1

ˆ̂
ψlB

yt

l+1 · · ·B
yt

n+11

∥∥∥∥∥∥
1

+
∥∥∥ψ̂n+1 −

ˆ̂
ψn+1

∥∥∥
1
. (10)

If Assumption 3.2 is satisfied, then by Lemma 3.4 and
Lemma 3.6-(2) we have

(10) ≤ 2
εNb


n−1∑
l=1

∥∥∥∥∥∥ ψ̂lB
yt

l+1 · · ·By
t

n

ψ̂lB
yt

l+1 · · ·B
yt
n 1
−

ˆ̂
ψlB

yt

l+1 · · ·By
t

n

ˆ̂
ψlB

yt

l+1 · · ·B
yt
n 1

∥∥∥∥∥∥
1

+
n+1∑
l=n

∥∥∥ψ̂l − ˆ̂
ψl

∥∥∥
1

}

≤ 2
εNb

{
n−1∑
l=1

Nx
ε

(1− ε2)n−1−l
∥∥∥ψ̂l − ˆ̂

ψl

∥∥∥
1

+
n+1∑
l=n

∥∥∥ψ̂l − ˆ̂
ψl

∥∥∥
1

}

=
2Nx

εNb+1(1− ε2)

{
n−1∑
l=1

(1− ε2)n−l
∥∥∥ψ̂l − ˆ̂

ψl

∥∥∥
1

+
n+1∑
l=n

∥∥∥ψ̂l − ˆ̂
ψl

∥∥∥
1

}

=
2Nx

εNb+1(1− ε2)

{
n∑
l=1

(1− ε2)n−l
∥∥∥ψ̂l − ˆ̂

ψl

∥∥∥
1

+
∥∥∥ψ̂n+1 −

ˆ̂
ψn+1

∥∥∥
1

}
.

(11)

Due to the continuous differentiability of Q(y, u, ·) on Θ
for each y ∈ Y and u ∈ U, also, for k = ml + 1, · · · ,ml+1

θ̂k = θ̂ml+1, we apply the mean value theorem and write
that there exists a finite positive constant M such that

‖ψ̂l −
ˆ̂
ψl‖1 ≤M

ml∑
k=ml−1+1

∥∥∥θ̂k − θ∥∥∥
1

≤MNb

∥∥∥θ̂ml−1+1 − θ
∥∥∥

1

for l = 1, · · · , n. With the same reason

∥∥∥ψ̂n+1 −
ˆ̂
ψn+1

∥∥∥
1
≤M

t∑
k=mn+1

∥∥∥θ̂k − θ∥∥∥
1

≤MNb

∥∥∥θ̂ml−1+1 − θ
∥∥∥

1
.

Therefore, following (11) there exist positive and finite
numbers M1, M2 and α ∈ (0, 1) such that∥∥∥ψt − ψ̂t∥∥∥

1

≤M1

n∑
l=1

αn−l
∥∥∥θ̂ml−1+1 − θ

∥∥∥
1

+M2

∥∥∥θ̂mn+1 − θ
∥∥∥

1

= M1

n−1∑
l=0

αn−1−l
∥∥∥θ̂ml+1 − θ

∥∥∥
1

+M2

∥∥∥θ̂mn+1 − θ
∥∥∥

1
.

(12)

Applying the triangular inequality again we obtain∥∥∥θ̂ml+1 − θ
∥∥∥

1

≤
∥∥∥θ̂mn+1 − θ

∥∥∥
1

+
∥∥∥θ̂mn−1+1 − θ̂mn+1

∥∥∥
1

+ · · ·+
∥∥∥θ̂ml+1 − θ̂ml+1+1

∥∥∥
1

=
∥∥∥θ̂mn+1 − θ

∥∥∥
1

+
n−1∑
i=l

∥∥∥θ̂mi+1+1 − θ̂mi+1

∥∥∥
1

≤
∥∥∥θ̂mn+1 − θ

∥∥∥
1

+
n−1∑
i=l

M

i+ 1
, (13)
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for l = 0, 1, · · · , n − 1, where the last inequality follows
from Assumption 3.4-(3). On the other hand,

n−1∑
l=0

n−1∑
i=l

αn−1−l

i+ 1
=

1
1− α

{
n−1∑
i=0

αi

n− i
− αn

n∑
i=1

1
i

}

≤ 1
1− α

n−1∑
i=0

αi

n− i

≤ 1
1− α

n−1∑
i=0

1 + i

n
αi ≤ 1

n(1− α)3
,

(14)

where the second inequality follows from the fact that for
0 ≤ i ≤ n− 1 we have

n

n− i
= 1 +

i

n− i
≤ 1 + i .

Finally, we obtain from (12) ∼ (14) that there exist positive
and finite numbers M3 and M4 such that

Eπ
a

ψ0

[
‖ψt − ψ̂t‖1

]
≤M3E

πa

ψ0

[
‖θ̂mn+1 − θ‖1

]
+
M4

n
.

(15)
As t → ∞, n ≥ t/Nb → ∞, we conclude that for each
ψ0 ∈ Ψ

Eπ
a

ψ0

[
‖ψt − ψ̂t‖1

]
−→ 0 as t→∞

by Assumption 3.4-(2), the compactness of Θ, and inequal-
ity (15).

In the following, we show the self-optimizing property for
the adaptive policy πa.

Theorem 3.8: Suppose Assumption 2.1, 3.2, 3.3 and 3.4
hold. For a given unknown true parameter vector θ ∈ Θ the
adaptive policy πa described in (7) is self-optimizing in the
long-run average sense.

Proof: By Theorem 2.2, under the assumptions we have
for each θ ∈ Θ a bounded solution (ρθ, hθ) for equation (6)
in parameterized form. Furthermore hθ(ψ) is continuous and
bounded both in ψ ∈ Ψ and θ ∈ Θ. Then the discrepancy
function

Dθ(ψ, u) := c̃(ψ, u)+
∫

Y
hθ(ψ′)K(dψ′|ψ, u, θ)−ρθ−hθ(ψ),

is uniformly continuous and bounded in Θ × Ψ for each
u ∈ U. Assumption 3.4 together with Theorem 3.7 imply
for each u ∈ U

Dθ̂t
(ψ̂t, u) −→ Dθ(ψt, u) in Pπ

a

ψ0
as t→∞.

Due to the finiteness of U we can write as t→∞

Dθ̂t
(ψ̂t, π∗(ψ̂t, θ̂t)) −→ Dθ(ψt, π∗(ψ̂t, θ̂t))) in Pπ

a

ψ0

(16)
Since π∗(·, θ) is optimal for θ ∈ Θ, we have

Dθ̂t
(ψ̂t, π∗(ψ̂t, θ̂t)) = 0.

Define for arbitrary ε > 0 and t ∈ N,

Ωt(ε) = {ω : |Dθ(ψt, π∗(ψ̂t, θ̂t))

−Dθ̂t
(ψ̂t, π∗(ψ̂t, θ̂t))|(ω) > ε}

= {ω : Dθ(ψt, π∗(ψ̂t, θ̂t))(ω) > ε} .

Eπ
a

ψ0
{Dθ(ψt, π∗(ψ̂t, θ̂t))} =

∫
Ωt(ε)

Dθ(ψt, π∗(ψ̂t, θ̂t))dPπ
a

ψ0

+
∫

Ω\Ωt(ε)
Dθ(ψt, π∗(ψ̂t, θ̂t))dPπ

a

ψ0

≤ KPπ
a

ψ0
(Ωt(ε)) + ε

for some finite K > 0. By (16) and letting ε→ 0, we have

Eπ
a

ψ0
{Dθ(ψt, π∗(ψ̂t, θ̂t))} −→ 0 as t→∞ .

Therefore,

1
T

N−1∑
t=0

Eπ
a

ψ0
{Dθ(ψt, π∗(ψ̂t, θ̂t))} −→ 0 as t→∞

and the result follows from Theorem 2.2.

IV. CONCLUSION

In this paper we address the adaptive control problems
of a class of discrete-time partially observed Markov deci-
sion processes whose transition kernels are parameterized
by a unknown vector. Suppose a sequence of parameter
estimates converging to the true value with probability 1 is
given, we propose an adaptive control policy and follow the
methodology in [14] to show that under some conditions
this policy is self-optimizing in the long-run average sense.
The major conditions, including the property on the structure
of transition matrices and the convergence speed of the
parameter estimates to the true value, are shown to be
the sufficient conditions to justify the self-optimality of the
adaptive policy. We note that our conditions are either weaker
or easily verifiable and thus can be of practical interest.

APPENDIX

Proof: When ψ1, ψ2 ∈ Ψ and Bk is row-allowable for
k ∈ N, ∥∥∥∥ ψ1B

n

ψ1Bn1
− ψ2B

n

ψ2Bn1

∥∥∥∥
1

=
Nx∑
i=1

∣∣∣∣∣
Nx∑
s=1

ψ1sB
n
si

ψ1Bn1
−

Nx∑
s=1

ψ2sB
n
si

ψ2Bn1

∣∣∣∣∣
: =

Nx∑
i=1

∣∣∣∣∣
Nx∑
s=1

(ψ̂1s − ψ̂2s)B̂nsi

∣∣∣∣∣
=
∥∥∥(ψ̂1 − ψ̂2)B̂n

∥∥∥
1
≤ τ1(B̂n)

∥∥∥ψ̂1 − ψ̂2

∥∥∥
1

where

ψ̂1s :=
ψ1sB

n
s.1

ψ1Bn1
, ψ̂2s :=

ψ2sB
n
s.1

ψ2Bn1
, B̂nsi :=

Bnsi
Bns.1

.

Since ∥∥∥ψ̂1 − ψ̂2

∥∥∥
1
≤
{∥∥∥ψ̂1 − ψ̂0

∥∥∥
1

+
∥∥∥ψ̂2 − ψ̂0

∥∥∥
1

}
5639



where ψ̂0 = [ψ̂01, ψ̂02, · · · , ψ̂0Nx ] with sth component
ψ2sB

n
s.1

ψ1Bn1
, so

∥∥∥ψ̂2 − ψ̂0

∥∥∥
1

=
Nx∑
s=1

∣∣∣∣ψ2sB
n
s.1

ψ2Bn1
− ψ2sB

n
s.1

ψ1Bn1

∣∣∣∣
=

Nx∑
s=1

∣∣∣∣ (ψ1 − ψ2)Bn1ψ2sB
n
s.1

ψ1Bn1ψ2Bn1

∣∣∣∣
=
∣∣∣∣ (ψ1 − ψ2)Bn1

ψ1Bn1

∣∣∣∣ ≤ Nx∑
s=1

∣∣∣∣ψ1sB
n
s.1

ψ1Bn1
− ψ2sB

n
s.1

ψ1Bn1

∣∣∣∣
=
∥∥∥ψ̂1 − ψ̂0

∥∥∥
1
.

That is,∥∥∥ψ̂1 − ψ̂2

∥∥∥
1
≤ 2

Nx∑
s=1

∣∣∣∣ (ψ1s − ψ2s)Bns.1
ψ1Bn1

∣∣∣∣
≤ 2

Nx∑
s=1

|ψ1s − ψ2s| ·max
s

{
Bns.1
ψ1Bn1

}
.

Since τ1(B) ≤ 1 for a stochastic matrix B, if given
(Bk)i1.1 ≥ ε · (Bk)i2.1, then from Lemma 3.4∥∥∥ψ̂1 − ψ̂2

∥∥∥
1
≤ 2
εn
‖ψ1 − ψ2‖1

and part (1) is proved. If (Bk)i1j ≥ ε · (Bk)i2j , then from
Lemma 3.5

τ1(B̂n) =
1
2

max
i1,i2

Nx∑
j=1

∣∣∣B̂ni1j − B̂ni2j∣∣∣
=

1
2

max
i1,i2

Nx∑
j=1

∣∣∣∣ Bni1jBni1·1
−

Bni2j
Bni2·1

∣∣∣∣
≤ Nx

2
(1− ε2)n−1

and by Corollary 3.3∥∥∥ψ̂1 − ψ̂2

∥∥∥
1
≤ 2
ε
‖ψ1 − ψ2‖1 ,

therefore part (2) is proved.
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