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Abstract— In this paper, we study solutions of general matrix
equations by using the iterative method and present gradient-
based iterative algorithms by applying the hierarchical iden-
tification principle. Convergence analysis indicates that the
iterative solutions always converge fast to the exact solutions for
any initial values and small condition numbers of the associated
matrices. Several numerical examples are included.

I. INTRODUCTION

IN systems and control, we often encounter the matrix

equations of the form,

AX +X TB = F , (1)

where X ∈ R
m×n is an unknown matrix and A, B and F

are constant (coefficient) matrices of appropriate sizes. Such

matrix equations play an important role in automatic control.

Just pointed out in [1] that the traditional method of

solving such matrix equations using the Kronecker product

involves the inversion of associated large matrix (mn)×(mn)
and results in increasing computation and excessive computer

memory. The gradient-based iterative method in [1] can be

used to solve the matrix equations of the forms,

AX +XB = F ,

and
p

∑
i=1

AiXBi = F .

But the method there is not suitable for solving the general

matrix equations of the form,

p

∑
i=1

AiXBi +
q

∑
i=1

CiX
TDi = F (2)

which including the Lyapunov equations, Sylvester equations

as the special cases, e.g., [2]. Recently, iterative approaches

for matrix equations have received much attention, e.g., [3].

For example, Dehghan and Hajarian studied the iterative

algorithm for the reflexive solutions of the generalized cou-

pled Sylvester matrix equations [4]; Mukaidani et al gave

a numerical algorithm for finding solution of cross-coupled

algebraic Riccati equations [5]; Wang et al proposed the

iterative solutions of coupled discrete Markovian jump Lya-

punov equations; and some related contributions include the

generalized Sylvester mapping and matrix equations [6] and

the condition numbers of the generalized Sylvester equations
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[7]. Also, Kilicman et al presented the vector least-squares

solutions for coupled singular matrix equations; Ding and

Chen presented a gradient-based and a least-squares based

iterative algorithms for generalized Sylvester matrix equa-

tions and general coupled matrix equations by introducing

the star (⋆) product of matrices [8], [9]. Finally, Zhour et

al discussed some new connections between matrix products

for partitioned and non-partitioned matrices, including the

star product [10] and the solutions of other matrix equations

can be found in [11], [12].

This paper decomposes the system in (2) into several

subsystems by applying the hierarchical identification prin-

ciple [8], [13], regards the unknown matrix X as the system

parameter matrix, and presents a gradient-based iterative

algorithm for solving the matrix equation in (2).

The rest of the paper is organized as follows. Section II

and III derive iterative algorithms for solving the matrix

equations in (1) and (2) and study convergence properties

of the algorithms. Section IV provides several examples

to illustrate the effectiveness of the proposed algorithms.

Finally, we offer some concluding remarks in Section V.

II. THE EQUATION AX +X TB = F

In this section, we apply the hierarchical identification

principle to solve matrix equations:

AX +X TB = F , (3)

where A ∈ R
n×m, B = [b1,b2, · · · ,bn] ∈ R

m×n and F =
[ f 1, f 2, · · · , f n]∈R

n×n are given constant matrices, X ∈R
m×n

is the unknown matrix to be solved.

Let us introduce some notations first. The symbol In stands

for an identity matrix of size n×n. For two matrices M and

N, M⊗N is their Kronecker product (called direct product);

for an m×n matrix

X = [x1,x2, · · · ,xn] ∈ R
m×n, xi ∈ R

m,

col[X ] is an mn-dimensional vector formed by the columns

of X , i.e.,

col[X ] =











x1

x2

...

xn











∈ R
mn.

Define

S := In ⊗A+











In ⊗bT

1

In ⊗bT

2
...

In ⊗bT

n











∈ R
n2×mn.
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Lemma 1: Equation (3) has a unique solution if and only

if rank{S,col[F ]} = rank[S] = mn; in this case, the unique

solution is given by

col[X ] = (STS)−1STcol[F ] (4)

and the corresponding homogeneous equation AX +X TB = 0

has a unique solution X = 0.

Lemma 1 is a special case of Lemma 2 and the proof of

which can be done in a similar way.

Although (4) can be used to solve (3), it requires excessive

computer memory because of computing the inversion of the

large matrix STS of size (mn)× (mn) as the dimension of X

increases. This motivates us to study the iterative algorithm

to solve (3).

According to the hierarchical identification principle, the

unknown matrix X is regarded as the parameter matrix, the

system in (3) is decomposed into two subsystems and then

the parameter matrix of each subsystem is identified by using

the gradient search method.

Define two matrices:

Q1 := F −X TB, (5)

Q2 := F −AX . (6)

Then, from (3), we obtain two fictitious subsystems:

Sub1 : AX = Q1,
Sub2 : X TB = Q2.

Let X1(k) and X2(k) be the estimates or iterative solutions of

X at iteration k, associated with subsystems Sub1 and Sub2.

Then applying the gradient search method [1] or Corollary 3

in [9] to Sub1 and Sub2 leads to the following iterative

equations:

X1(k) = X1(k−1)+ µAT[Q1 −AX1(k−1)], (7)

X2(k) = X2(k−1)+ µB[QT

2 −BTX2(k−1)], (8)

where µ > 0 is the iterative step size or convergence factor

to be given later. Substituting (5) into (7) and (6) into (8)

gives

X1(k) = X1(k−1)+ µAT[F −X TB−AX1(k−1)], (9)

X2(k) = X2(k−1)+ µB[F −AX −X T

2(k−1)B]T. (10)

Because the expressions on the right-hand sides of (9) and

(10) contain the unknown matrix X , it is impossible to realize

the algorithm in (9) and (10). Our solution is based on

the hierarchical identification principle [1], [8], [13]: the

unknown variable X in (9) and (10) is replaced with their

estimates X1(k−1) and X2(k−1) at time (k−1), i.e.,

X1(k) = X1(k−1)+ µAT[F −AX1(k−1)

−X T

1(k−1)B], (11)

X2(k) = X2(k−1)+ µB[F −AX2(k−1)

−X T

2(k−1)B]T. (12)

In fact, we need only an iterative solution X(k) rather than

two solutions X1(k) and X2(k). Taking the average of X1(k)

and X2(k) as the iterative solution X(k), we obtain a gradient-

based iterative (GI) algorithm for the solution of system (3):

X(k) =
X1(k)+X2(k)

2
, (13)

X1(k) = X(k−1)+ µAT[F −AX(k−1)

−X T(k−1)B], (14)

X2(k) = X(k−1)+ µB[F −AX(k−1)

−X T(k−1)B]T. (15)

The convergence factor µ can be simply taken to satisfy

0 < µ < µ0 :=
2

λmax[AAT]+λmax[B
TB]

. (16)

To initialize the algorithm, we take X(0) = 0 or some small

real matrix, e.g., X(0) = 10−61m×n with 1m×n being an m×n

matrix whose elements are all 1.

Theorem 1: If the equation in (3) has a unique solution

X , then for any initial value X(0), the iterative solution X(k)
given by the algorithm in (13)-(16) converges to the solution

X , i.e., lim
k→∞

X(k) = X ; or, the error X(k)−X converges to

zero.

The proof of Theorem 1 is omitted here but can be given

later with the proof of Theorem 2 in the next section.

The convergence rate of the gradient-based iterative al-

gorithm depends on the condition number of the associated

system, like the iterative algorithm of the equation Ax = b

[1], [14]. Define the error matrix,

X̃(k) := X(k)−X .

Using (13)-(15), we have

X̃(k) = X̃(k−1)−
µ

2
AT[AX̃(k−1)+ X̃

T
(k−1)B]

−
µ

2
B[AX̃(k−1)+ X̃

T
(k−1)B]T,

which can be equivalently expressed as

col[X̃(k)] = [Imn −
µ

2
Φ]col[X̃(k−1)], (17)

where Φ := STS.

From (17), the closer the eigenvalues of
µ
2

Φ are to 1,

the closer the eigenvalues of Imn −
µ
2

Φ tend to be zero, and

hence, the faster the error col[X̃(k)] or X̃(k) converges to

zero. In other words, the gradient-based iterative algorithm

in (13)-(16) has a fast convergence rate for small condition

numbers of Φ – see the examples later.

III. THE GENERAL MATRIX EQUATION

In this section, we will extend the iterative method to

solution of a general matrix equation:

p

∑
i=1

AiXBi +
q

∑
i=1

CiX
TDi = F , (18)

where Ai ∈ R
r×m, Bi ∈ R

n×s, Ci ∈ R
r×n, Di ∈ R

m×s and F =
[ f 1, f 2, · · · , f s]∈R

r×s are given constant matrices, X ∈R
m×n

is the unknown matrix to be solved.
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Let Bi = [bi( j,k)] ∈ R
n×s, Di = [di1,di2, · · · ,dis], di j ∈ R

m,

X = [x1,x2, · · · ,xn] and

S1 :=
p

∑
i=1

BT

i ⊗Ai +
q

∑
i=1











Ci ⊗dT

i1

Ci ⊗dT

i2
...

Ci ⊗dT

is











∈ R
(rs)×(mn). (19)

Lemma 2: The equation in (18) has a unique solution if

and only if rank{S1,col[F ]} = rank[S1] = mn; in this case,

the unique solution is given by

col[X ] = (ST

1S1)
−1ST

1col[F ], (20)

and the corresponding homogeneous matrix equation in (18)

with F = 0 has a unique solution X = 0.

Proof Equation (18) can be written as

p

∑
i=1

Ai[x1,x2, · · · ,xn]









bi(1,1) bi(1,2) · · · bi(1,s)
bi(2,1) bi(2,2) · · · bi(2,s)

...
...

...
bi(n,1) bi(n,2) · · · bi(n,s)









+
q

∑
i=1

Ci









xT

1
xT

2
...

xT
n









[di1,di2, · · · ,dis] = [ f 1, f 2, · · · , f s].

Or

p

∑
i=1

Ai[x1,x2, · · · ,xn]









bi(1,1) bi(1,2) · · · bi(1,s)
bi(2,1) bi(2,2) · · · bi(2,s)

...
...

...
bi(n,1) bi(n,2) · · · bi(n,s)









+
q

∑
i=1

Ci









xT

1di1 xT

1di2 · · · xT

1dis

xT

2di1 xT

2di2 · · · xT

2dis

...
...

...
xT

ndi1 xT
ndi2 · · · xT

ndis









= [ f 1, f 2, · · · , f s].

Since xT

jdik = dT

ikx j, we have

p

∑
i=1

Ai[x1,x2, · · · ,xn]









bi(1,1) bi(1,2) · · · bi(1,s)
bi(2,1) bi(2,2) · · · bi(2,s)

...
...

...
bi(n,1) bi(n,2) · · · bi(n,s)









+
q

∑
i=1

Ci









dT

i1x1 dT

i2x1 · · · dT

isx1

dT

i1x2 dT

i2x2 · · · dT

isx2

...
...

...
dT

i1xn dT

i2xn · · · dT

isxn









= [ f 1, f 2, · · · , f s].

Expanding gives

p

∑
i=1

[Aibi(1,k)x1 +Aibi(2,k)x2 + · · ·+Aibi(n,k)xn]

+
q

∑
i=1

Ci











dT

ik

dT

ik

. . .

dT

ik





















x1

x2

...

xn











= f k, k = 1,2, · · · ,s.

According to the definition of S1, we have

S1col[X ] = col[F ].

Since rank{S1,col[F ]}= rank[S1] = mn, this proves Lemma 2

according to the theory of linear equations. ¤

Equation (20) can give the solution of (18) but also

requires excessive computer memory as the dimension of X

increases. So we seek for an iterative algorithm to solve (18)

by means of the hierarchical identification principle, similar

to the last section. The details are as follows.
Define following matrices:

Q j := F −
p

∑
i=1,i6= j

AiXBi −
q

∑
i=1

CiX
TDi, j = 1,2, · · · , p. (21)

Qp+l := F −
p

∑
i=1

AiXBi −
q

∑
i=1,i 6=l

CiX
TDi, l = 1,2, · · · ,q. (22)

Then from (18), we obtain p+q fictitious subsystems

Subsystem j : A jXB j = Q j, j = 1,2, · · · , p.
Subsystem p+ l : ClX

TDl = Qp+l , l = 1,2, · · · ,q.

Let X i(k) be the estimate or iterative solution of X at iteration

k, associated with ith subsystem. Applying the gradient

search method [1] or Corollary 3 in [9] to Subsystem i,

i = 1,2, · · · , p+q, we can obtain the iterative algorithms:

X j(k) = X j(k−1)+ µAT

j[Q j −A jX j(k−1)B j]B
T

j,

j = 1,2, · · · , p. (23)

X p+l(k) = X p+l(k−1)+ µDl [Q
T

p+l

−DT

l X p+l(k−1)CT

l ]Cl , l = 1,2, · · · ,q. (24)

The convergence factor µ > 0 will be given later. Substituting

(21) and (22) into (23) and (24), then replacing the unknown

variable X with its estimate X j(k − 1) and X p+l(k − 1)
respectively by means of the hierarchical identification prin-

ciple [8], [9], [13] gives

X j(k) = X j(k−1)+ µAT

j

[

F −
p

∑
i=1

AiX j(k−1)Bi

−
q

∑
i=1

CiX
T

j(k−1)Di

]

BT

j, (25)

X p+l(k) = X p+l(k−1)+ µDl

[

F −
p

∑
i=1

AiX p+l(k−1)Bi

−
q

∑
i=1

CiX
T

p+l(k−1)Di

]

T

Cl . (26)

In fact, we need only an iterative solution X(k) rather than

p+q solutions X i(k): i = 1,2, · · · , p+q. Taking the average

of the p+q solutions as the iterative solution X(k) of X , we

obtain a gradient-based iterative (GI) algorithm for the the

general matrix equation in (18):

X(k) =
1

p+q

[ p

∑
j=1

X j(k)+
q

∑
l=1

X p+l(k)

]

, (27)

X j(k) = X(k−1)+ µAT

j

[

F −
p

∑
i=1

AiX(k−1)Bi

−
q

∑
i=1

CiX
T(k−1)Di

]

BT

j, (28)
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X p+l(k) = X(k−1)+ µDl

[

F −
p

∑
i=1

AiX(k−1)Bi

−
q

∑
i=1

CiX
T(k−1)Di

]

T

Cl . (29)

A conservative choice of the convergence factor µ is

0 < µ < 2
{ p

∑
j=1

λmax[A jA
T

j]λmax[B
T

jB j]

+
q

∑
l=1

λmax[ClC
T

l ]λmax[D
T

l Dl ]
}−1

=: µ0. (30)

To initialize the algorithm, we take X(0) = 0 or some small

real matrix, e.g., X(0) = 10−61m×n with 1m×n being an m×n

matrix whose elements are all 1.

Theorem 2: If the equation in (18) has a unique solution

X , then the iterative solution X(k) given by the algorithm

in (27)-(30) converges to X , i.e., lim
k→∞

X(k) = X ; or, the error

X(k)−X converges to zero for any initial value X(0).

Proof Define the estimation error matrices:

X̃ i(k) := X i(k)−X ,

X̃(k) := X(k)−X

=
1

p+q

[ p

∑
j=1

X̃ j(k)+
q

∑
l=1

X̃ p+l(k)

]

, (31)

and

ξ i(k) := AiX̃(k−1)Bi, η i(k) := DT

i X̃(k−1)CT

i . (32)

Using (18), (28)-(29) and (32), it is easy to get

X̃ j(k) = X j(k)−X

= X(k−1)−X + µAT

j

[

F −
p

∑
i=1

AiX(k−1)Bi

−
q

∑
i=1

CiX
T(k−1)Di

]

BT

j

= X̃(k−1)−µAT

j

[ p

∑
i=1

Ai(X(k−1)−X)Bi

+
q

∑
i=1

Ci(X
T(k−1)−XT)Di

]

BT

j

= X̃(k−1)−µAT

j

[ p

∑
i=1

AiX̃(k−1)Bi

+
q

∑
i=1

CiX̃
T
(k−1)Di

]

BT

j

= X̃(k−1)−µAT

j

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)

]

BT

j. (33)

Similarly,

X̃ p+l(k) = X̃(k−1)−µDl

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)

]

T

Cl . (34)

Taking the norm of both sides of the above equations and

using formula: tr[AB] = tr[BA] and tr[AT] = tr[A] give

‖X̃ j(k)‖
2 = tr[X̃

T

j(k)X̃ j(k)]

=
∥

∥

∥
X̃(k−1)−µAT

j

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
]

BT

j

∥

∥

∥

2

= ‖X̃(k−1)‖2

−µtr

{

X̃
T
(k−1)AT

j

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
]

BT

j

}

−µtr

{

B j

[ p

∑
i=1

ξ T

i (k)+
q

∑
i=1

η i(k)
]

A jX̃(k−1)

}

+µ2

∥

∥

∥

∥

AT

j

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
]

BT

j

∥

∥

∥

∥

2

≤ ‖X̃(k−1)‖2 −2µtr

{

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
]

ξ T

j(k)

}

+µ2λmax[A jA
T

j]λmax[B
T

jB j]
∥

∥

∥

p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
∥

∥

∥

2
.

(35)

Similarly,

‖X̃ p+l(k)‖
2

≤ ‖X̃(k−1)‖2 −2µtr

{

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
]

η l(k)

}

+µ2λmax[ClC
T

l ]λmax[D
T

l Dl ]
∥

∥

∥

p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
∥

∥

∥

2
. (36)

Hence, using (35) and (36) and from (31), we have

‖X̃(k)‖2 =
1

(p+q)2

∥

∥

∥

p

∑
j=1

X̃ j(k)+
q

∑
l=1

X̃ p+l(k)
∥

∥

∥

2

≤
1

p+q

( p

∑
j=1

‖X̃ j(k)‖
2 +

q

∑
l=1

‖X̃ p+l(k)‖
2
)

≤
1

p+q

{

p‖X̃(k−1)‖2

−2µtr

{

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
][ p

∑
j=1

ξ T

j(k)
]

}

+µ2
( p

∑
j=1

λmax[A jA
T

j]λmax[B
T

jB j]
)

∥

∥

∥

p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
∥

∥

∥

2
+q‖X̃(k−1)‖2

−2µtr

{

[ p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
][ q

∑
l=1

η l(k)
]

}

+µ2
( q

∑
l=1

λmax[ClC
T

l ]λmax[D
T

l Dl ]
)

∥

∥

∥

p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
∥

∥

∥

2
}

= ‖X̃(k−1)‖2

−
1

p+q

{

2µ −µ2
( p

∑
j=1

λmax[A jA
T

j]λmax[B
T

jB j]

+
q

∑
l=1

λmax[ClC
T

l ]λmax[D
T

l Dl ]
)

}

∥

∥

∥

p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
∥

∥

∥

2

≤ ‖X̃(0)‖2
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−
µ

p+q

{

2−µ
( p

∑
j=1

λmax[A jA
T

j]λmax[B
T

jB j]

+
q

∑
l=1

λmax[ClC
T

l ]λmax[D
T

l Dl ]
)

}

( k

∑
j=1

∥

∥

∥

p

∑
i=1

ξ i( j)+
q

∑
i=1

ηT

i ( j)
∥

∥

∥

2
)

.

If the convergence factor µ is chosen to satisfy

0 < µ < 2
{ p

∑
j=1

λmax[A jA
T

j]λmax[B
T

jB j]

+
q

∑
l=1

λmax[ClC
T

l ]λmax[D
T

l Dl ]
}−1

,

then we have

k

∑
j=1

∥

∥

∥

p

∑
i=1

ξ i( j)+
q

∑
i=1

ηT

i ( j)
∥

∥

∥

2

< ∞.

For the necessary condition of the series convergence, when

k → ∞, we have

∥

∥

∥

p

∑
i=1

ξ i(k)+
q

∑
i=1

ηT

i (k)
∥

∥

∥

2

→ 0,

or
∥

∥

∥

p

∑
i=1

AiX̃(k−1)Bi +
q

∑
i=1

CiX̃
T
(k−1)Di

∥

∥

∥

2

→ 0.

According to Lemma 2, we can get X̃(k−1) → 0 as k → ∞.

This proves Theorem 2. ¤

Next, we show that the convergence rate of the gradient-

based iterative algorithm in (27)-(30) depends on the con-

dition number of the associated system. From (31)-(34), we

can get an error equation

col[X̃(k)] =
(

Imn −
µ

p+q
Φ

)

col[X̃(k−1)], (37)

where Φ := ST

1S1.

From (37), we can see that the closer the eigenvalues of
µ

p+q
Φ are to 1, the closer the eigenvalues of Imn −

µ
p+q

Φ

tend to be zero, and hence, the faster the error col[X̃(k)] or

X̃(k) converges to zero. In other words, the gradient-based

iterative algorithm in (27)-(30) has a fast convergence rate

for small condition numbers of Φ.

IV. EXAMPLE

This section gives three examples to illustrate the perfor-

mances of the proposed algorithms.

Example 1 Suppose that AX +X TB = F , where

A =

[

1 1

2 −1

]

, B =

[

1 −1

1 1

]

, F =

[

8 8

5 2

]

.

From (4), we can obtain the solution of this matrix equation,

which is

X =

[

x11 x12

x21 x22

]

=

[

1 2

3 4

]

.

Take X(0) = 10−612×2. Applying the GI algorithm in

(13)-(16) to compute X(k), the iterative errors δ :=
‖X(k)−X‖/‖X‖ versus k are shown in Fig. 1.
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Fig. 1. The errors δ versus k

From Fig. 1, it is clear that the errors δ are becoming

smaller and go to zero as k increases. The effect of changing

the convergence factor µ is illustrated in Fig. 1. We can see

that for µ = 0.20, 0.27 and 0.38, the larger the convergence

factor µ is, the faster the convergence rate is. However, if we

keep enlarging µ , the algorithm will diverge. How to choose

a best convergence factor is still a project to be studied.

Example 2 Suppose that AX +X TB = F , where A, B and F

are 20×20 matrices (m = n = 20) and produced randomly in

Matlab functions, with the simulation program given below

(since dimensions of matrices are too large to be given here),

m = 20; n = 20; Im = eye(m); In = eye(n);
rand(’state’,34);
A = triu(rand(m, m), 1) + diag(α + diag(rand(m)));
B = triu(rand(m, m), 1) + 2∗diag(α + diag(rand(m)));
C = rand(m, m);
S1 = kron(eye(m), B(:, 1)′);
for i = 2:20

S1 = [S1; kron(eye(m), B(:, i)′)];
end
S = kron(eye(m), A) + S1;
TX = reshape(S\reshape(C, m ∗ m, 1), m, m);
X = ones(m,m) ∗ 1E-6;
mu = 2/(max(eig(A ∗ A′)) + max(eig(B ∗ B′)));
Phi = S′ ∗ S;
q1 = eig(Phi);
q2 = [max(q1), min(q1), max(q1)/min(q1)];
LL = 100;
fm = norm(TX, ’fro’);
for i = 1:LL

Ct = C-A ∗ X-X′ ∗ B;
X = X+ mu ∗ (A′ ∗ Ct + B ∗ Ct′)/2;
E(i) = norm(X-TX, ’fro’)/fm;

end

This program contains a variable α . For different α values

(α = 1, 2, 3, 6, and so on) and µ = µ0 given by (16),

the iterative errors δ versus k are shown in Fig. 2 and

the corresponding condition numbers of Φ are shown in

Table I, where λmax[Φ] and λmin[Φ] represent the biggest and

smallest eigenvalue of Φ, respectively, and cond[Φ] denotes

the condition number of Φ.

From Fig. 2 and Table I, we see that the bigger the α is,

the faster the convergence rate of the GI algorithm is, i.e.,

the convergence rate becomes faster as the condition number

cond[Φ] of Φ is decreasing. As α = 1, the condition number
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Fig. 2. The errors δ versus k

TABLE I

THE CONDITION NUMBERS OF Φ WITH DIFFERENT α

α µ0 λmax[Φ] λmin[Φ] cond[Φ]
1 0.01470 232.15 0.02 12447.00
2 0.01087 327.50 0.78 418.83
3 0.00824 441.10 3.20 138.11
6 0.00416 890.33 22.02 40.43
50 0.00014 26094.00 2364.30 11.04

cond[Φ] = 12447, too large a condition number implies an

ill-conditioned equation. However, if we keep on increasing

iterative step k, the algorithm will still converge.

Example 3 Suppose that A1XB1 + A2XB2 + C1X TD1 +
C2X TD2 = F , where

A1 =

[

1 0

2 −1

]

, A2 =

[

0 1

3 −1

]

, B1 =

[

2 −1

1 1

]

,

B2 =

[

3 −1

2 1

]

, C1 =

[

1 2

−1 2

]

, C2 =

[

−1 3

−1 2

]

,

D1 =

[

2 −1

1 2

]

, D2 =

[

1 1

−1 0

]

, F =

[

35 9

20 7

]

.

From (20), the solution is

X =

[

x11 x12

x21 x22

]

=

[

1 2

3 1

]

.

Taking X(0) = 10−612×2, we apply the algorithm in (27)-

(30) to compute X(k). the errors δ := ‖X(k)−X‖/‖X‖
versus k are shown in Fig. 3.

From Fig. 3, it is clear that the errors δ are becoming

smaller and converges to zero as k increases. The effect of

changing the convergence factor µ is illustrated in Fig. 3

with µ = 1/200, 1/121.2 and 1/50, and a larger µ leads to a

faster convergence rate.

V. CONCLUSIONS

The gradient-based iterative algorithms of solving general

matrix equations are studied by using the hierarchical iden-

tification principle. The analysis indicates that the iterative

solutions given by the proposed algorithms converge fast to

their true solutions for any initial values and small condition

numbers.
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Fig. 3. The errors δ versus k

REFERENCES

[1] F. Ding and T. Chen, “Gradient based iterative algorithms for solving
a class of matrix equations,” IEEE Transactions on Automatic Control,
vol. 50, no. 8, pp. 1216-1221, 2005.

[2] Z.L. Tian and C.Q. Gu, “A numerical algorithm for Lyapunov equa-
tions,” Applied Mathematics and Computation, vol. 202, no. 1, pp.
44-53, 2008.

[3] A. Kilicman, Z. Abdel and A.A. Zhour, “Vector least-squares solutions
for coupled singular matrix equations,” Journal of Computational and

Applied Mathematics, vol. 206, no. 2, pp. 1051-1069, 2007.
[4] M. Dehghan and M. Hajarian, “An iterative algorithm for the reflexive

solutions of the generalized coupled Sylvester matrix equations and its
optimal approximation,” Applied Mathematics and Computation, vol.
202, no. 2, pp. 571-588, 2008.

[5] H. Mukaidani, S. Yaniamoto and T. Yamamoto, “A numerical algo-
rithm for finding solution of cross-coupled algebraic Riccati equa-
tions,” IEICE Transactions on Fundamentals of Electronics Commu-

nications and Computer Sciences, vol. E91A, no. 2, pp. 682-685, 2008.
[6] B. Zhou and G.R. Duan, “On the generalized Sylvester mapping and

matrix equations,” Systems & Control Letters, vol. 57, no. 3, pp. 200-
208, 2008.

[7] Y.Q. Lin and Y.M. Wei, “Condition numbers of the generalized
Sylvester equation,” IEEE Transactions on Automatic Control, vol.
52, no. 12, pp. 2380-2385, 2007.

[8] F. Ding and T. Chen, “Iterative least squares solutions of coupled
Sylvester matrix equations,” Systems & Control Letters, vol. 54, no.
2, pp. 95-107, 2005.

[9] F. Ding and T. Chen, “On iterative solutions of general coupled matrix
equations,” SIAM Journal on Control and Optimization, vol.44, no. 6,
pp. 2269-2284, 2006.

[10] Z. Al Zhour and A. Kilicman, “Some new connections between matrix
products for partitioned and non-partitioned matrices,” Computers &

Mathematics with Applications, vol. 54, no. 6, pp. 763-784, 2007.
[11] B. Zhou and G.R. Duan, “A new solution to the generalized Sylvester

matrix equation AV −EV F = BW ,” Systems & Control Letters, vol.
55, no. 3, pp. 193-198, 2006.

[12] B. Zhou and G.R. Duan, “Parametric solutions to the generalized
Sylvester matrix equation AX −XF = BY and the regulator equation
AX −XF = BY +R,” Asian Journal of Control, vol. 9, no. 4, pp. 475-
483, 2007.

[13] F. Ding and T. Chen, “Hierarchical least squares identification methods
for multivariable systems,” IEEE Transactions on Automatic Control,
vol, 50, no. 3, pp. 397-402, 2005.

[14] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. Balti-
more, MD: Johns Hopkins Univ. Press, 1996.

505


