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Abstract— In this paper, a nonlinear axially moving string
with the Kelvin-Voigt damping is considered. It is proved that
the string is stable, i.e., its transversal displacement converges
to zero when the axial speed of the string is less than a
certain critical value. The proof is established by showing that
a Lyapunov function corresponding to the string decays to zero
exponentially. It is also shown that the string displacement
is bounded when a bounded distributed force is applied to
it transversally. Furthermore, a few open problems regarding
the stability and stabilization of strings with the Kelvin-Voigt
damping are stated.
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I. INTRODUCTION

In the past few decades, the nonlinear dynamics and

control of axially moving strings have been studied by

researchers; see, e.g., Refs. [1-13]. Moving string-like con-

tinua, such as threads, wires, tethers, cables, magnetic tapes,

belts, band-saws, chains, etc., are used in many applications.

In most applications, a string-like continuum is pulled at a

constant speed through two fixed eyelets, as shown in Fig. 1.

The distance between the eyelets in this figure is assumed to

be 1 . There are two commonly used models that represent

the dynamics of moving strings. The first model, known as

the moving Kirchhoff string, is represented by

ytt(x, t) + 2v yxt(x, t) =
[

1 − v2 + b

∫ 1

0

y2
x(x, t) dx

]

yxx(x, t) (1)

for all x ∈ (0, 1) and t ≥ 0 ; see, e.g., Refs.

[5, 7, 8, 12]. In Eq. (1), y(., .) ∈ R denotes the

transversal displacement of the string in the Y -direction,

yx := ∂y/∂x , yxx := ∂2y/∂x2 , ytt := ∂2y/∂t2 , and

yxt := ∂2y/∂x∂t ; b > 0 is a constant real number, and

v ≥ 0 is proportional to the speed of the string through

the eyelets. For realistic situations, 0 ≤ v < 1 .

The second model is represented by

ytt(x, t) + 2v yxt(x, t) =
[

1 − v2 +
3

2
b y2

x(x, t)

]

yxx(x, t) (2)

for all x ∈ (0, 1) and t ≥ 0 ; see, e.g., Refs. [1, 6, 10].

In Eq. (2), y(., .) ∈ R is the string displacement and its
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derivatives with respect to x and t are readily identified;

b > 0 is a constant real number, and 0 ≤ v < 1 is

proportional to the string speed.

The boundary conditions of the strings represented by

Eqs. (1) and (2) can be specified depending on whether the

eyelets are both fixed or a boundary control is applied at one

eyelet. The initial displacement and velocity of the strings

can be specified so that the initial boundary value problems

corresponding to the strings would be well defined.

There is yet another nonlinear model of moving strings

obtained by using the Kelvin-Voigt constitutive law. This

model is given by

ytt(x, t) + 2δ yt(x, t) + 2v yxt(x, t) =
[

1 − v2 +
3

2
b y2

x(x, t)

]

yxx(x, t)+

2η yx(x, t) yxx(x, t) yxt(x, t) +

η y2
x(x, t) yxxt(x, t) , (3)

for all x ∈ (0, 1) and t ≥ 0 ; see, e.g., Refs. [9,

13]. In Eq. (3), y(., .) ∈ R is the string displacement,

yt := ∂y/∂t , and other derivatives of y(., .) with respect

to x and t are readily identified; b > 0 , δ > 0 is

the viscous damping coefficient, η > 0 is known as the

Kelvin-Voigt damping, and 0 ≤ v < 1 is proportional to

the string speed. (It is remarked that η may not be called

the Kelvin-Voigt damping by some authors. However, since

it corresponds to the Kelvin-Voigt constitutive law and is

related to energy dissipation in the string, it will be called

as such in this paper.)

For fixed eyelets, the boundary conditions corresponding

to the string represented by Eq. (3) are

y(0, t) = y(1, t) = 0 , (4)

for all t ≥ 0 . The initial displacement and velocity of the

string are, respectively,

y(x, 0) = f(x) , yt(x, 0) = g(x) , (5)

for all x ∈ (0, 1) . It is assumed that f ∈ C1[0, 1] and

that at least one of the functions f or g is not identically

zero over [0, 1] .

In this paper, the goals are: (i) to show that the nonlinear

axially moving string represented by Eqs. (3), (4), and (5) is

stable; that is, y(x, t) → 0 as t → ∞ for all x ∈
(0, 1) ; (ii) to establish the bounded-input bounded-output

(BIBO) stability of the string; that is, to show that the string

displacement is bounded when a bounded distributed force is

applied to it transversally. Extensive literature survey proved

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA05.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4103



that these stability results are not available. Furthermore, a

few open problems regarding the stability and stabilization

of strings with the Kelvin-Voigt damping are stated.

II. STABILITY OF THE MOVING STRING

The plan to establish the stability of the nonlinear moving

string represented by Eqs. (3), (4), and (5) is as follows. A

Lyapunov function is proposed for the string. This function is

denoted by t 7→ V (t) . It will be shown that V (.) tends to

zero exponentially, thereby the stability of the string will be

established. It is remarked that the Lyapunov function V (.)
was obtained after so much effort.

The scalar-valued function V (.) is defined as

V (t) = E(t) + δ

∫ 1

0

[y(x, t) yt(x, t) +

δ y2(x, t) +
η

4
y4

x(x, t)] dx , (6)

for all t ≥ 0 , where

E(t) =

∫ 1

0

1

2
y2

t (x, t) dx +

∫ 1

0

1

2
(1 − v2) y2

x(x, t) dx +

∫ 1

0

b

8
y4

x(x, t) dx . (7)

From Eqs. (6) and (7), it follows that

V (t) =

∫ 1

0

1

2
[yt(x, t)+δ y(x, t)]2dx +

∫ 1

0

δ2

2
y2(x, t) dx

+

∫ 1

0

1

2
(1 − v2) y2

x(x, t) dx +

∫ 1

0

(
b

8
+

δη

4
) y4

x(x, t) dx ,

(8)

for all t ≥ 0 . From Eqs. (8) and (5), it is concluded that

V (0) =

∫ 1

0

1

2
[g(x) + δ f(x)]2dx +

∫ 1

0

δ2

2
f2(x) dx

+

∫ 1

0

1

2
(1 − v2) f2

x(x) dx +

∫ 1

0

(
b

8
+

δη

4
) f4

x(x) dx, (9)

where fx(x) := df(x)/dx . Since at least one of the

functions f or g in Eq. (5) is not identically zero over

[0, 1] , it is evident that V (0) > 0 .

A property of V (.) is now proved.

Lemma 2.1: The function V (.) satisfies

0 ≤ V (t) ≤ K E(t) , (10)

for all t ≥ 0 , where

K := 1 + δ max

{

1 + 2δ/π

π(1 − v2)
,

2η

b

}

. (11)

Proof: From Eq. (8), it is clear that V (t) ≥ 0 for

all t ≥ 0 . For the first two integral terms in Eq. (6)

which are multiplied by δ , the following inequalities hold,

respectively:
∫ 1

0

y yt dx ≤ π

2

∫ 1

0

y2 dx +
1

2π

∫ 1

0

y2
t dx

≤ 1

2π

∫ 1

0

y2
x dx +

1

2π

∫ 1

0

y2
t dx =

1

π(1 − v2)

∫ 1

0

1

2
(1 − v2) y2

x dx +

1

π

∫ 1

0

1

2
y2

t dx (12a)

∫ 1

0

δ y2 dx ≤ δ

π2

∫ 1

0

y2
x dx =

2δ/π

π(1 − v2)

∫ 1

0

1

2
(1 − v2) y2

x dx (12b)

for all t ≥ 0 , where the arguments (x, t) of functions are

deleted. In deriving Eq. (12), Scheeffer’s inequality, which

is a Poincare-type inequality, is used; see, e.g., Ref. [14, p.

67]. Using Eq. (12) and the fact that v < 1 , it follows

that
∫ 1

0 (y yt + δ y2 + η
4 y4

x) dx ≤
max

{

1
π , 1 + 2δ/π

π(1 − v2) ,
2η
b

}

×
(

∫

1
2 y2

t dx +
∫ 1

0
1
2 (1 − v2) y2

x dx

+
∫ 1

0
b
8 y4

x dx
)

≤

max
{

1 + 2δ/π
π(1 − v2) ,

2η
b

}

E(t), (13)

for all t ≥ 0 , where E(.) is that in Eq. (7). Using Eq.

(13) in Eq. (6), it is concluded that Eq. (10) holds. �

Next, several identities and an inequality for functions

satisfying Eq. (4) are proved.

Lemma 2.2: Let y(., .) satisfy the boundary conditions

in Eq. (4). Then,
∫ 1

0

2 yt yxt dx = 0 , (14a)

∫ 1

0

(yxx yt + yxt yx) dx = 0 , (14b)

∫ 1

0

(3 y2
x yxx yt + y3

x yxt) dx = 0, (14c)

∫ 1

0

yt (y2
x yxt)x dx = −

∫ 1

0

y2
x y2

xt dx , (14d)

− 2

∫ 1

0

y yxt dx ≤
∫ 1

0

y2
x dx +

∫ 1

0

y2
t dx , (14e)

∫ 1

0

y yxx dx = −
∫ 1

0

y2
x dx , (14f)

∫ 1

0

3 y y2
x yxx dx = −

∫ 1

0

y4
x dx , (14g)

∫ 1

0

y (y2
x yxt)x dx = − 1

4

∫ 1

0

(y4
x)t dx , (14h)
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Proof: From Eq. (4), it follows that yt(0, t) =
yt(1, t) = 0 for all t ≥ 0 . Hence,

∫ 1

0

2 yt yxt dx =

∫ 1

0

(y2
t )x dx = 0 , (15)

for all t ≥ 0 . Thus, Eq. (14a) holds. Using yt(0, t) =
yt(1, t) = 0 for all t ≥ 0 , it is concluded that

∫ 1

0

(yxx yt + yxt yx) dx =

∫ 1

0

(yx yt)x dx = 0 , (16a)

∫ 1

0

(3 y2
x yxx yt + y3

x yxt) dx =

∫ 1

0

(y3
x yt)x dx = 0 ,

(16b)

for all t ≥ 0 . Thus, Eqs. (14b) and (14c) hold.

Next,

∫ 1

0

yt (y2
x yxt)x dx = −

∫ 1

0

y2
x y2

xt dx , (17)

for all t ≥ 0 , where the last identity is obtained by

integrating by parts and using yt(0, t) = yt(1, t) = 0
for all t ≥ 0 . Thus, Eq. (14d) holds. The proof of Eq.

(14e) is as follows:

−
∫ 1

0

2 y yxt dx =

∫ 1

0

2 yx yt dx ≤
∫ 1

0

y2
x dx +

∫ 1

0

y2
t dx,

(18)

for all t ≥ 0 , where the first identity is obtained by

integrating by parts and using the boundary conditions in

Eq. (4).

The proof of Eq. (14f) is established by integrating by

parts and using the boundary conditions in Eq. (4); so are

established those of Eqs. (14g) and (14h). The proofs of these

two last identities are, respectively, given in the following:

∫ 1

0

3 y y2
x yxx dx =

∫ 1

0

y (y3
x)x dx = −

∫ 1

0

y4
xdx,

(19a)

∫ 1

0
y (y2

x yxt)x dx = −
∫ 1

0
y3

x yxt dx =

− 1
4

∫ 1

0
(y4

x)t dx , (19b)

for all t ≥ 0 . �

Using these preliminary results, it is next proved that V (.)
tends to zero exponentially.

Theorem 2.3: If

0 ≤ v vc :=

√
5 − 1

2
, (20)

then the function V (.) in Eq. (6) along the solution of Eqs.

(3), (4), and (5) satisfies

V (t) ≤ V (0) exp

(

− 2δ(1 − v − v2)

K(1 − v2)
t

)

, (21)

for all t ≥ 0 , where K is that in Eq. (11). That is, V (.)
tends to zero exponentially.

Proof: From Eq. (8), it follows that

V̇ (t) =

∫ 1

0

(yt + δ y) (ytt + δ yt) dx +

∫ 1

0

δ2 y yt dx +

∫ 1

0

(1 − v2) yx yxt dx +

∫ 1

0

b

2
y3

x yxt dx +

∫ 1

0

δη

4
(y4

x)t dx, (22)

for all t ≥ 0 . Substituting ytt from Eq. (3) into Eq. (22)

and noting that 2 yx yxx yxt + y2
x yxxt = (y2

x yxt)x , it

is concluded that

V̇ (t) = − δ

∫ 1

0

y2
t dx − v

∫ 1

0

2 yt yxt dx

+ (1 − v2)

∫ 1

0

(yxx yt + yxt yx) dx

+
b

2

∫ 1

0

(3 y2
x yxx yt + y3

x yxt)dx

+η

∫ 1

0

yt (y2
x yxt)x dx − 2δv

∫ 1

0

y yxtdx

+ δ(1 − v2)

∫ 1

0

y yxx dx +
bδ

2

∫ 1

0

3 y y2
x yxxdx

+δη

∫ 1

0

y (y2
x yxt)x dx +

δη

4

∫ 1

0

(y4
x)t dx, (23)

for all t ≥ 0 . Using Eqs. (14a)-(14h) in Eq. (23), the

following inequality is obtained:

V̇ (t) ≤ −δ(1 − v)

∫ 1

0

y2
t dx

−δ(1 − v − v2)

∫ 1

0

y2
x dx

−bδ

2

∫ 1

0

y4
xdx − η

∫ 1

0

y2
xy2

xt dx, (24)

for all t ≥ 0 . By neglecting the last term on the right-hand

side of Eq. (24), rearranging the other terms, and using Eq.

(7), it follows that

V̇ (t) ≤ −2δ

(

1 − v − v2

1 − v2

)

E(t)

− δ

(

v3

1 − v2

∫ 1

0

y2
t dx +

b

4

(

1 + v − v2

1 − v2

)
∫ 1

0

y4
x dx

)

,

(25)

for all t ≥ 0 , where the coefficients of the last two integral

terms are non-positive for 0 ≤ v 1 . Therefore,

V̇ (t) ≤ − 2δ

(

1 − v − v2

1 − v2

)

E(t) , (26)

for all t ≥ 0 , where by Eq. (20), the coefficient of

E(.) is negative. Using Eq. (10) in Eq. (26), the following

differential inequality is obtained:

V̇ (t) ≤ − 2δ(1 − v − v2)

K(1 − v2)
V (t) , (27)
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for all t ≥ 0 , with the initial condition V (0) > 0 given

in Eq. (9). By a comparison theorem in Ref. [15, p. 3] or

Ref. [16, p. 2], it is concluded that Eq. (21) holds. �

Finally, the stability of the string can be established.

Corollary 2.4: The solution of Eqs. (3), (4), and (5),

y(x, t) → 0 as t → ∞ for all x ∈ [0, 1] .

Proof: For the string represented by Eqs. (3), (4), and (5),

the Lyapunov function in Eq. (6) is chosen. By Theorem

2.3, the function V (.) tends to zero exponentially. From

Eq. (8), it follows that yx(x, t) → 0 as t → ∞ for

all x ∈ [0, 1] . Since y(0, t) = 0 for all t ≥ 0 ,

it is concluded that y(x, t) → 0 as t → ∞ for all

x ∈ [0, 1] . �

In establishing the stability of the nonlinear moving string,

the viscous damping in the model played an important role;

so did the the Lyapunov function, which was obtained after

so many trials. By Eq. (20), the stability of the string is

guaranteed when the string speed is less than the critical

speed vc ≈ 0.6 .

III. BOUNDED-INPUT BOUNDED-OUTPUT STABILITY

In this section, the string represented by Eqs. (3) and (4)

is reconsidered. It is assumed that the initial displacement

and velocity of the string are zero, however, an external

distributed force is applied to it transversally. In this case,

the string is represented by

ytt(x, t) + 2δ yt(x, t) + 2v yxt(x, t) =
[

1 − v2 +
3

2
b y2

x(x, t)

]

yxx(x, t)

+2η yx(x, t) yxx(x, t) yxt(x, t)

+η y2
x(x, t) yxxt(x, t) + F (x, t), (28)

for all x ∈ (0, 1) and t ≥ 0 , where F (x, t) ∈ R is

the applied force, the boundary conditions are the same as

those in Eq. (4), and the initial conditions are

y(x, 0) = 0 , yt(x, 0) = 0 . (29)

In this section, the goal is to show that the string dis-

placement is bounded when the external force is bounded.

To define boundedness precisely, two function spaces are

introduced:

(i) Let X2 denote the space of functions u : (0, 1)×
R+ → R , given by u(x, t) , for which ‖u‖X2

:=

sup
t≥0

[

∫ 1

0
|u(x, t)|2 dx

]1/2

< ∞. A u ∈ X2 is said to be

X2-bounded.

(ii) Let X∞ denote the space of functions u : (0, 1)×
R+ → R , given by u(x, t) , for which ‖u‖X∞

:=
sup
t≥0

sup
x∈(0,1)

|u(x, t)| < ∞. A u ∈ X∞ is said to be X∞-

bounded.

It is clear that X∞ ⊂ X2 since L∞(0, 1) ⊂ L2(0, 1) .

Thus, an X∞-bounded function is X2-bounded. The

converse, however, is not true, as it is shown via an example

in Ref. [17].

In this paper, it is assumed that the applied force F (., .)
in Eq. (28) is X∞-bounded. The goal is to prove that the

string displacement y(., .) is X∞-bounded; that is, to

establish the BIBO stability of the string.

The stability result is as follows:

Theorem 3.1: Consider the string represented by Eqs.

(28), (4), and (29). Let F ∈ X∞ . The string displacement

is bounded and satisfies

‖y‖X∞
≤

(

K

ǫ[(2δ − ǫK)(1 − v2) − 2δv]

)1/2

‖F‖X2

< ∞, (30)

where

0 < ǫ <
2δ(1 − v − v2)

K(1 − v2)
, (31)

and K is that in Eq. (11).

Proof: The proof can be established by taking steps similar

to those is Ref. [17]; to avoid repetition, details are not

presented. �

IV. A FEW OPEN PROBLEMS

In this section, a few open problems regarding the stability

and stabilization of nonlinear moving strings with the Kelvin-

Voigt damping are stated.

Absence of viscous damping: The stability results in

Sections 2 and 3 crucially rely on the fact that there is viscous

damping in the string, i.e., δ > 0 . Now, suppose that δ = 0.

In this case, the model of the moving string is

ytt(x, t) + 2vyxt(x, t) =
[

1 − v2 +
3

2
by2

x(x, t)

]

yxx(x, t)

+2ηyx(x, t)yxx(x, t)yxt(x, t)

+η y2
x(x, t) yxxt(x, t) , (32)

for all x ∈ (0, 1) and t ≥ 0 . For this string, let the

boundary and initial conditions be, respectively, the same as

those in Eqs. (4) and (5). In this string, the only damping is

the Kelvin-Voigt damping η > 0 .

Recall the function E(.) in Eq. (7). Clearly, this function

is non-negative. Also recall that al least one of the functions

f or g in Eq. (5) is not identically zero over [0, 1] .

Furthermore, the function f , for which f(0) = 0 by Eq.

(4), cannot assume a non-zero constant value over [0, 1] .

Thus,

E(0) =

∫ 1

0

[
1

2
g2(x) +

1

2
(1 − v2) f2

x(x)

+
b

8
f4

x(x)] dx > 0 . (33)

Computing the derivative of t 7→ E(t) with respect to t
along the solution of Eqs. (32), (4), and (5), and using Eqs.

(14a)-(14d), it is concluded that

Ė(t) = − η

∫ 1

0

y2
x y2

xt dx ≤ 0 , (34)

for all t ≥ 0 . Since Ė(.) is non-positive, the function

E(.) is not increasing. However, the stability of the string
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cannot be established, unless LaSalle’s invariance principle

is used. It is known that using this principle for partial

differential equations is prohibitively difficult; see, e.g., Refs.

[18, 19]. Nevertheless, the following questions remain:

Problem 4.1: Is the moving string represented by Eqs.

(32), (4), and (5), which has only the Kelvin-Voigt damping

η > 0 , stable?

Problem 4.2: Let an X∞-bounded distributed force be

applied to the string represented by Eq. (32), and let the

boundary and initial conditions, respectively, be the same

as those in Eqs. (4) and (29). Is the forced moving string

bounded-input bounded-output stable?

Affirmative answers to Problems 4.1 and 4.2 are desir-

able, because they prove that the Kelvin-Voigt damping is

sufficient to guarantee the zero-input stability and the BIBO

stability of the model.

Boundary Control: The stability of the string represented

by Eqs. (3), (4), and (5) was established in Section 2 for

fixed eyelets. It may be suggested that a boundary control

at x = 1 would lead to faster convergence of the string

displacement to zero or would relax condition in Eq. (20)

for the stability. To apply the boundary control the eyelet on

the right should be free to move transversally; see Fig. 2.

The control input is proportional to − yt(1, t) , namely,

the negative feedback of the transversal velocity of the string

at x = 1 . In this case, the boundary conditions are

y(0, t) = 0 , T (1, t) yx(1, t) = − kv yt(1, t), (35)

for all t ≥ 0 , where T (1, .) is the tension in the string

at x = 1 and kv > 0 is the control gain. A problem

whose solution is desirable is as follows:

Problem 4.3: Is the string represented by Eqs. (3), (35),

and (5) stable when (i) δ > 0 ; (ii) δ = 0 ? If yes,

would a choice of kv result in faster convergence of the

string displacement to zero?

5. Conclusions

In this paper, the stability of a nonlinear axially moving

string with the Kelvin-Voigt damping was studied. First, it

was proved that the transversal displacement of the string

converges to zero when the axial speed of the string is less

than a certain critical value. The proof was established by

using an appropriate Lyapunov function, which tends to zero

exponentially. Also, it was shown that the string is bounded-

input bounded-output stable. In establishing these stability

results, the viscous damping in the string model played an

important role. Furthermore, a few open problems regarding

the stability and stabilization of strings with the Kelvin-Voigt

damping were stated. In these problems, the main quest is

whether the Kelvin-Voigt damping can guarantee the zero-

input stability and the BIBO stability of the string. Solutions

of these problems would provide deeper understanding of

the behavior of the nonlinear model of the string considered

in this paper.

What was presented in this paper and further study of the

model of the moving string with the Kelvin-Voigt damping

would establish the validity of this model. Note that Eqs. (1),

(2), and (3) are only mathematical models of a real moving

string. They would be reliable models if they predict the

observed behavior of the real system. For instance, if the

moving string is observed to be stable, then a proposed model

must predict the stability. If the model fails to do so, then

its validity is questionable.

x

Y

x = 0 x = 1

y(x, t)

Fig. 1. String-like continuum is pulled trough fixed eyelets

x

Y

x = 1x = 0

y(x, t)

−k y (1, t)tv

Fig. 2. Boundary control applied at x = 1
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