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Abstract— Undesired dynamics (stick-slip motions, limit cy-
cles, etc.) that appear in friction systems result in steady-
state errors, limiting achievable performance. To enhance the
performance a novel control approach counteracting friction
effects is developed. The approach is based on an impulsive
actuation while the underlying system is getting stuck due to the
presence of dry friction. A spring-mass system serves as a simple
test bed. Asymptotic stabilization is achieved not only for the
nominal model but also for its perturbed version provided that
external disturbances affecting the system are of sufficiently
small magnitude.

I. INTRODUCTION

Friction is a highly nonlinear phenomenon, producing

undesired stick-slip motions, thereby resulting in steady

state errors. To reduce friction effects without resorting to

high gain control loops suitable modeling is required for

friction compensation [2]. Alternatively [5], [6], a second-

order sliding mode control algorithm, robust to discrepancies

of friction modeling, can be utilized.

In this paper, we develop a novel control approach counter-

acting friction effects. The approach is based on an impulsive

actuation while the underlying system is getting stuck due

to the presence of dry friction. A spring-mass system serves

as a simple test bed. Stabilization of this system is under

study. In contrast to the afore-mentioned friction compen-

sation methods and sliding mode approach, static position

feedback is constructed provided that the information is

available on whether the system is in steady state. Robustness

against small parameter variations and external disturbances

is additionally provided.

II. PROBLEM STATEMENT

The spring-mass system (Figure 1), affected by Coulomb

friction, is governed by the differential equation

mẍ = −kx − α sign(ẋ) + w + u (1)

where x is the displacement, ẋ is the velocity, m > 0 is the

mass of the system, α > 0 is the Coulomb friction level, k >

0 is the stiffness coefficient, u denotes the control input, and

w stands for external disturbances. As equation (1) appears

with discontinuous right-hand side, its meaning is defined in

the sense of Filippov [1].
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Otay, Tijuana 22510 México (e-mail: luis.aguilar@ieee.org).

The Coulomb friction model has been chosen for treat-

ment. Although augmenting with viscous friction is impor-

tant from practical standpoint, we preferred not to do so

as such an extension would be rather technical. Instead, we

preferred to facilitate exposition and to focus on essential

features of the general treatment.
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Fig. 1. Spring-mass system.

In order to account for model discrepancies, an unknown

external disturbance w(t) has been introduced into modeling.

Throughout, the amplitude of the disturbance is assumed to

be smaller than half the Coulomb level α, i.e.,

|w(t)| ≤ α0 <
1

2
α (2)

for all t and some constant α0 > 0. Assumption (2) is

made for a technical reason that becomes clear as far as

the controller derivation goes.

Being represented in the state space form, the above

system (1) is modified to

ẋ1 = x2

ẋ2 =
1

m
[−kx1 − α sign(x2) + w + u] (3)

where x1 = x and x2 = ẋ.

Since the unforced system (3) is dissipative and its dis-

sipation is lower bounded by the positive constant α − α0,

system (3) under u = 0 is getting stuck in finite time at the

disturbance-dependent zone (see Figure 2)

Sw ⊂ S = {(x1, x2) : |x1| ≤
α + α0

k
, x2 = 0} ⊂ IR2. (4)

Assuming that the system is enforced by an impulsive
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Fig. 2. Phase trajectories of the unforced spring-mass system (3) .
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u =

∞
∑

i=1

v(x1)δ(t − ti) (5)

utilizing a continuous position feedback v(x1) and being

applied at some state-dependent time instants ti(x1, x2), i =
1, 2, . . ., the closed-loop system appears to exhibit discrete-

continuous dynamics

ẋ1 = x2, ẋ2 =
1

m
(−kx1 − α sign(x2) + w) , t 6= ti, (6)

x1(ti+) = x1(ti−), x2(ti+) = x2(ti−) + v(x1(ti)),

i = 1, 2, . . . . (7)

It is clear that dealing with the position feedback v(x1)
yields the above restitution rule (7) because the impulsive

input (5) results in the corresponding instantaneous change

of the velocity while the position dynamics and, hence, the

position feedback v(x1(t)) remain continuous in time. It

is worth noticing that applying a state feedback v(x1, x2)
would impose a certain nonlinear restitution rule, caused

by an ill-posed product of the Dirac function δ(t − τ),
localized at a time instant τ , and the function v(x1(t), x2(t)),
discontinuous at t = τ (see, e.g., [4] for details on the

nonlinear impulse response).

Our objective is to design an impulsive controller (5)

such that the closed-loop system (7) is asymptotically stable

around the origin, regardless of whichever external distur-

bance (2) affects the system. The current position x1(t) is

assumed to be available for measurement whereas the only

available information on the velocity x2(t) is the knowledge

of whether it is nullified or it is not.

III. CONTROLLER DESIGN

Let the impulsive controller (5) be specified with

v(x1) = −

√

2α|x1| − kx2
1

m
sign(x1) (8)

and let it be applied to system (3) at the time instants ti, i =
1, 2, . . . such that

|x1(ti)| ≤
α + α0

k
, x2(ti−) = 0. (9)

The dynamics of the closed-loop system (5)–(9) is then as

follows. Once the underlying system (3) hits the stuck zone

(4), it is enforced by the impulsive controller (5) that changes

the velocity of the system instantaneously (see Figure 3).

The controller amplitude (8) has been pre-specified in such

a manner to bring the underlying system (3) from the stuck

zone (4) to the phase trajectory that while being disturbance-

free arrives at the origin without oscillations. It is shown

that the asymptotic stabilization is thus achieved not only

for the disturbance-free system (3) with w = 0 but also

for its perturbed version provided that external disturbances

affecting the system meet the norm upper bound (2).

The following result is in order.

Theorem 1: Let the friction oscillator (3) be driven by the

impulsive controller (5), specified with (8), (9). Then the

closed-loop system (5)–(9) is globally asymptotically stable

provided that the norm upper bound (2) holds for the external

disturbance affecting the system.

Proof: It has been mentioned that while being unforced,

system (3) possesses a globally finite time stable invariant

manifold Sw, localized according to (4) within the estimated

stuck zone S. Once the closed-loop system (5)–(9) attains

S, say at x1(t1) = ξ1 such that |ξ1| ≤
α+α0

k
, the impulsive

controller (5), (8), (9) is applied at the time instant t1. The

restitution rule (7) is then specified as

x1(t1) = ξ1,

x2(t1+) = −

√

2α|ξ1| − k(ξ1)2

m
sign(ξ1). (10)

If the closed-loop system is disturbance-free, the state

trajectory, re-initialized with (10), would mono-directionally

arrive at the origin in finite-time (see Figure 3). However, if

an admissible disturbance (2) affects the closed-loop system,

the state trajectory would hit the stuck zone at x1(t2) = ξ2 6=
0 provided that x2(t2−) = 0.

Our goal is to demonstrate that, even in the worst-

disturbance case where w = α0 or w = −α0, the following

inequality holds:

|ξ2| ≤
2α0

α
|ξ1|. (11)
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Fig. 3. Phase portrait of the impulsive closed-loop system (5)–(9):
dotted lines are for jumps of the velocity, solid lines are for the perturbed
trajectories, and dashed line is for the unperturbed trajectory.
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Then by iteration on i, similar relations

|ξi+1| ≤
2α0

α
|ξi|, i = 1, 2, . . . . (12)

could be obtained for the state positions ξi = x1(ti) at the

time instants ti, i = 1, 2, . . . of reaching the stuck zone (4).

Since q = 2α0

α
< 1 by assumption, it would follow that

lim
i→∞

|x1(ti)| = lim
i→∞

qi−1|ξ1| = 0, lim
i→∞

|x2(ti+)| = 0 (13)

where the relations x2(ti+) =

−
√

2α|ξi|−k(ξi)2

m
sign(ξi), i = 1, 2, . . . , similar to (10),

have been taken into account.

For the purpose of validating (11), let us compute the value

of ξ2 as a function of ξ1, assuming, for certainty, that ξ1 < 0,

and performing similar computation, otherwise.

In the case where w = α0 the system dynamics between

successive impacts are governed by

ẋ1 = x2

ẋ2 =
1

m
(−kx1 − α + α0), t ∈ (t1, t2). (14)

Initialized with (10), the solution to the perturbed system

(14) is given by

1

m
(−k

x2
1

2
− αx1 + α0x1) =

α0ξ1

m
+

x2
2

2
. (15)

Being confined to the time instant t2 when x2(t2−) = 0, the

above relation yields

kx2
1(t2) + 2(α − α0)x1(t2) + 2α0ξ1 = 0. (16)

Setting ξ2 = x1(t2) and taking into account that the case

where ξ1 < 0 is under study, it follows that

ξ2 = −
α − α0

k
+

√

(α0 − α)2

k2
+

2α0|ξ1|

k
. (17)

Substituting (17) into (11) for ξ2, we arrive at the inequal-

ity

−
α − α0

k
+

√

(α0 − α)2

k2
+

2α0|ξ1|

k
≤

2α0

α
|ξ1| (18)

to be verified. To validate (18) it suffices to represent it in

the form

(α0 − α)2

k2
+

2α0|ξ1|

k
≤

[

2α0

α
|ξ1| +

α − α0

k

]2

, (19)

and to observe that (19) is equivalent to the inequality

2α0|ξ1|

k
≤

4(α0)
2

α2
|ξ1|

2 +
4α0(α − α0)

αk
|ξ1| (20)

whose validation is reduced to the obvious inequality

1 ≤
2(α − α0)

α
, (21)

resulted from (2). Thus, inequality (11) is verified in the case

of w = α0.

It remains to verify inequality (11) in the case of w =
−1 with the system dynamics between successive impacts

governed by

ẋ1 = x2

ẋ2 =
1

m
(−kx1 − α − α0), t ∈ (t1, t2). (22)

The solution of the above system, initialized with (10), is

given by

1

m
(−k

x2
1

2
− αx1 − α0x1) = −

α0ξ1

m
+

x2
2

2
. (23)

Specified at the next impact time instant t2 when x2(t2−) =
0, relation (23) yields

kx2
1(t2) + 2(α + α0)x1(t2) − 2α0ξ1 = 0. (24)
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Setting ξ2 = x1(t2), it follows that

ξ2 = −
α0 + α

k
+

√

(α0 + α)2

k2
−

2α0|ξ1|

k
(25)

provided that the case where ξ1 < 0 is under study.

Substituting (25) into (11) for ξ2, we arrive at the inequal-

ity

α0 + α

k
−

√

(α0 + α)2

k2
−

2α0|ξ1|

k
≤

2α0

α
|ξ1| (26)

to be verified. To validate (26) it suffices to represent it in

the form

[

α + α0

k
−

2α0

α
|ξ1|

]2

≤
(α0 + α)2

k2
−

2α0|ξ1|

k
, (27)

and to observe that (27) is equivalent to the inequality

2α0|ξ1|

k
+

4(α0)
2

α2
|ξ1|

2 ≤
4α0(α + α0)

αk
|ξ1|. (28)

Since ξ1 is within the estimated stuck zone (4), i.e., |ξ1| ≤
α+α0

k
, the validation of (28) is reduced to the inequality

1 +
2α0(α + α0)

α2
≤

2(α + α0)

α
, (29)

straightforwardly resulted from (2). Thus, inequality (11) is

verified in the case of w = −α0, too. This completes the

proof of the theorem because as pointed out, inequality (11)

leads to the global asymptotic stability of the the closed-loop

system (5)–(9).

IV. NUMERICAL RESULTS

Performance issues and robustness properties of the pro-

posed impulsive controller are additionally tested in numer-

ical experiments. In the simulations, performed with MAT-

LAB, the dimensionless spring-mass model (1) is studied

with the parameters m = 1, k = 1, and α = 1. The initial

position and the initial velocity are set to x1(0) = 3.5 and

x2(0) = −4, respectively.

The impulsive controller (5), (8), (9) is first applied to the

disturbance-free system. In order to test the controller robust-

ness a harmonic external disturbance w = 0.7 sin t is then

applied to the closed-loop system. Good performance and

desired robustness properties of the controller are concluded

from Figures 5 and 6.

Alternative application of impulsive control is in the throt-

tle system (Figure 4) which is governed by the differential

equation (see [3])

mẍ = −k(x − x0) − α sign(ẋ) + u + w (30)

Fig. 4. Throttle mechanism (translational linear equivalent).

where

k =







k1, if x ≤ x0

k2, otherwise.
(31)

In the simulations, the parameters x0 = 0, m = 1, k1 = 1,

k2 = 3, and α = 1 were selected. The initial position and

the initial velocity are set to x1(0) = −2 and x2(0) = −2.

Simulation results are provided in Figures 7 and 8 for the

unperturbed and perturbed cases, respectively.

V. CONCLUSIONS

A novel approach, counteracting friction affects, is devel-

oped for and tested on a spring-mass system. The approach

is based on an impulsive actuation while the underlying

system is getting stuck due to the presence of dry friction.

Global asymptotic stability of the closed-loop system and

its robustness against external disturbances of sufficiently

small magnitude are carried out in the theoretical study.

The effectiveness of the proposed approach is illustrated in

numerical simulations. The approach is expected to enhance

control of mechanical manipulators with relatively strong

Coulomb friction forces.
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Fig. 5. Impulsive stabilization of the spring-mass system with Coulomb
friction: the no disturbance case.
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Fig. 6. Impulsive stabilization of the spring-mass system with Coulomb
friction: the disturbance case.
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Fig. 7. Impulsive stabilization of the electronic throttle system with
Coulomb friction: the no disturbance case.

Fig. 8. Impulsive stabilization of the electronic throttle system with
Coulomb friction: the disturbance case.
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