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Abstract— This paper compares flat and hierarchical model
structures in local model networks and discusses the side effects
of normalization. A new algorithm for automatic transition
adjustment between local models avoids undesirable effects
that occur with the hierarchical approach and leads to a
suitable model structure with better interpretability of local
models. Demonstration examples illustrate the advantages over
the existing approaches.

I. INTRODUCTION

In the last two decades, architectures based on the interpo-

lation of local models have attracted more and more interest

as static function approximators and particularly as nonlinear

dynamic models. Local linear models allow the transfer of

many insights and methods from the mature field of linear

control theory to the nonlinear world. Recent advances in the

area of convex optimization and the development of efficient

algorithms for the solution of linear matrix inequalities have

contributed significantly to the boom on local linear model

structures.

The output ŷ of a local model network with p inputs u =
[u1 u2 · · · up]

T can be calculated as the interpolation of M

local model outputs ŷi, i = 1, . . . , M , see Fig. 1 [10],

ŷ =

M∑

i=1

ŷi(u)Φi(u) (1)

where the Φi(·) are called interpolation or validity or

weighting functions. These validity functions describe the

regions where the local models are valid; they describe the

contribution of each local model to the output. From the

fuzzy logic point of view (1) realizes a set of M fuzzy rules

where the Φi(·) represent the rule premises and the ŷi are

the associated rule consequents. Because a smooth transition

(no switching) between the local models is desired here, the

validity functions are smooth functions between 0 and 1.

For a reasonable interpretation of local model networks it

is furthermore necessary that the validity functions form a

partition of unity:

M∑

i=1

Φi(u) = 1 . (2)

Thus, everywhere in the input space the contributions of all

local models sum up to 100%.
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In principle, the local models can be chosen of arbitrary

type. If their parameters shall be estimated from data,

however, it is extremely beneficial to choose a linearly

parameterized model class. The most common choice are

polynomials. Polynomials of degree 0 (constants) yield a

neuro-fuzzy system with singletons or a normalized radial

basis function network. Polynomials of degree 1 (linear)

yield local linear model structures, which is by far the most

popular choice. As the degree of the polynomials increases,

the number of local models required for a certain accuracy

decreases. Thus, by increasing the local models’ complexity,

at some point a polynomial of high degree with just one local

model (M = 1) is obtained, which is in fact equivalent with

a global polynomial model (Φ1(·) = 1).

Besides the possibilities of transferring parts of mature

linear theory to the nonlinear world, local linear models seem

to represent a good trade-off between the required number

of local models and the complexity of the local models

themselves. Due to the overwhelming importance and for

simplicity of notation the rest of this paper will deal only

with local models of linear type:

ŷi(u) = wi,0 + wi,1u1 + wi,2u2 + . . . + wi,pup . (3)

However, an extension to higher degree polynomials or other

linearly parameterized model classes is straightforward.

Fig. 1. Local model network: The outputs ŷi of the local models (LMi)
are weighted with their validity function values Φi(·) and summed up.
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One of the key features of local model networks is that

the input spaces for the local models and for the validity

functions can be chosen independently. In the fuzzy interpre-

tation this means that the rule premises (IF) can operate on

(partly) other variables than the rule consequents (THEN).

With different input spaces (1) has to be extended to, see

Fig. 2:

ŷ =
M∑

i=1

ŷi(x)Φi(z) (4)

with x = [x1 x2 · · · xnx]T spanning the consequent input

space and z = [z1 z2 · · · znz]
T spanning the premise input

space. This feature enables the user to incorporate prior

knowledge about the strength of nonlinearity from each input

to the output into the model structure. Or the other way

round, the user can draw such conclusions from a black-box

model which has been identified from data.

Especially for dynamic models where the model inputs

include delayed versions of the physical inputs and output,

the dimension nx becomes very large in order to cover

all dynamic effects. In the most general case (universal

approximator) this is also true for nz. However, for many

practical problems a lower-dimensional z can be chosen,

sometimes even one or two scheduling variables can yield

sufficiently accurate models.

If the validity functions once are determined, it is easy to

efficiently estimate the parameters of the local linear models

wij by local or global least squares methods. The decisive

difference between all proposed algorithms to construct local

linear model structures is the strategy to partition the input

space spanned by z = [z1 z2 · · · znz]
T , i.e., to choose the

validity regions and consequently the parameters of the valid-

ity functions. This strategy determines the key properties of

both: the construction algorithm and the finally constructed

model.

Section II analyzes the influence of covariance matrix

and side effects of normalization in local model networks

with Gaussian basis functions. In Sect. III a strategy of

hierarchical modeling is presented. Besides the discussion

of the key features of global estimation, local estimation

and interpolation smoothness in local model networks, Sec-

tion IV introduces a new algorithm for the adjustment of

the transitions between local models in hierarchical model

networks. The performance of the hierarchical model strategy
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Fig. 2. For local model networks the inputs can be assigned to the
premise and/or consequent input space according to their nonlinear or linear
influence on the model output.

Fig. 3. The circles and ellipses represent the contour lines of the
multidimensional membership functions µi (i.e., before normalization) in
case of axes-orthogonal (left) and axes-oblique partitioning (right).

in combination with an automatic smoothness adjustment

is evaluated with demonstration examples in Sect. V. This

paper ends by summarizing the important conclusions.

II. FLAT MODEL STRUCTURE WITH GAUSSIAN

BASIS FUNCTIONS

This section gives a theoretical investigation about axes-

orthogonal and axes-oblique input space partitioning strate-

gies in local model networks with Gaussian basis functions.

One key feature of this network type is its flat structure, i.e.,

all validity functions can be computed in parallel. Side effects

of normalization in local model networks are analyzed.

A. Influence of the covariance matrix

To construct a Gaussian basis function the distance xi from

a data point to each center ci is calculated with the help of

the covariance matrix Σi , which scales and rotates the axes:

xi = ||z − ci||Σi
=

√
(z − ci)

T
Σ−1

i (z − ci) . (5)

The membership functions µi(·) of a Gaussian basis function

network are given by:

µi (z) = exp

(
−

1

2
||z − ci||

2

Σ
i

)
. (6)

To achieve a partition of unity the membership functions

have to be normalized to obtain the validity functions:

Φi(z) =
µi(z)

M∑
j=1

µj(z)

. (7)

Depending on the covariance matrix two cases for partition-

ing the input space can be distinguished, see Fig. 3:

1) Axes-orthogonal partitioning: If the input space is

divided into rectangular regions by axes-orthogonal

splits the covariance matrix becomes diagonal:

Σi =




σ2

i,1 0 0 0
0 σ2

i,2 0 0
...

...
. . .

...

0 0 0 σ2

i,nz


 , (8)

3574



where σ2

i,1, . . . , σ
2

i,nz are the variances of each input

direction. In case of univariate membership functions

the tensor product

µ(z1) · µ(z2) · . . . · µ(znz) = µ(z1, z2, . . . , znz) (9)

is utilized as construction mechanism. The multidimen-

sional membership function realized by each neuron

can be described with nz center values ci,j and nz

variances σ2
i,j . One big advantage of axes-orthogonal

partitioning is its easy interpretability in terms of fuzzy

logic. This way of partitioning allows a projection

of the validity regions to the one-dimensional input

variables. Undesirable normalization side effects and

extrapolation behavior can be improved compared to

clustering or data-based strategies [13], [10]. Common

approaches are e.g. CART [1] and LOLIMOT [12], see

also [14], [7].

2) Axes-oblique partitioning: In case of an axes-oblique

partitioning strategy that is used for e.g. Gustafson-

Kessel [6] or Gath-Geva clustering [5] the covariance

matrix becomes symmetric (nz × nz). A fuzzy inter-

pretation of the model is not really possible, because

the projection to the input axes is not possible without

loss of information.

B. Side effects of normalization

The normalization (7) can lead to some very unexpected

and usually undesirable effects, which are illustrated in [13].

In case of a diagonal covariance matrix these effects do not

occur if all basis functions (BFs) possess identical standard

deviations for each dimension, i.e.,

σ1j = σ2j = . . . = σMj . (10)

The side effects are caused by the fact that for all very

large input values the activation of the Gaussian BF with the

largest standard deviation becomes higher than the activation

of all other Gaussian BFs. As shown in Fig. 4, the normal-

ization then results in a reactivation of the basis function

with the largest width. This reactivation makes the validity

functions non-local and multi-modal – both are properties

usually not intuitively assumed and not desired in such

networks.

These problems translate to the multidimensional case.

If axes-orthogonal partitioning is used, these side effects

can always be analyzed by examining the one-dimensional

projections to the input variables. However, in case of scaled

and rotated Gaussian BFs (axis-oblique partitioning) the

normalization can lead to highly nontransparent reactivation

regions in the input space, see Fig. 5. These side effects are

typically not very significant for the performance of a Gaus-

sian BF network, but they are of fundamental importance

with regard to its interpretation.

The next section introduces a hierarchical model structure

that can circumvent the above mentioned drawbacks of the

flat structure.

III. HIERARCHICAL MODEL STRUCTURE

Almost all of the common partitioning strategies yield flat

models. Even if the algorithm is hierarchically organized

like e.g. LOLIMOT, the constructed model itself is flat in

the sense that all validity functions Φi(·) can be calculated

in parallel. This is an important feature if the network really

should be realized in hardware or by some parallel computer.

For any standard software implementation a hierarchical

model structure as shown in Fig. 6 is not disadvantage.

Strictly speaking hierarchical model networks do not belong

to the group of neural networks because the parallelization of

neurons is not applicable. But in case of sequential computer

architectures hierarchical model approaches can be favorably.

Truly hierarchical model structures are e.g. pursued with

CART [1], MARS [4], hinging hyperplane trees [3], and the

hierarchical local model network [8], see also [11].

As an example, a model with four rules shall be con-

structed in a hierarchical manner. The model is represented

by a binary tree as shown in Fig. 6. At each knot i of the

tree the input space is softly partitioned into two areas by

two splitting functions Ψi(·) and Ψ̃i(·) which sum up to one:

Ψi(z) + Ψ̃i(z) = 1 . (11)

These regions are further subdivided by succeeding knots (if

they exist). Each leaf of the tree realizes a local model and

its contribution to the overall model output is given by the

multiplication of all splitting functions from the root of the

tree to the corresponding leaf. For the tree with seven knots

and four leaves in Fig. 6 this means:

Φ3(z) = Ψ̃1(z) , Φ4(z) = Ψ1(z)Ψ2(z) ,

Φ6(z) = Ψ1(z)Ψ̃2(z)Ψ5(z) , Φ7(z) = Ψ1(z)Ψ̃2(z)Ψ̃5(z) .

Once these validity functions are determined, the overall

model output is given similarly to (1) as the sum the local

Fig. 4. Reactivation of basis functions occurs if the activation of the
Gaussian BF with the largest standard deviation becomes higher than the
activation of all other Gaussian BFs.

Fig. 5. Normalization of axes-oblique membership functions leads to
unexpected reactivation regions in the input space. Projection to the one-
dimensional input variables delivers no adequate information about these
side effects.
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Fig. 6. Hierarchical tree construction algorithm. Every leaf of the tree
represents one validity function Φi and is generated by multiplying the
corresponding splitting functions Ψi.

models weighted with their associated validity functions:

ŷ =
∑

i∈L

ŷi(x)Φi(z) (12)

where L is the set of indices of the leaf knots, which is in

the above example L = {3, 4, 6, 7}.

One of the major advantages of such hierarchical model

structures compared to flat ones is that the partition of unity

in (2) holds automatically if only (11) is fulfilled. This also

avoids all undesirable normalization side effects (comp. sect.

II-B) because the normalization in (7) is not needed to create

a partition of unity [13], [10]. A further motivation for this

approach is the fact that both model leaves and whole model

sub-trees could be changed or adapted without taking any

effect on tree regions of higher hierarchical levels. However,

the erasement of the disadvantages of flat model structures

goes along with a problem that concerns the adjustment of

the overlaps between local models. This is discussed in the

next section.

IV. SMOOTHNESS ADJUSTMENT

The goal of approximation with local model networks is

i) the interpretability of local models and ii) a smooth global

model behaviour. The necessity of adjustment of overlaps

between local models depends on the used parameter esti-

mation approach. Two different approaches for optimization

of the local model parameters can be distinguished: global

and local estimation. While global estimation represents the

straightforward application of the least squares algorithm,

local estimation neglects the overlap between the validity

functions in order to exploit the local features of the model

[2], [8].

A. Global and local estimation:

In case of global estimation the following characteristics

can be listed:

• High training effort.

• High flexibility in case of large overlaps of validity

functions, but then interpretability of local models is

lost.

• High accuracy if data has low noise level.

• In case of hard switching between local models global

and local estimation tend to the same results.

Local estimation seems to be advantageous to global esti-

mation in most applications [10], [9]. The following benefits

can be expected:

• Fast training.

• Regularization effect.

• Good interpretability of local models.

• Advantages when applied in a recursive algorithm for

online learning.

B. How smooth should the interpolation be?

For the choice of the interpolation smoothness it is inter-

esting to consider two special cases:

1) smoothness too small: hard switches between local

models.

2) smoothness too large: big overlaps of validity functions

and loss of locality.

Hence the smoothness should be a compromise between

these cases. In Fig. 7 it is depicted how the interpolation

smoothness influences the validity functions Φi and the

transition between two local linear models ŷ1 and ŷ2.

In most cases it seems to be sufficient to roughly choose

some reasonable a priori smoothness value for all local

models. The activation of all validity functions should reach

almost 100% in order to ensure a proper interpretation of the

associated local models (in particular true for local parameter

estimation). It has been observed that the model quality is

only insignificantly dependent on the exact smoothness value

[10], see also Fig. 8. Therefore a fine tuning is not necessary.

C. Smoothness optimization or a priori fixation?

With local estimation an optimization of the smoothness

does not work satisfactorily in most cases. The reason is that

a hard switching between local models also minimizes the
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Fig. 7. Influence of interpolation smoothness on the model and relation between model output ŷ and validity function Φi.

error caused by neglecting the overlap between the validity

functions. However, even if optimal performance is achieved

such small overlaps should not be realized in practice where

the model is usually required to be smooth. In contrast

with a global estimation approach a smoothness optimization

tends to yield very large smoothness values (→ ∞), in

order to overcome the restrictions in model flexibility due

to the locality of the validity functions. Considering the low

sensitivity of the model quality on the smoothness and all

the difficulties arising during nonlinear optimization of the

smoothness it can be generally recommended to fix it a

priori. But in case of networks with hierarchical structure an

additional unpleasant effect occurs: The overlap of validity

functions depends on the hierarchy level of the local models.

Since the splitting functions Ψi have to be multiplied with

each other to generate the validity functions Φ i, the activity

of subsequent neurons is reduced with each hierarchy level.

For example, the validity functions associated with knot 6
and 7 in Fig. 6 are always less active than the validity

function associated to their mother knot 5. A reliable fixation

of the smoothness a priori is only possible if also the

final depth (or hierarchy level) of the hierarchical model

structure would be known. To circumvent this drawback a

new algorithm has been developed where the smoothness

is adapted automatically after adding a local model to the

hierarchical tree structure.

D. Automatic transition adjustment algorithm:

For each local model split the smoothness of the overall

model is adjusted. The following loss function can be de-

fined:

J =
∣∣Φthreshold − min

(
Φi(ci), Φj(cj)

)∣∣ , (13)

where Φthreshold is an user defined value that gives a

threshold for the minimal activation of all validity functions.

Depending on the underlying process this threshold should

be chosen as high as the locality of the validity regions needs

to be high. The validity functions Φi and Φj are generated by

division of an existing local model one level up in hierarchy.

As long as J is larger than a residuum ε the transition

between all local models has to be sharpened. This feature

can be implemented with a single-parameter optimization or

simply by an iterative sharpening of the transitions between

local models. After manipulation of the model smoothness

actually the parameters of all local models have to be re-

estimated consecutively. But since the smoothness influences

the model parameters only insignificantly the additional re-

estimation procedure can be skipped in most applications.

Experimental results showed a relative parameter difference

of less than 0.1%.

The advantages of this smoothness adjustment approach

are shown with demonstration examples in the following

section.

V. DEMONSTRATION EXAMPLES

In order to illustrate the operation of the transition adjust-

ment algorithm the following simple static SISO process will

be utilized with input value interval 0 ≤ u ≤ 1:

y =
1

0.1 + u
. (14)

In Fig. 8 the hierarchical modeling of this process with

sigmoidal splitting functions is demonstrated. The first case

shows the model without adjustment of transitions. The

smoothness is calculated with respect to the center distances

of local models and therefore yield validity functions with

large overlaps. As a consequence of the hierarchical model

structure (see Fig. 6) the last added local models have a

smaller influence on the overall global model. The inter-

pretability and locality tends to become lost.

In contrast all validity functions generated with inherent

smoothness adjustment (Φthreshold = 0.95) have maximum

activities over 95%. The normalized root mean squared error

of the model drops from 5.49% to 3.79%.

As a second even more drastic demonstration example the

process in Fig. 9 is approximated with 10 local linear models.
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Fig. 8. Trained network without (left) and with adjustment of the transition
(right) between local models and influence on model output (top) and
validity functions (bottom).

Fig. 9. Modeling of a test-process (top left) with hierarchical local
model networks. Validity functions generated with a-priori fixed smooth-
ness (middle/bottom left) and automatic transition adjustment algorithm
(middle/bottom right). The convergence plot (top right) demonstrates the
advantages of automatic smoothness adjustment.

The standard method using a-priori fixed smoothness values

(left) is compared with the proposed automatic smoothness

adjustment algorithm (right). The process has an almost step-

like behavior (high gradient) at u ≈ 0.5. So the model

resolution has to be high in this region.

The convergence plot shows that the models of both meth-

ods yield to nearly the same normalized root mean squared

error in case of 5 local models. But if the number of local

models increases the model with a-priori fixed smoothness

becomes too smooth. The refinement of the model around

u ≈ 0.5 achieves no improvement. In other words the

local model network tends to loose the characteristic of an

universal approximator. This unsatisfactory approximation

behavior is a consequence of the too small validity function

values. They directly result from the multiplications of the

splitting functions due to the hierarchical model structure

that is not known beforehand.

The here proposed smoothness adjustment algorithm auto-

matically adapts the smoothness of the overall model as long

as each neuron has an activity more than 95% at its center.

So the global model smoothness is adapted to the resulting

hierarchical model structure. As in the convergence plot

illustrated, the model with automatic smoothness adjustment

can be improved significantly with each iteration in contrast

to the a-priori fixed smoothness approach.

VI. CONCLUSIONS

Normalization of basis functions in local model networks

can lead to undesirable side effects. Especially networks

with scaled and rotated membership functions are tending

to reactivation of neurons so that interpretability and locality

of the validity regions are lost. One remedy to overcome

this drawback is the use of a hierarchical model structure. In

combination with a new algorithm for automatic smoothness

adjustment between local models this approach leads to

reasonable results.
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