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Abstract— This paper introduces a novel visual servo con-
troller designed to keep multiple moving objects in the camera
field-of-view using a pan/tilt/zoom camera. In contrast to most
visual servo controllers, there is no goal pose or goal image.
In this paper, a set of task functions are developed to regulate
the mean and variance of a set of image features. Regulating
these task functions will deter feature points from leaving the
camera field-of-view. An additional task function is used to
maintain a high level of motion perceptibility, which ensures
that desired feature point velocities can be achieved. To provide
proper control of a pan/tilt/zoom camera, an image Jacobian
is developed utilizing actuation of the focal length. Simulations
of several object tracking tasks have verified the performance
of the proposed method.

I. INTRODUCTION

The use of image information in feedback control, com-
monly referred to as visual servo (VS) control, is an es-
tablished and diverse field. There are many approaches, in-
cluding image based visual servoing (IBVS), position based
visual servoing, partitioned methods and switching methods.
See [1], [2] and the references therein for tutorials and
historical discussion of these techniques. Most visual servo
control methods have a common objective, to regulate a
camera, robot manipulator, or unmanned vehicle to a desired
pose or along a desired trajectory. However, many vision-
based control tasks do not require a specific goal pose or
trajectory.

One task that is not well characterized by a goal pose or
image is keeping multiple, moving objects in the field-of-
view (FOV). Consider the scenario of crowd surveillance. A
camera views the crowd, and performs target segmentation
and tracking methods to localize individuals of interest
visible in the image. As the crowd moves and disperses, the
method presented in this paper will move the camera in an
attempt to keep all individuals in the FOV. A similar scenario
involves tracking several unmanned vehicles and landmarks.

The method is rooted in classic IBVS [1]–[4], however
there is no goal image or goal feature trajectory. Instead
of task functions based on current and goal images, the
proposed method regulates a series of low dimensional task
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functions based on current image features. The desired task
function velocity is mapped to a time-varying feature velocity
through corresponding task function Jacobians. These task
function Jacobians are underdetermined and are suitable for
task-priority kinematic control [3], [5], [6]. The time-varying
image feature velocity is mapped to camera motions through
IBVS methods. The resulting controller allows feature points
to move within the image, and the camera will move to deter
feature points from leaving the FOV.

Our initial developments in this field [7] introduced task
functions based on mean, variance and perceptibility of
feature point coordinates in the image. Please refer to [7]
for a literature review, discussion and comparison with other
visual servoing methods that use moments of feature points,
as well as a discussion the use of task-function kinematic
contro in mobile robot and visual servo control.

The work in [7] focused on the general case of a six
degree-of-freedom (DOF), airborne mobile camera. The most
prominent camera in surveillance tasks is the pan/tilt/zoom
(PTZ) camera, which can rotate about two axes and alter
its focal length to alter the perspective zoom of the image.
In this current development, we extend our earlier efforts to
include the unique kinematics of a PTZ camera, including the
development of a 3DOF image Jacobian for feature points
that includes the actuation of the focal length as a variable.
A zoom term was appended to a standard image Jacobian in
[8], though a closed-form expression for the zoom term is
not given. A 3DOF image Jacobian corresponding to a PTZ
camera watching a spherical target was developed in [9].

Sections II and III introduce background information re-
lated to the camera model and control approach. Sections IV-
A through IV-C introduce the task functions used to generate
the desired feature velocity. Simulations of tasks are given in
Section V to demonstrate the performance of this controller.

II. CAMERA MODEL AND IMAGE JACOBIAN FOR
PAN/TILT/ZOOM CAMERAS

An image is a function of the relative pose between
the scene and camera, and the camera intrinsic parameters.
Consider a camera with coordinate frame Fc (t). The frame
is oriented such that the camera optical axis corresponds
to the z-axis of Fc (t), and the x-axis and y-axis are the
horizontal and vertical directions of the image surface. The
camera captures images of a collection of k visible feature
points. These points have Euclidean coordinates Mi (t) ∈ R3
defined as

Mi = [Xi, Yi, Zi]
T , ∀i ∈ {1 . . . k}
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in the camera frame. The point Mi(t) projects to a point in
the feature point plane with coordinates

λ

Zi
Mi =

⎡⎣ λXi

Zi
λYi
Zi
λ

⎤⎦ =
⎡⎣ xi

yi
λ

⎤⎦ = ∙ mi

λ

¸
(1)

where mi(t) ∈ R2 is the image coordinate of the ith feature
point and λ(t) is the focal length of the camera. Given the
collection of k feature points in the image, a feature state
vector m(t) ∈ R2k and state velocity vector ṁ(t) ∈ R2k are
defined as

m = [x1, y1, · · · , xk, yk]T

ṁ = [ẋ1, ẏ1, · · · , ẋk, ẏk]T .
The extraction of such points could come from a variety
of algorithms, such as tracking distinguishable points on
moving targets [10], [11], the centroid of segmented blobs
[12] or the corner points of bounding rectangle of tracked
moving targets [13].

A PTZ camera cannot translate, but can rotate about two
axes and alter the focal length of its lens. This work assumes
that the center of rotation corresponds to the origin of the
camera frame. Most visual servoing approaches assume a
constant focal length, and many scale the system such that
λ = 1. In the subsequent development here, a time-varying
λ(t) is introduced as an actuation to alter the image. Increas-
ing λ has the effect of zooming into the image, i.e. objects in
the image will appear larger and feature points move toward
the edge of the FOV. Decreasing λ will zoom out of the
image, i.e. objects will appear smaller and feature points
will move toward the image center. While this is similar
to the effect of translating along the camera optical axis,
there are important differences. Most notably, translation is
not commutative with rotation, but zoom is commutative.
Incorporating λ into a VS control system requires developing
a novel image Jacobian.

If the viewed objects are not moving in the world frame,
the derivative of Mi(t) as a function of camera velocity is
given by

Ṁi = −ω ×Mi (2)

where ω (t) = [ωx, ωy, 0]
T ∈ R3 is the angular velocity of

the camera. Equation (2) can be rewritten as⎡⎣ Ẋi

Ẏi
Żi

⎤⎦ =
⎡⎣ −Ziωy

Ziωx
Xiωy − Yiωx

⎤⎦ . (3)

The derivative of (1) is given by

d

dt

µ
λ

Zi
Mi

¶
=

λ

Z2i

³
ṀiZi −MiŻi

´
+

λ̇

Zi
Mi. (4)

Combining the terms in (3) with the top two rows (4) gives∙
ẋi
ẏi

¸
=

1

λ

∙
xiyiωx − (λ2 + x2i )ωy + λ̇xi
(λ2 + y2i )ωx − xiyiωy + λ̇yi

¸

=
1

λ

∙
xiyi −(λ2 + x2i ) xi

(λ2 + y2i ) −xiyi yi

¸⎡⎣ ωx
ωy
λ̇

⎤⎦
= Liλvptz (5)

where Liλ(t) is the image Jacobian for point i for a PTZ
camera, and vptz(t) ∈ R3 =

h
ωx, ωy, λ̇

iT
. It can be seen

that Liλ(t) matches the first three rows of the Jacobian for a
sphericle target in [9] The time derivative of a feature point
vector m(t) is given by

ṁ = Lλvptz

where Lλ (t) ∈ R2k×3 =
£
LT1λ, · · · , LTkλ

¤T . In the case that
the feature points are not static in an inertial world frame
(e.g., the feature points are tracked on moving objects), the
time derivative of the feature points is given by

ṁ = Lλvptz + ε (6)

where ε(t) is an unknown function caused by the targets
motion. We make a practical assumption that ε(t) is bounded.

The first two columns of Lλ(t) are the same as the fourth
and fifth columns of the classic six -DOF image Jacobian [1],
[3]. One notable feature of Lλ(t) is that it is not dependent on
feature depths Zi(t). The six-DOF image Jacobian includes
the depths Zi(t) as variables. The feature point depths must
be known or accurately estimated for six-DOF IBVS, and
IBVS is brittle to depth estimation errors [14]. As seen in
(5), the depths do not need to be known, which increases
robustness and decreases computational complexity.

III. TASK FUNCTION-BASED KINEMATIC CONTROL

The control objective is to keep a set of feature points
within the camera FOV without a specific camera pose.
Motivated by this objective, a set of task functions are
defined using image feature coordinates. By regulating the
task functions, feature points can be inhibited from leaving
the FOV. However, the task functions may compete in the
sense that reducing the error of one task function may
increase the error of another. To avoid competition between
task functions, task-priority kinematic control [5], [6] is used.

Let φ(t) ∈ Rl denote a task function of the feature point
coordinates mi (t) as

φ = f(m)

with derivative

φ̇ =
kX
i=1

∂f

∂mi
ṁi = J(m)ṁ (7)

where J(m) ∈ Rl×2k is the task Jacobian matrix. The task
functions developed subsequently are of dimension l ≤ 2.

The task is to drive the feature points along a desired
velocity ṁφ(t) such that φ(t) follows a desired trajectory
φd(t). Given the underdetermined structure of the Jacobian
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matrix, there are infinite solutions to this problem. The
typical solution based on the minimum-norm approach [6]
is given as

ṁφ = J†
h
φ̇d − γ(φ− φd)

i
= JT

¡
JJT

¢−1 h
φ̇d − γ(φ− φd)

i
(8)

where γ is a positive scalar gain constant, and J†(m) ∈
R2k×l denotes the minimum-norm general inverse of J (m).
Based on (8), the camera velocity vptz (t) is designed as

vptz = L+λ ṁφ =
¡
LTλLλ

¢−1
LTλ ṁφ (9)

where L+λ (t) ∈ R3×2k denotes the least squares general
inverse of Lλ (t) . Note that J (m) is underdetermined (i.e.
more columns than rows), and Lλ(t) is overdetermined (i.e.
more rows than columns). Therefor, the general inverses have
different solutions and are denoted differently.

A set of task functions can be combined in various ways.
The simplest approach is to add the desired feature velocity
from each task function to create the total desired feature
point velocity. For example, consider two tasks φa (t) and
φb (t) with resulting desired feature velocities ṁa (t) and
ṁb (t). The camera velocity is then given as

vptz = L+λ (ṁa + ṁb) .

Since the task function velocities are undetermined, an
optional method is to choose one task as primary, and
project the other tasks into the nullspace of the primary task
derivative [5], [6] as

vptz = L+λ
¡
ṁa + (I − J†aJa)ṁb

¢
= L+λ

³
J†aφ̇a + (I − J†aJa)J

†
b φ̇b

´
(10)

where Ja (ma) and Jb (mb) are the task Jacobian matrices
with respect to φa (t) and φb (t), respectively.

The approach in (10) will prevent the velocity vectors
from competing and negating each other, as the primary task
will always be accomplished. Lower priority control tasks
will be achieved if they do not oppose higher priority tasks.
Tertiary, quaternary, etc. tasks can be prioritized by repeating
this process and projecting each subsequent task into the
nullspace of the preceding task Jacobians.

IV. CONTROL DEVELOPMENT

Three task functions are presented as part of a task-priority
kinematic controller. Two task functions are designed to reg-
ulate the mean and variance of the feature point coordinates.
Regulating the mean at the camera center will keep the
feature points centered in the FOV. Regulating the variance
will restrict the distance between the feature points and keep
feature points away from the edge of the FOV. A third
task function maximizes motion perceptibility, which ensures
desired image velocities can be met. These task functions are
cascaded through nullspace projection and mapped to camera
velocity, as described Section III. Cascading controllers for
mean and perceptibility with a controller for variance will
deter objects from leaving the FOV.

A benefit of the mean and variance task functions is that
no feature point tracking, matching or registration needs to
occur, and the order of feature points in the feature vector
m(t) is not important. This benefit is due to the fact that
all specific point information is lost by taking the mean and
variance. Some feature extraction methods, such as corner
detection or taking the centroid of blob segments, do not
match or order features between images without additional
algorithms. Matching can be a difficult problem, so this is a
notable advantage.

If variance is regulated to a suitably small goal value,
a subset of feature points can be guaranteed to stay in
view. Given a distribution with mean x̄ and variance σ2x,
Chebyshev’s inequality states [15] that no more than 1/k2
of the values are more than k standard deviations away from
the mean. Specifically, Chebyshev’s inequality states that at
least 75% of all values are within two standard deviations of
the mean, and at least 89% of values are within three standard
deviations. For a normally distributed random process, these
limits are tighter such that approximately 95% of all values
will be within two standard deviations, and 99.7% of all
values will be within three standard deviations. Consider a
camera with a 512x512 pixel FOV regulating the variance to
862 will ensure that at least 89% of all points are in the FOV.
Features may be lost due to leaving the FOV, occlusions, or
failure of the image processing routine that extracts features.
If this occurs, the last known coordinates can be used to
attempt to recapture it at a later time, or the point can be
discounted from the mean and regulation continues with the
remaining points.

A. Task Function for the Mean of the Image Points

Controlling the mean of the feature point coordinates helps
to ensure the feature points are centered around a position
in the image plane. Let φm(t) ∈ R2 denote a task function
defined as the sample mean

φm =
1

k

kX
i=1

mi = m̄.

The time derivative of φm (t) is given by

φ̇m =
1

k

kX
i=1

∂φm
∂mi

ṁi = Jmṁ

= Jm (Lλvptz + ε)

where Jm (t) ∈ R2×2k is a task function Jacobian defined
as

Jm =
1

k
[I2, · · · , I2] (11)

where I2 is the 2×2 identity matrix and is repeated k times.
In the general case, the objective is to regulate the mean

to track a desired trajectory, helping to ensure the feature
points are centered around a specific, time-varying point in
the image. Define a desired task function trajectory φmd (t),
with a known, smooth derivative φ̇md (t). PID control can
be used to generate a feature velocity that will track the
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desired value of φmd (t). This feature velocity is denoted
ṁm (t) ∈ R2k, and is given by

ṁm = −J†m
µ
γmpφme + γmi

Z t

0

φmedt

+γmd

d

dt
φme − φ̇md

¶
(12)

where φme(t) = φm(t)−φmd(t) and γmp, γmi, γmd ∈ R are
constant gains. If the desired trajectory φmd (t) is simplified
to a constant set value φmd, equation (12) can be simplified
as

ṁm = −J†m
µ
γmpφme + γmi

Z t

0

φmedt+ γmd

d

dt
φme

¶
.

B. Task Function for the Variance of the Image Points
Regulating the variance of the feature point coordinates

will regulate the spread of the feature points in the image.
That is, regulating the variance will control how far the
feature points drift from the mean value. A task function
φv (t) ∈ R2 is given by the sample variance

φv =
1

k

kX
i=1

∙
(xi − x̄)2

(yi − ȳ)
2

¸
where x̄ (t) and ȳ (t) are the mean of all the x and y
components of mi (t) , i ∈ {1 . . . k}, respectively.

To find the variance task function Jacobian, consider the
partial derivative of φv (t) with respect to x1 (t)

∂φv
∂x1

=
∂

∂x1

"
1

k

kX
i=1

(xi − x̄)2

#

=
2

k

"
(x1 − x̄)− 1

k

kX
i=1

(xi − x̄)

#
=

2

k
[x1 − x̄] .

Repeating the above simplifications for all xi (t) , yi (t) , i ∈
{1 . . . k}, gives the time derivative of φv (t) as

φ̇v = Jvṁ

= Jv (Lλvptz + ε)

where Lλ(t), vptz(t) and ε(t) were given in (6), and Jv (t) ∈
R2×2k is a task function Jacobian given by

Jv =
2

k

∙
x1 − x̄ 0
0 y1 − ȳ

,
x2 − x̄ 0
0 y2 − ȳ

, · · · , xk − x̄ 0
0 yk − ȳ

¸
.

To regulate the variance to a desired trajectory φvd (t) (with a
known, smooth derivative φ̇vd (t)) the feature point velocity
ṁv (t) ∈ R2k can be designed by following the method in
Section IV-A to give

ṁv = −J†v
µ
γvpφve + γvi

Z t

0

φvedt+ γvd
d

dt
φve − φ̇vd

¶
(13)

where φve(t) = φv(t) − φvd(t) and γvp, γvi, γvd ∈ R are
constant gains.

An important consequence of using mean and variance as
task functions is that the control laws for mean and variance
do not interfere with each other. This means that the tasks
of regulating mean and variance will not interfere with each
other and ṁm + ṁv can be used in place of the nullspace
projection of equation (10).
Theorem 1: Given the Jacobian matrices Jm and Jv,
JmJ

†
v = JvJ

†
m = 0.

Proof: The pseudo inverse J†v(t) ∈ R2k×2 can be written in
closed form and multiplied with (11) to give

JmJ
†
v =

1

2

⎡⎢⎢⎢⎢⎢⎣
1 0
0 1
...

...
1 0
0 1

⎤⎥⎥⎥⎥⎥⎦
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1−x̄
kP
i=1

(xi−x̄)2
0

0 y1−x̄
kP
i=1

(yi−ȳ)2

...
...

xk−x̄
kP
i=1

(xi−x̄)2
0

0 yk−x̄
kP
i=1

(yi−ȳ)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

2

⎡⎢⎢⎢⎣
kx̄−kx̄

kP
i=1

(xi−x̄)2
0

0 kȳi−kȳ
kP
i=1

(yi−ȳ)2

⎤⎥⎥⎥⎦ =
∙
0 0
0 0

¸

It can similarly be shown that JvJ†m = 0. ¤
Combining (10), (12) and (13) and the result of Theorem

1, the resulting feature point velocity from prioritizing the
tasks is given by

ṁ = ṁm + (I − J†mJm)ṁv

= J†mφ̇m + (I − J†mJm)J
†
v φ̇v

= J†mφ̇m + J†vφv = ṁm + ṁv.

C. Task Function for Perceptibility of Image Points
Sharma and Hutchinson presented the concept of motion

perceptibility in [16]. Perceptibility gives a measure of how
well a camera can perceive the motion of objects in the FOV.
Roughly speaking, if perceptibility is high, small object or
camera velocities will result in notable feature velocities in
the image plane (e.g., high optical flow). This is especially
important if there are more than three feature points, as
the available feature point velocities are constrained due
to an overdetermined image Jacobian. Maintaining a high
perceptibility helps to ensure a larger span of available
feature point velocity vectors.

Perceptibility is a scalar function of the image Jacobian
Lλ (t) , defined as

wv =
q
det(LTλLλ) =

3Q
i=1

σi

where σi (t) ∈ R+ are the singular values of Lλ (t).
Maximizing wv (t) is accomplished by maximizing each
σi (t). The matrix LTλ (t)Lλ (t) ∈ R3×3 is positive definite
and symmetric, so the eigenvalues of LTλ (t)Lλ (t) are equal
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to σ2i (t). The trace of a matrix is equal to the sum of its
eigenvalues. Therefore, the trace of LTλ (t)Lλ (t) is related to
the singular values by

Tr(LTλLλ) =
3P
i=1

σ2i .

Increasing the trace of LTλ (t)Lλ (t) will also increase the
perceptibility.

The trace of LTλ (t)Lλ (t) is given by

Tr(LTλLλ) =
kP
i=1

³
2x2i y

2
i +

¡
y2i + λ

¢2
+
¡
x2i + λ

¢2
+ x2i + y2i

´
A task function for perceptibility can be defined as a function
of feature-point coordinates as

φp =
1

kP
i=1
(x2i + y2i )

.

Since it is desired to increase Tr(LTλLλ), regulating φp (t)
to 0 will result in increasing the trace. The time derivative
of φp (t) is given by

φ̇p = −2φ2p
µ

kP
i=1

£
xi yi

¤ ∙ ẋi
ẏi

¸¶
= Jp(m)ṁ = Jp(m) (Lλvptz + ε)

where Lλ(t), vptz(t) and ε(t) were given in (6), and Jp(m) ∈
R1×2k is the task function Jacobian for perceptibility. The
matrix Jp(m) is undefined only for the nongeneral case that
∀i, mi = 0.

To regulate φp (t) to 0, the feature point velocity ṁp (t) ∈
R2k is designed as

ṁp = −γpJ†pφp (14)

where γp is a positive scalar gain constant. As in the mean
and variance control laws, a tracking error will exist for the
perceptibility task. However, the use of integral feedback is
not recommended for the perceptibility regulation due to the
fact that φp(t) is unlikely to ever become zero, leading to
possible integrator windup and related stability problems.

D. Cascaded Camera Control Law

The control objective is to design a kinematic controller
for a PTZ camera that maintains a set of feature points within
the camera FOV. The mean of feature point coordinates is
the best variable to measure the center of the feature points.
As shown in Theorem 1, regulating the mean and variance
will not conflict, so they are chosen as the primary tasks
in order to keep the feature points centered in the FOV
and to restrict the distance between the feature points and
the image center. These two tasks will deter feature points
from leaving the FOV. High perceptibility will allow these
tasks to work more efficiently by ensuring larger available
feature velocities are available. For this reason, increasing
perceptibility is chosen as the lower priority task, and it
cannot interfere with the regulation of mean or variance. The
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Fig. 1. 3D object motion and camera.

designed feature velocities given in (12), (13), and (14) are
used in the nullspace projection camera velocity (10) to give
the overall controller as

vptz = L+λ
¡
ṁm + ṁv +

¡
I − J†mJm

¢ ¡
I − J†vJv

¢
ṁp

¢
= L+λ

¡
ṁm + ṁv +

¡
I − J†mJm − J†vJv

¢
ṁp

¢
(15)

where the independence of ṁm and ṁv proved in Theorem
1 has been exploited.

V. SIMULATION RESULTS

Simulations are performed using the PID controller given
in (12)-(15). Simulations have been run in a realistic virtual
environment as well, requiring feature extraction and real
time image and control processing. Movies of these simula-
tions are available at [17]. In this simulation, a camera ob-
serves two rigid, square objects with dimensions of 1m×1m.
The centers of the two objects are initially located at coor-
dinates [X,Y,Z]T = [1, 1, 0] and [X,Y,Z]T = [−1,−1, 0]
in the world frame. The objects move independently and
the corner of the two squares give eight feature points
to track. This simulation mimics the case of a camera
tracking corners on two vehicles. The camera is fixed at
coordinates [11, 4.5, 12]T in the world frame. The mean was
regulated to the image center. The variance was regulated
to [1002, 1002]T , i.e. a standard deviation of 100 pixels.
The gains were selected as γmp = 0.05, γmi = 7 × 10−3,
γmd = 0.07, γvp = 7.5 × 10−5, γvi = 3.5 × 10−7,
γvd = 3.5 × 10−6, γp = 5 × 10−5. The simulation was
executed for 16 seconds at 30 frames per second. The square
objects moved with sinusoidal velocities along all six degrees
of freedom.

Fig. 1 shows a third person view of the two objects and
camera. The 3D paths of the corners points are shown as
dotted lines. Fig. 2 depicts the trajectory of the two objects
and feature points in the image plane. The feature points all
remain in the FOV. The dashed ellipse and square represent
the final values of the variance and mean, while the solid
ellipse and star represent the goal variance and mean. Fig.
3 shows the task function error over time. The mean error
is well regulated about zero. While variance is periodic, it
remains bounded about zero error. Fig. 4 shows the elements
of the camera velocity.
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VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a method to track multiple mov-
ing objects and keep them in the camera FOV using
a Pan/Tilt/Zoom camera. A set of underdetermined task
functions of sample mean and variance of feature point
coordinates are used to deter feature points from leaving
the FOV. A third task function seeks to maximize motion
perceptibility. There is no specific goal image or goal pose.
The underdetermined nature of the task functions allows the
camera to move as necessary to regulate the task functions
and inhibit feature points from approaching the edge of
the FOV. This objective is in contrast to other visual servo
controllers that require a specific goal image or goal pose.
Furthermore, to the authors’ knowledge, this is the first
use of perceptibility in the feedback loop of a controller.
Simulations of several object tracking tasks were performed
to demonstrate this method. To accommodate the use of
a PTZ camera, a novel image Jacobian for feature points
was developed that includes focal length as an actuation.
One notable benefit of the PTZ camera is that it does not
depend on the depth of feature points, like traditional image
Jacobians.

There are several avenues of future work. Simulations
are very promising, but a proper stability analysis will be
performed. The motion of the targets can be estimated using
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Fig. 4. Camera velocity while tracking two moving targets.

a variety of estimation or adaptive techniques, improving
the performance of the system. Experimental analysis is also
underway, which will include target recognition, localization
and interframe tracking.
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