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Abstract— This paper deals with the class of continuous-
time singular linear systems with time-varying delays. The
stability and stabilization problems of this class of systems
are addressed. Delay-range-dependent sufficient conditions such
that the system is regular, impulse free and α-stable are
developed in the linear matrix inequality (LMI) setting and
an estimate of the convergence rate of such stable systems is
also presented. An iterative LMI (ILMI) algorithm to compute a
static output feedback controller gains is proposed. A numerical
example is employed to show the usefulness of the proposed
results.
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I. INTRODUCTION

Singular time-delay systems arise in a variety of practical

systems such as networks, circuits, power systems and so

on [2]. Since singular time-delay systems are matrix delay

differential equations coupled with matrix difference equa-

tions, the study of such systems is much more complicated

compared to standard state-space time-delay systems or sin-

gular systems. The existence and uniqueness of a solution to

a given singular time-delay system is not always guaranteed

and the system can also have undesired impulsive behavior.

Both delay-independent and delay-dependent stability con-

ditions for singular time-delay systems have been derived

using the time domain method, see [1], [2], [3], [16], [17],

[18] and references therein. However, most of the delay-

dependent results in the literature tackle only the case of

constant time delay where two approaches were used to

prove the stability of the system. The first approach consists

of decomposing the system into fast and slow subsystems

and the stability of the slow subsystem is proved using some

Lyapunov functional. Then, the fast variables is expressed

explicitly by an iterative equation in terms of the slow

variables [1]. The second approach introduced by [2] and it

consistes of constructing a Lyapunov-Krasovskii functional

that corresponds directly to the descriptor form of the system.

The extension of these approaches to time-varying delays has

not been addressed yet. In [18], where time-varying delays

are considered, the response of the fast variables has been

bounded by an exponential term using a different approach.
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Using this approach, it is not possible to give an estimate of

the convergence rate of the states of the system.

Recently, a free-weighting matrices method is proposed

in [6] and [7] to study the delay-dependent stability for

time-delay systems. The new method has been shown to be

more effective in reducing conservatism entailed in previous

results. In 2007, Zhu et al. adopted this technique for singular

time-delay systems [3]. Also, delay-range-dependent concept

was recently studied, where the delays are considered to vary

in a range and thereby more applicable in practice [8].

Formally speaking, these conditions provide only the

asymptotic stability of singular time-delay systems. In [13],

the global exponential stability for a class of singular systems

with multiple constant time delays is investigated and an

estimate of the convergence rate of such systems is presented.

One may ask if there exists a possibility to use the LMI

approach for deriving exponential estimates for solutions of

singular time-delay systems. In [18], exponential stability

conditions in terms of LMIs are given but no estimate of

the convergence rate is presented.

The problem of stabilizing linear systems with saturating

controls has been widely studied because of its practical

interest. However, only few works have dealt with stability

analysis and the stabilization of singular linear systems in the

presence of actuator saturation, see for example [10]. It is

established in [10] that a singular linear system with actuator

saturation is semi-globally asymptotically stabilizable by

linear state feedback if its reduced system under actuator

saturation is semi-globally asymptotically stabilizable by

linear feedback. To the best of the authors’ knowledge, the

stabilization for singular time-delay systems in the presence

of actuator saturation has not been fully addressed yet.

The static output feedback problem is probably the most

important open question in control engineering. In contrast

to the linear systems, there are only few papers solving

the static output feedback problem for singular systems,

see [9], [12]. In [12], the authors introduce an equality

constraint in order to get an LMI sufficient conditions for

admissibility of closed-loop systems. However, this equality

constraint introduces conservatism. This approach has been

generalized by [4] to singular time-delay systems. In [9],

singular systems are assumed to have some characteristics in

advance: regularity and absence of direct action of control

inputs on the fast variables, which is not always the case.

This paper addresses two important problems that have

not been fully investigated. First, delay-range-dependent ex-

ponential stability conditions for singular time-delay systems

are established in terms of LMIs and an estimate of the
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convergence rate of the state is presented. The Lyapunov

functional and some inequalities from [8] are adopted, with

some modifications, in order to prove the exponential stabil-

ity of the slow subsystem. The fast variables are expressed

explicitly by an iterative method which can be seen as a

generalization of the iterative expression in [1] for constant

time delay. This means that many of the existing results for

singular systems with constant time delay can be extended

easily to the systems with time-varying delay. For instance,

the results in [1], [3], [17].

Second, an iterative LMI algorithm is proposed to design a

stabilizing static output feedback controller in the presence

of actuator saturation. The objective of the control design

is twofold. It consists in determining both a static output

feedback control law to guarantee that the system is regu-

lar, impulse-free and exponentially stable with a predefined

decaying rate for the closed-loop system, and a set of safe

initial conditions for which the exponential stability of the

saturated closed-loop system is guaranteed.

Notation: λmax(P) and λmin(P) denote, respectively, the

maximal and minimal eigenvalue of matrix P. co {·} de-

notes a convex hull. Cτ = C([−τ,0],Rn) denotes the Banach

space of continuous vector functions mapping the interval

[−τ,0] into R
n with the topology of uniform convergence.

‖ · ‖ refers to the Euclidean vector norm whereas ‖φ‖c =
sup−τ≤t≤0‖φ(t)‖ stands for the norm of a function φ ∈Cτ .

Cv
τ is defined by Cv

τ = {φ ∈Cτ ;‖φ‖c < v,v > 0}.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider the following linear singular time-delay system:

Eẋ(t) = Ax(t)+Adx(t −d(t))+Bsat(u(t)) (1a)

y(t) = Cx(t) (1b)

x(t) = φ(t), t ∈ [−d2,0] (1c)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the saturating

control input, y(t) ∈ R
q is the measurement, the matrix

E ∈ R
n×n may be singular, and we assume that rank(E) =

r ≤ n, A, Ad , B and C are known real constant ma-

trices, sat(u(t)) = [sat(u1(t)), ...,sat(um(t))], where −ui ≤
sat(ui(t)) ≤ ui, φ(t) ∈ Cv

τ is a compatible vector valued

continuous function and d(t) is a time-varying continuous

function that satisfies:

0 < d1 ≤ d(t) ≤ d2 and ḋ(t) ≤ µ < 1 (2)

The following definitions will be used in this paper:

Definition 2.1:

i. System (1) with u(t) = 0 is said to be regular if the

polynomial, det(sE −A) is not identically zero.

ii. System (1) with u(t) = 0 is said to be impulse-free if

deg(det(sE −A)) = rank(E).
iii. System (1) with u(t) = 0 is said to be exponentially

stable if there exist σ > 0 and γ > 0 such that, for any

compatible initial conditions φ(t), the solution x(t) to

the singular time-delay system satisfies

‖x(t)‖ ≤ γe−σt‖φ‖c

iv. System (1) is said to be exponentially admissible if it

is regular, impulse-free and exponentially stable.

Lemma 2.1 ([5]): If system (1) with u(t) = 0 is regular

and impulse free, then its solution exists and is impulse free

and unique on [0,∞).
Lemma 2.2: Given a matrix D, let a positive-definite ma-

trix S and a positive scalar η ∈ (0,1) exist such that

D⊤SD−η2S < 0

then, the matrix D satisfies the bound

∥∥Di
∥∥ ≤ χe−λ i with χ =

√
λmax(S)

λmin(S)
and λ = −ln(η)

Consider the following static output feedback controller:

u(t) = Ky(t), K ∈ R
m×q (3)

Applying this controller to system (1), we obtain the closed-

loop system as follows:

Eẋ(t) = Ax(t)+Adx(t −d(t))+Bsat(KCx(t)) (4)

Generally, for a given stabilizing static output feedback K, it

is not possible to determine exactly the region of attraction

of the origin with respect to system (4). Hence, a domain

of initial conditions, for which the exponential stability of

system (4) is ensured, has to be determined.

III. MAIN RESULTS

The two problems to be tackled in this section can be

summarized as follows:

• Find delay-range-dependent LMI conditions that guar-

antees the exponential admissibility of system (1) with

u(t) = 0, with a predefined minimum decaying rate.

• Find a static output feedback law of the form (3) and

a set of initial conditions such that the closed-loop

system (4) is exponentially admissible with a predefined

minimum decaying rate.

Now, we present the first result.
Theorem 3.1: Let 0 < d1 < d2, µ < 1 and α > 0 be given

scalars. System (1) with u(t) = 0 is exponentially admissible
with σ = α if there exist a nonsingular matrix P, Q1 > 0,
Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, and matrices Mi, Ni and Si,
i = 1,2 such that the following LMI holds:




Π11 Π12 eαd1 M1E −eαd2 S1E c2N1 cS1 cM1 Π18

⋆ Π22 eαd1 M2E −eαd2 S2E c2N2 cS2 cM2 A⊤
d U

⋆ ⋆ −Q1 0 0 0 0 0
⋆ ⋆ ⋆ −Q2 0 0 0 0
⋆ ⋆ ⋆ ⋆ −c2Z1 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −c(Z1 +Z2) 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −cZ2 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −U





< 0 (5)

with the following constraint:

E⊤P = P⊤E ≥ 0 (6)
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where

Π11 = P⊤A+A⊤P+
3

∑
i=1

Qi +N1E +(N1E)⊤ +2αE⊤P

Π12 = P⊤Ad +(N2E)⊤−N1E +S1E −M1E

Π22 = −(1−µ)e−2αd2Q3 +S2E +(S2E)⊤−N2E − (N2E)⊤

−M2E − (M2E)⊤, d12 = d2 −d1, U = d2Z1 +d12Z2

Π18 = A⊤U, c =
e2αd2 − e2αd1

2α
c2 =

e2αd2 −1

2α
.

Proof: Choose two nonsingular matrices R, L such that

Ē = REL, Ā = RAL and P̄ = R−⊤PL are written as

Ē =

[
Ir 0

0 0

]
, Ā =

[
A11 A12

A21 A22

]
, P̄ =

[
P11 P12

P21 P22

]

Then, the following relation can be shown: A⊤
22P22 +P⊤

22A22 <
0, which implies that A22 is nonsingular and the system

is regular and impulse-free [5]. Now, there exist other two

matrices R, L such that (see [5])

Ē = REL =

[
Ir 0

0 0

]
Ā = RAL =

[
Â 0

0 In−r

]
(7)

Now, let Ād = RAdL and Q̄i = L⊤QiL,

Ād =

[
Ad11 Ad12

Ad21 Ad22

]
, Q̄ki =

[
Qi11 Qi12

Qi21 Qi22

]

Then, the following relations can be shown

A⊤
d22Q322Ad22 − e−2αd2Q322 < 0, ρ(eαd2Ad22) < 1 (8)

So there exist constants β > 1 and γ ∈ (0,1) such that

‖eiαd2 Ai
d22‖ ≤ βγ i, i = 1,2, · · · . (9)

Let ζ (t) = L−1x(t) =

[
ζ1(t)
ζ2(t)

]
, where ζ1(t) ∈ R

r and

ζ2(t) ∈ R
n−r. Then, system (1) becomes equivalent to the

following one

ζ̇1(t) = A1ζ1(t)+Ad11ζ1(t −d(t))+Ad12ζ2(t −d(t)), (10)

0 = ζ2(t)+Ad21ζ1(t −d(t))+Ad22ζ2(t −d(t)). (11)

Now, choose the Lyapunov functional as follows:

V (t) = ζ⊤(t)Ē⊤P̄ζ (t)+
2

∑
i=1

∫ t

t−di

ζ⊤(s)e2α(s−t)Q̄iζ (s)ds

+
∫ t

t−d(t)
ζ (s)⊤e2α(s−t)Q̄3ζ (s)ds

+
∫ 0

−d2

∫ t

t+θ
(Ēζ̇ (s))⊤e2α(s−t)Z̄1Ēζ̇ (s)dsdθ

+
∫ −d1

−d2

∫ t

t+θ
(Ēζ̇ (s))⊤e2α(s−t)Z̄2Ēζ̇ (s)dsdθ

Then, the following estimation can be obtained.

‖ζ1(t)‖ ≤

√
λ2

λ1

‖φ‖ce−αt (12)

where λ1 and λ2 are positive integers. In order to prove the

exponential stability of the fast subsystem, define

ti = ti−1 −d(ti−1), i = 1,2, . . .

t0 = t

From (11), we get

ζ2(t) = −Ad21ζ1(t1)−Ad22ζ2(t1)

= −Ad21ζ1(t1)−Ad22[−Ad21ζ1(t2)−Ad22ζ2(t2)]

and so on

Note that ti < ti−1, therefore, there exists a positive finite

integer k(t) such that

ζ2(t) = (−Ad22)
k(t)ζ2(tk(t))−

k(t)−1

∑
i=0

(−Ad22)
iAd21ζ1(ti+1)

(13)

and tk(t) ∈ (−d2,0]. Therefore, from (8), (9), (12), Lemma

2.2 and noting that

k(t)d2 ≥ t, ti = t −
i−1

∑
j=0

d(t j) ≥ t − id2

we get

‖ζ2(t)‖ ≤ ‖Ad22
k(t)‖‖φ‖c +‖Ad21‖

k(t)−1

∑
i=0

∥∥Ad22
i
∥∥‖ζ1(ti+1)‖

≤ χe−αd2k(t) ‖φ‖c

+‖Ad21‖

√
λ2

λ1

‖φ‖c

k(t)−1

∑
i=0

∥∥Ad22
i
∥∥e−α(t−(i+1)d2)

≤



χ +‖Ad21‖

√
λ2

λ1
eαd2

k(t)−1

∑
i=0

‖Ad22‖
i
eiαd2



‖φ‖c e−αt

≤



χ +‖Ad21‖

√
λ2

λ1
eαd2 M



‖φ‖c e−αt

where

M =
β

1− γ
χ =

√
λmax(Q322)

λmin(Q322)
,

Thus, the singular time-delay system is exponentially stable

with a minimum decaying rate = α . Therefore, by Definition

(2.1), the system is exponentially admissible.

Remark 3.1: Eq. (13) can be seen as a generalization of

the iterative equation in [1] for systems with constant time

delay. Therefore, the results in [1], [3] and [17] can be

extended easily to the case of time-varying delay.

Remark 3.2: Strict LMI conditions are more desirable

than non-strict ones from numerical point of view. Consid-

ering this, Eqs. (5) and (6) can be combined into a single

strict LMI. Let P > 0 and S∈Rn×(n−r) be any matrix with full

column rank and satisfies E⊤S = 0. Changing P to PE +SQ

in (5) yields the strict LMI.

Now, the stabilization problem of system (1) via static

output feedback controller will be addressed. The technique

introduced in [14] will be adopted in order to write the

saturated nonlinear system (4) in a linear polytopic form.

Let us write the saturation term as

sat(KCx(t)) = D(ρ(x))KCx(t), D(ρ(x)) ∈ R
m×m
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where D(ρ(x)) is a diagonal matrix for which the diagonal

elements ρi(x) are defined for i = 1, ...,m as

ρi(x) =






− ui

(KC)ix
if (KC)ix ≤−ui

1 if −ui < (KC)ix < ui

ui

(KC)ix
if (KC)ix ≥ ui

Using this, system (4) can be written as follows:

Eẋ(t) = (A+BD(ρ(x))KC)x(t)+Adx(t −d(t)) (14)

Let 0 < ρ
i
≤ 1 be a lower bound to ρi(x), and define a vector

ρ = [ρ
1
, ...,ρ

m
]. The vector ρ is associated to the following

region in the state space:

S(K,uρ) = {x ∈ R
n |−uρ ≤ KCx ≤ uρ}

where every component of the vector uρ is defined by ui/ρ
i
.

This vector can be viewed as a specification on the saturation

tolerance. Define now matrices A j, j = 1, ...,2m, as follows:

A j = A+BD(γ j)KC

where D(γ j) is a diagonal matrix of positive scalars γ j(i)

for i = 1, ...,m, which arbitrarily take the value one or ρ
i
.

Note that the matrices A j are the vertices of a convex

polytope of matrices. If x(t) ∈ S(K,uρ), it follows that

(A + BD(ρ(x))KC) ∈ co{A1, ...,A2m}. We conclude that if

x(t) ∈ S(K,uρ), then Eẋ(t) can be determined from the

following polytopic model:

Eẋ(t) =
2m

∑
j=1

λ j,tA jx(t)+Adx(t −d(t)) (15)

with
2m

∑
j=1

λ j,t = 1 and λ j,t ≥ 0. Then, we have the following

result.
Theorem 3.2: Let 0 < d1 < d2, α > 0, a vector ρ and

µ < 1 be given. If there exist symmetric and positive-definite
matrices P, Q1, Q2, Q3, Z1 and Z2, matrices Mi, Ni and Si,
i = 1,2, matrices K and Q and a positive scalar κ such that




Π j11 Π12 eαd1 M1E −eαd2 S1E c2N1 cS1 cM1 Π j18

⋆ Π22 eαd1 M2E −eαd2 S2E c2N2 cS2 cM2 A⊤
d U

⋆ ⋆ −Q1 0 0 0 0 0
⋆ ⋆ ⋆ −Q2 0 0 0 0
⋆ ⋆ ⋆ ⋆ −c2Z1 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −c(Z1 +Z2) 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −cZ2 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −U





< 0, j = 1, ...,2m (16)

[
E⊤(PE +SQ) ρ

i
(KC)i

⊤

ρ
i
(KC)i κui

2

]
≥ 0, i = 1, ...,m (17)

where

Π j11 = (PE +SQ)⊤A+A⊤(PE +SQ)+
3

∑
i=1

Qi +N1E

+(N1E)⊤ +(PE +SQ)⊤BD(γ j)KC

+
(
(PE +SQ)⊤BD(γ j)KC

)⊤
+2αE⊤(PE +SQ)

Π12 = (PE +SQ)⊤Ad +(N2E)⊤−N1E +S1E −M1E

Π22 = −(1−µ)e−2αd2Q3 +S2E +(S2E)⊤−N2E

−(N2E)⊤−M2E − (M2E)⊤, d12 = d2 −d1

U = d2Z1 +d12Z2, Π j18 = A⊤U +(BD(γ j)KC)⊤U

c =
e2αd2 − e2αd1

2α
, c2 =

e2αd2 −1

2α
.

where S ∈ R
n×(n−r) is any matrix with full column rank and

satisfies E⊤S = 0, then there exists a static output feedback

controller (3) such that the closed-loop system (4) is locally

exponentially admissible with σ = α for any compatible

initial condition satisfying:

Ω(ν1,ν2) = {φ ∈Cv
d2

:
‖φ‖2

c

ν1
+

‖φ̇‖
2

c

ν2
≤ 1} (18)

where

ν1 =
κ−1

χ1
, ν2 =

κ−1

χ2

χ1 = λmax(E
⊤PE)+

2

∑
i=1

λmax(Qi)
1− e−2αdi

2α
+λmax(Q3)×

1− e−2αd2

2α
, χ2 = λmax(Z1)λmax(E

⊤E)
2αd2 −1+ e−2αd2

4α2

+λmax(Z2)λmax(E
⊤E)

2αd12 − e−2αd1 + e−2αd2

4α2

Proof: Assume that x(t) ∈ S(K,uρ), ∀t > 0 (will be

proved later). Therefore, Eẋ(t) can be determined from the

polytopic system (15). Applying Remark 3.2 to (5)-(6) in

Theorem 3.1 yields a single matrix inequality. Then, if we

apply this matrix inequality 2m times to the parameters A j

with j = 1, . . . ,2m, Ad , E, d1, d2 and µ , we will have (16).

Then, the following relations can be shown

A⊤
j22P22 +P⊤

22A j22 < 0, j = 1, . . .2m

Using the fact that λ j,t ≥ 0,

λ j,tA
⊤
j22P22 +P⊤

22λ j,tA j22 ≤ 0, j = 1, . . .2m, ∀t ∈ (0,∞)

adding these inequalities together and noting that
2m

∑
j=1

λ j,t = 1,

gives

[
2m

∑
j=1

λ j,tA j22

]⊤

P22 +P⊤
22

2m

∑
j=1

λ j,tA j22 < 0

2m

∑
j=1

λ j,tA j22 is nonsingular ∀t ∈ (0,∞)

which implies that system (15) is regular and impulse-free.

Now, proceeding similar to the proof of Theorem 3.1, the

system can be shown to be exponentially stable. Now, by

virtue of condition (17), the ellipsoid defined by Γ = {x ∈
R

n : x⊤E⊤(PE +SQ) x≤ κ−1} is included in the set S(K,uρ)
[14]. Suppose now that the initial condition φ(t) satisfies

(18), and conditions (16)-(17) hold. Then, from the definition

of V (t), it follows that x⊤(0)E⊤(PE + SQ)x(0) ≤ V (0) ≤

χ1‖φ‖2
c + χ2‖φ̇‖

2

c ≤ κ−1 and, one has x(0) ∈ Γ ⊂ S. Now,
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since V̇ (0) < 0, we conclude that x⊤(t)E⊤(PE + SQ)x(t) ≤

V (t) ≤ V (0) ≤ χ1‖φ‖2
c + χ2‖φ̇‖

2

c ≤ κ−1, which means that

x(t) ∈ S(K,uρ), ∀t > 0. This completes the proof.

It is obvious that (16) is a BMI, and consequently its solution

is very difficult. Thus, an ILMI approach similar to [15]

and [11] will be proposed. This algorithm has the same

disadvantages as those in [15] and [11]. The following is

the proposed algorithm and the explanation is given later.

• Step 1. OP1.

min
P0>0,Q,Q1>0,Q2>0,Q3>0,Zp0>0,Mp,Np,Sp,p=1,2,κ

β0

s.t.(21)− (22)

K = 0 and X0 = E.

Set i = 1, X1 = E, Z11 = Z10 and Z21 = Z20.

• Step 2. OP2.

min
Pi>0,Q,Q1>0,Q2>0,Q3>0,Mp,Np,Sp,p=1,2,K,κ

βi

s.t.(21)− (22)

Let βi
∗

and K∗ be the solution of OP2. If βi
∗ ≤ −α ,

where α is a prescribed decay rate, then K∗ is a

stabilizing static output feedback gain, go to step 5,

otherwise, go to step 3.

• Step 3. OP3.

min
Pi>0,Q,Q1>0,Q2>0,Q3>0,Zpi>0,Mp,Np,Sp,p=1,2,κ

tr(E⊤Ti)

s.t.(21)− (22)

βi = β ∗
i and K = K∗.

If ‖XiB−T ∗
i B‖ < ε , go to step 4, else set i = i + 1,

Xi = T ∗
i−1, Z1i = Z∗

1(i−1) and Z2i = Z∗
2(i−1), then go to

step 2.

• Step 4. The system may not be stabilizable via static

output feedback. Stop.

• Step 5. OP4.

min
P>0,Q,Q1>0,Q2>0,Q3>0,Zp>0,Mp,Np,Sp,p=1,2,K,κ

r

s.t.(21)− (22) βi = α

δ1I ≥ E⊤PE δ2I ≥ Q1 δ3I ≥ Q2 (19)

δ4I ≥ Q3 δ5I ≥ Z1 δ6I ≥ Z2 (20)

where

r = w1

(
δ1 + 1−e−2αd1

2α δ2 + 1−e−2αd2

2α δ3 + 1−e−2αd2

2α δ4

)

+w2

(
λmax(E

⊤E) 2αd2−1+e−2αd2

4α2 δ5 +λmax(E
⊤E)×

2αd12−e−2αd1+e−2αd2

4α2 δ6

)
+ w3κ , and w1, w2 and w3 are

weighting factors. We solve this problem iteratively in

two steps as follows:

a) Fix K, and solve for P > 0, Q, Q1 > 0, Q2 > 0, Q3 > 0,

Zp > 0, Mp, Np, Sp, p = 1,2, and κ .

b) Fix Z1 and Z2, and solve for P > 0, Q, Q1 > 0, Q2 > 0,

Q3 > 0, Mp, Np, Sp, p = 1,2, K and κ . Set X = T .

The set (18) is calculated from the matrices that solve

OP4.





Π11 Π j Π12 c3M1E c4S1E c2N1 cS1 cM1 Π j18

⋆ −I 0 0 0 0 0 0 0

⋆ ⋆ Π22 c3M2E c4S2E c2N2 cS2 cM2 A⊤
d U

⋆ ⋆ ⋆ −Q1 0 0 0 0 0
⋆ ⋆ ⋆ ⋆ −Q2 0 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −c2Z1i 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −c(Z1i +Z2i) 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −cZ2i 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −U





< 0, j = 1, ...,2m (21)

[
E⊤Ti ρ

r
(KC)r

⊤

ρ
r
(KC)r κur

2

]
≥ 0, r = 1, ...,m (22)

where

Π11 = T⊤
i A+A⊤Ti +

3

∑
i=1

Qi +N1E +(N1E)⊤

−XiBB⊤Ti − (XiBB⊤Ti)
⊤ +XiBB⊤Xi −2βiE

⊤Ti

Π j18 = A⊤U +(BD(γ j)KC)⊤U, c2 =
e−2βid2 −1

−2βi

Π22 = −(1−µ)e2βd(β )Q3 +S2E +(S2E)⊤−N2E

− (N2E)⊤−M2E − (M2E)⊤,Ti = (PiE +SQ)

c3 = e−βid1 , c4 = −e−βid2 , d(β ) =

{
d1 if β > 0

d2 if β < 0

c =
e−2βid2 − e−2βid1

−2βi

, Π j = (B⊤Ti +D(γ j)KC)⊤

and the other variables as defined previously.

Remark 3.3: The core of this algorithm is in OP2 and

OP3. As shown in [15], OP2 guarantees the progressive

reduction of βi while OP3 guarantees the convergence of

the algorithm. Yet, in [15], only X needs to be fixed in order

to get LMIs, while in our case, we have also to fix either

Z1 and Z2 or K to get LMIs. Thus, we will fix Z1 and Z2 in

OP2, and K in OP3. This way of solving this problem will

not affect the convergence of the algorithm. It is worth noting

that although this ILMI algorithm is convergent, we may not

achieve the solution because β may not always converge to

its minimum. For more details on the numerical properties

of the algorithm, we refer the reader to [15].

Remark 3.4: OP4 is used in order to enlarge the

set of initial conditions (18). The satisfaction of (19)-

(20) means that χ1 ≤ δ1 + 1−e−2αd1

2α δ2 + 1−e−2αd1

2α δ3 +
1−e−2αd1

2α δ4 and χ2 ≤ λmax(E
⊤E) 2αd2−1+e−2αd2

4α2 δ5 +

λmax(E
⊤E) 2αd12−e−2αd1+e−2αd2

4α2 δ6. Therefore, because

νi = κ−1

χi
, if we minimize the criterion as defined in OP4,

then greater the bounds on ‖φ‖2
c and ‖φ̇‖

2

c tend to be. In

other words, by using OP4, we orient the solutions of LMIs

(16)-(17) in a sense to obtain the set Ω(ν1,ν2) as large as

possible. For more discussion, we refer the reader to [14].
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IV. EXAMPLES

Consider the singular time-delay system described by:

E =




1 0 0

0 1 0

0 0 0



 ,A =




0 0 1

1 0 0

1 0 −1



 ,C =




1 0

0 1

0 0




⊤

Ad =




0 0 0.3
0 0.4 0

0.2 0.3 0



 , B =




1 −2

0.1 0.3
0.1 −0.3





The exponential stabilizability of this system will be investi-

gated using Theorem 3.2 and the iterative algorithm. Letting

d1 = 0.2, d2 = 0.6, µ = 0.5, u = 7 and α = 0.3, the ILMI

algorithm gives after 14 iterations

K =

[
−1.4186 −1.2682

1.3943 0.8652

]
,ν1 = 14.8960,ν2 = 82.6586

Figure 1 gives the simulation results for the closed-loop sys-

tem when d(t) = |0.4+0.15sin(3t)| and the initial function

is φ(t) = [5 12 9.6]⊤, t ∈ [−0.5,0]. Changing the control

amplitude saturation level, Table I presents the functional

dependence of ν1 and ν2 on the level of control saturation u.

For various α , the values ν1 and ν2 for which we guarantee

the exponential admissibility of the saturated system are

listed in Table II.
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Fig. 1. Simulation results

TABLE I

COMPUTATION RESULTS OF EXAMPLE 2 WITH α = 0.3

u 1 3 5 7 9 11 13 15

ν1 0.3 2.8 7.8 14.9 24.8 35.8 49.9 65.5

ν2 1.1 11.6 44.5 82.7 156.9 262 387.1 394.9

V. CONCLUSION

This paper has dealt with the stability and the stabiliza-

tion of the class of singular time-delay systems. A delay-

range-dependent exponential stability conditions have been

TABLE II

COMPUTATION RESULTS OF EXAMPLE 2 WITH u = 15

α 0.001 0.2 0.4 0.6 0.8

ν1 192.1172 97.0467 48.7601 25.8165 14.0812

ν2 967.1209 509.6311 268.5460 165.2845 90.6967

Iterations 11 13 14 15 16

developed for singular time-delay systems. Also, a delay-

range-dependent static output feedback controller with input

saturation has been designed for singular time-delay systems

and an ILMI algorithm has been proposed to compute the

controller gains. The effectiveness of the results has been

illustrated through an example.
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