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Abstract— In this paper we extend our earlier work on
the stabilization of crowds that are governed by psychologi-
cal dynamics derived from Le Bon’s late nineteenth-century
suggestibility theory. Earlier work was restricted to the case
where the crowd is one-dimensional, but now a general two-
dimensional crowd is considered. The control scheme involves
placing within the crowd various control agents who act
as sensors, actuators, and processors. We analyze whether
stabilization is possible for a given configuration of control
agents, and we present an algorithm that positions control
agents in a way that guarantees stabilizability. We include

analysis of the control agent sensing load and requirements
on inter-control-agent communication.

I. INTRODUCTION

Over the last century, psychologists have studied various

mental processes with non-trivial and even intriguing dy-

namics (e.g., see [1]). Engineers of various types have used

these psychological theories to help model socially-relevant

phenomena for the purposes of prediction and control (e.g.,

see [2],[3]). The work in the present paper follows this trend.

The particular dynamics studied here are based on a series

of observations reported in [4] by Gustave Le Bon as he

lived in the midst of the uprising of crowds in Europe.

Le Bon witnessed multiple examples of “mob effects” and

postulated from his observations the nature of crowds. His

model reflects the idea that people in a crowd can be

highly suggestible to influence from one another, leading to

an unstable situation in which the crowd’s attitude easily

becomes extreme. In [5] we propose a mathematical model

that is consistent with Le Bon’s suggestibility theory, and

we assume for the purposes of this paper that the model,

summarized in Section II, is an accurate description of the

psychological dynamics of people as they interact in a crowd.

This paper builds upon the work in [6] and [7], where

one-dimensional (1D) crowds (i.e., queues) are studied. The

main result in [6] and [7] is that it is possible to strategically

place certain people in the queue (people that we call

control agents) who can stabilize the psychological dynamics

of the entire queue. Because of their importance for the

present work, we summarize key results from [6] and [7]

in Section III. The main contribution of the present paper

is to show how a 2D crowd, assumed to be subject to

Le Bon’s psychological dynamics, can also be stabilized by

appropriate positioning of control agents. Unlike the 1D case,
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however, it is generally necessary to use multiple control

agents to stabilize a 2D crowd, and those control agents must

coordinate their actions.

II. A MODEL OF PSYCHOLOGICAL DYNAMICS BASED ON

LE BON’S SUGGESTIBILITY THEORY

The following model reflects how people interact, psy-

chologically speaking, when in a crowd and subject to what

Le Bon calls mental unity. The model, originally derived in a

slightly different form in [5], is identical to the one appearing

in [6] and [7]. We start by assuming the crowd consists of

n people who are in the psychological mental unity state.

Introduce the notation Oi to refer to the person in position

i, where 1 ≤ i ≤ n. As in [5], [6], [7], we model the state of

Oi as having four components:

• Prestige of Oi: pi[k] > 0 is a measure of the ability of

Oi to influence other people.

• Attitude (or action) of Oi: ai[k] is a quantification of

the behavior of Oi as it relates to acceptance of an idea

(ai[k] > 0) or its antithesis (ai[k] < 0). Attitude values

for which |ai[k]| ≈ 0 are indicative of mild acceptance

of an idea or its opposite notion, and are associated with

a calm and orderly person.

• Delayed attitude of Oi: bi[k] equals ai[k−1].
• Suggestibility of Oi: si[k] > 0 is a measure of the affinity

of Oi to incorporate the behavior of neighboring people

into his own behavior, by mimicking the actions and

conduct of others.

The following nonlinear discrete-time equations describe

how the people in the crowd influence one another [6], [7]:

pi[k + 1] = cp pi[k]+ µpa,i|ai[k]| (1)

ai[k + 1] = caai[k]+ µapa,is
2
i [k] ∑

O j∈N (Oi)

di, j p j[k]a j[k] (2)

bi[k + 1] = ai[k] (3)

si[k + 1] = µs,iSαcsβi[k] (4)

βi[k] := µsa,i (ai[k]−bi[k])
2 +

µsap,i ∑
O j∈N (Oi)

di, j p j[k]|a j[k]|+

µssp,i ∑
O j∈N (Oi)

di, j p j[k] (s j[k]− si[k]) . (5)

In (1)–(5) the µ parameters are person-dependent positive

gains used to scale the contributions of the various social

effects. In (4), α > 1 is a growth constant and S > 0 is a

nominal suggestibility value. The constants cp, ca, and cs

reside in the interval (0,1) and capture the tendency of pi[k]
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X0 O1 O2 O3 O4

Fig. 1. A graphical display of the queue X0O1O2O3O4. Neighbors are
connected using line segments, and the red arrow indicates that the control
agent X0 is targeting O4.

and ai[k] to decay towards zero and si[k] to approach µs,iS

in the absence of adequate social excitation. The quantity

N (Oi) is the neighbor set of Oi and consists of the set of

people with which Oi has direct interaction through conver-

sation, gesturing, or other social exchanges; we assume here

N (Oi) is time invariant. The di, j terms are constants used to

weight the strength of interaction between Oi and O j. Finally,

we introduce the state of the crowd,

x[k] = [p1[k], . . . , pn[k],a1[k], . . . ,an[k],

b1[k], . . . ,bn[k],s1[k], . . . ,sn[k]]
T , (6)

and comment that the crowd dynamics are evidently unstable,

given the positive feedback loop between the attitude and

suggestibility dynamics in (1)–(5).

III. STABILIZATION OF 1D CROWDS

In [6] we deal with the relatively simple situation in which

the n people of the psychological crowd are lined up in a

queue, with each person able to interact with the people

immediately to his left and right; the people at the ends of the

queues interact with only one neighbor. For example, a queue

of four people is shown in Figure 1. To control the crowd, we

introduce a control agent, denoted X0, and position him or her

at the left end of the queue, again as shown in Figure 1 when

n = 4. We denote this controlled queue by X0O1 . . .On. The

control agent, who should be thought of as a well-trained

and disciplined individual such as a police officer, acts as

a sensor, processor, and actuator. The control agent affects

directly person O1, and thus the neighbor set of O1 needs

to be augmented to include X0, i.e., N (O1) = {X0,O2}. In

anticipation of the results to follow, assume from now on that

N (Oi) includes both people in the crowd and any control

agents who directly interact with Oi.

Mathematically, the control agent interacts with the crowd

through the following equations (where, for present purposes,

take i = 0 since X0 is the only control agent):

pi[k] = p̂i (7)

ai[k] = ui[k] = ui (x[k]) (8)

si[k] = 0. (9)

These three equations define the functionality of the control

agent X0 (or, for when we move on to multiple control

agents, control agent Xi). Setting the prestige equal to the

constant p̂i > 0 in (7) attests to the control agent maintaining

a constant level of influence. In (8), it is assumed the control

agent can set its attitude state, ui[k], to any desired value in

order to affect the behavior of the queue. The functional

dependence of ui[k] on x[k] indicates the control agent can

sense the entire crowd state, i.e., a full-state-feedback scheme

is assumed. Finally, setting si[k] to zero in (9) signifies the

control agent is impervious to suggestion and acts as an

individual rather than a member of the psychological crowd.

Since the crowd dynamics (1)–(5) are unstable, the control

objective in both [6] and the present paper is stabilization.

The notion of stability, stated for the general case where m

control agents are present, is as follows:

Definition [6]: A crowd composed of n people and m control

agents is said to be C (λ)-stabilizable (for integer λ > 0,

called the stabilization time) if there exist m causal control

laws u1, . . . ,um capable of driving, from any initial state x[0],
the attitude of all crowd members to zero in no more than

λ time instants and subsequently holding all attitude states

at zero. If such a collection of control laws is implemented,

the crowd is said to be C (λ)-stabilized and the control laws,

C (λ)-stabilizing. Lastly, a particular crowd member Oi is

said to be zeroed for k ≥ k̃ if ai[k] = 0 for k ≥ k̃. �

This concept of stability, essentially requiring a deadbeat

response, focuses on the attitude of the crowd members,

However, using the dynamics (1)–(5), it can be shown that

C (λ)-stability implies all state components of the crowd, and

not just the attitude state components, are bounded [6].

The key control concept developed in [6] is that the entire

queue X0O1 . . .On can be controlled by having the control

agent focus all of his or her control effort on the person at

the opposite end of the queue. Specifically, X0 tries to zero

On; i.e., X0 tries to drive an[k] to zero in finite time. We say

that X0 targets On. We also say that X0 and On are a target

pair and use the notation [X0 → On]. In diagrams such as

Figure 1, we indicate targeting using red arrows. It is shown

in [6] that it is always possible for X0 to zero On in n time

steps; moreover, by zeroing On, necessarily O1, . . . ,On−1 are

also zeroed, resulting in C(λ)-stabilization with λ = n. Note

that this is the shortest possible stabilization time, given the

control signal takes n samples to propagate the full length

of the queue.

In more mathematical terms, by propagating u0[k] through

the crowd dynamics, it is shown in [6] that there exist

coefficients a
u0
n [k + n] and a

u0
n [k + n], both dependent only

on x[k] and the latter necessarily nonzero, such that

an[k + n] = au0
n [k + n]+ au0

n [k + n]u0[k]. (10)

Hence, the causal control law

u0[k] = −
a

u0
n [k + n]

a
u0
n [k + n]

, k ≥ 0 (11)

results in an[k] = 0 for k ≥ n. Using (2) recursively, it is

then argued in [6] that the condition an[k] = 0 for k ≥ n also

implies an−1[k] = 0 for k ≥ n, which in turn implies that

an−2[k] = 0 for k ≥ n, and so on; hence, ai[k] = 0 for k ≥ n,

i = 1, . . . ,n− 1, i.e., C(n)-stability is achieved. Simulation

results for n = 3, taken from [6], are shown in Figure 2.

The above ideas are expanded upon in [7], where various

configurations of 1D crowds with multiple control agents are

studied. One conclusion of [7] is that, for any arrangement

of control agents in a 1D crowd (subject to a control agent

being positioned at one end of the queue), C (λ)-stabilization
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Fig. 2. Progression of the prestige, attitude (action), and suggestibility states
among members of the queue X0O1O2O3 subject to the C (3)-stabilizing
control law (11). Blue indicates positive numbers and red indicates negative
numbers. The number at the top right of each plot indicates the color
saturation value, e.g., the attitude plot at k = 0 has maximum intensity for
any person with |ai[0]| ≥ 0.5. (This figure appears in [6].)

is possible. In particular, the idea that each control agent

should target a specific crowd member is exploited, and it

is shown that, for each target pair, equations of the form

(10) and (11), with appropriate subscript and superscript

changes, hold. Of special interest for the present paper is

the queue X0O1 . . .OnXn+1, one of the 1D crowds examined

in [7]. It is shown in [7] that the two control agents X0 and

Xn+1 can work together to stabilize the crowd by introducing

the targeting schemes [X0 → On∗ ] and [Xn+1 → On∗+1], with

n∗ := ⌈n/2⌉. We summarize the following three results from

[7] dealing with the queue X0O1 . . .OnXn+1 since we pursue

the same line of reasoning for 2D crowds:

R1: First, it is shown that the equivalent of (10) holds for

each of the two target pairs, i.e.,

an∗ [k + n∗] = au1

n∗ [k + n∗]+ au1

n∗[k + n∗]u0[k](12)

an∗+1[k +(n−n∗)] = au2

n∗+1[k +(n−n∗)]+

au2

n∗+1[k +(n−n∗)]un+1[k]. (13)

It follows that there exist control laws u0 and un+1 to

zero both of the targets On∗ and On∗+1. Note that the

coefficients in (12) and (13) depend on the states of all

of O1, . . . ,On; thus, both control agents must be able

to sense the entire crowd state. In addition, if n is odd

then the coefficients in (12) also depend on information

about Xn+1, namely un+1[k] and p̂n+1. Thus, in addition

to synchronization of time steps and agreement on how

to assign targets, the two control agents require special

communication if n is odd. Specifically, if n is odd

then Xn+1 must compute its control signal first and

communicate that value, as well as the value p̂n+1, to

X0 so that X0 can then compute its control signal.

R2: Second, it is argued in [7] that, if both On∗ and On∗+1

are zeroed, then necessarily all other crowd members

are zeroed. Hence, C (λ)-stabilization is achieved.

R3: Third, the stabilization time is simply the longer of

the lengths of the two “subqueues” X0O1 . . .On∗ and

On∗+1 . . .OnXn+1, i.e., λ = max{n∗,n−n∗}.

We next extend this thinking to general 2D crowds. More

details of this extension are available in [8].

IV. STABILIZATION OF 2D CROWDS FOR SPECIFIED

CONTROL AGENT POSITIONING AND TARGETING

Consider a 2D crowd composed of n people and a set of m

control agents that have the task of cooperatively stabilizing

the crowd. Assume throughout this section that the neighbors

of each of the n+m people are prespecified. Consistent with

the notation developed in [7], we now use superscripts to

refer to the crowd members and the control agents, i.e.,

O1,. . . ,On and X1,. . . ,Xm. (We reserve subscripts to refer to

absolute position numbers, and we use superscripts to refer

to a particular crowd member or control agent relative to

other crowd members or control agents, respectively. For

2D crowds, there is no natural absolute position numbering

scheme, so we use superscripts exclusively and show crowd

member interactions in a graph.)

The main purpose of this section is to build upon the three

results given at the end of Section III to determine if the m

control agents can C (λ)-stabilize the 2D crowd. As earlier,

we exploit the idea of targeting. Hence, assume each control

agent, say X j, has a prespecified target in the crowd, say T j

(where T j = Oi for some value of i). For conciseness, denote

this targeting relationship by [X j → T j].
To proceed, we need some definitions and notation:

• A path ℓ j,k is a sequence of distinct people consisting

of a single control agent and one or more crowd

members such that the sequence begins with X j, the

sequence terminates with Ok, and adjacent members of

the sequence are neighbors of one another.

• The length of path ℓ j,k is denoted by |ℓ j,k| and equals

the number of people in ℓ j,k excluding the control agent.

• In general, there may be multiple paths, still finite in

number, linking X j with Ok. We denote the set of all

such paths, sorted by path length, in the sequence L j,k :=
(ℓ1

j,k, ℓ
2
j,k, ℓ

3
j,k, . . .), where ℓ1

j,k, ℓ
2
j,k, ℓ

3
j,k, . . . are paths from

X j to Ok and |ℓ1
j,k| ≤ |ℓ2

j,k| ≤ |ℓ3
j,k| ≤ ... . Assuming

L j,k has at least one element, we call ℓ1
j,k the shortest

path from X j to Ok and we call |ℓ1
j,k|, also denoted by

d(X j,Ok), the distance between X j and Ok. If L j,k has

no elements, we define d(X j,Ok) = ∞.

• Analogous to the above, we define a path from Oi to O j

to be a sequence of distinct crowd members such that

the sequence begins with Oi, the sequence terminates

with O j, and adjacent members of the sequence are

neighbors of one another. The length of the path from

Oi to O j equals the number of crowd members in

the sequence, excluding Oi. The distance between two

control crowd members Oi and O j, denoted d(Oi,O j),
is the length of the shortest path from Oi to O j or, if

there is no path from Oi to O j, define d(Oi,O j) = ∞.

In addition, the following six assumptions are made:

A1: Each control agent has exactly one neighbor, and the

neighbors of control agents are distinct.
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A2: Each control agent targets a specific member of the

crowd, but there are no duplicate targets. Hence, the

collection of targets (called the target set) contains

exactly m crowd members.

A3: There exists at least one path from X i to T i, i = 1, . . . ,m.

A4: Control agents can communicate among themselves,

with no time delays.

A5: Each control agent can sense the full state of the crowd.

A6: Each control agent is at least as close to its target as is

any other control agent. That is, let pi j := d(X i,T i)−
d(X j,T i) for 1≤ i≤m, 1≤ j ≤m. Then assume pi j ≤ 0.

Assumptions A1 and A2 allow us to readily extend the 1D

results to 2D crowds; Assumption A3 is necessary for X i

being able to zero its target, T i; Assumptions A4–A6 are made

to keep the analysis relatively straightforward.

To illustrate many of the above notions, consider the crowd

of Figure 3. There are three paths from X1 to O6, namely

ℓ1
1,6 = (X1,O1,O2,O3,O6),

ℓ2
1,6 = (X1,O1,O2,O3,O5,O7,O6),

ℓ3
1,6 = (X1,O1,O2,O3,O5,O7,O8,O6),

which have lengths of 4, 6, and 7, respectively. Therefore,

d(X1,O6) = 4. Similarly, d(X2,O8) = 3, d(X3,O7) = 3,

d(X3,O6) = 4, and d(O5,O7) = 1. Finally, the setup is

consistent with Assumptions A1, A2, A3, and A6.

Generalization of Result R1

We now reconsider Result R1 in the context of 2D crowds.

Focus on control agent X i and its target, T i. By Assump-

tion A3, we know there is a path connecting X i to T i. As

in the analysis of 1D crowds, we conclude therefore that

an expression of the form (10) still exists (with the obvious

notational changes); consequently, it is possible for X i to

zero T i in exactly d(X i,T i) time steps with a control law of

the form (11) (again with obvious notational changes). The

coefficient terms in the equivalent of (10), as always, depend

on the state of the crowd, but only on the state of those crowd

members that are sufficiently close to the target T i. Indeed,

by considering the rate at which information propagates

through the crowd, we conclude that the coefficients depend

on the state of a crowd member O j (and, consequently, X i

needs to sense the state of O j) if and only if

d(O j,T i) ≤ d(X i,T i). (14)

In addition, the coefficients depend on the values of other

control agents that are sufficiently close to the target T i.

Specifically, if a control agent X j satisfies

d(X j,T i) ≤ d(X i,T i), (15)

then the coefficients depend on p̂ j and on u j[k]. (More

generally, the coefficients depend on u j[k], . . . ,u j[k+ pi j], but

Assumption A6 implies here pi j = 0.) If (15) is satisfied, then

it is necessary for X j to compute its control signal, and pass

that information (in addition to the value of p̂ j) to X i since

X i requires that information to compute ui[k].

O6 O7

O8

O3

O2

O1

X1

O5

O4

X3

O10

O9

X2

O11

O12

Fig. 3. A 2D crowd of 12 people with 3 control agents. As with queues,
neighbors are connected using line segments, and the red arrows indicate
targeting by the control agents.

As an example, consider the crowd in Figure 3 and focus

on the target pair [X2 → O8]. There is at least one path from

X2 to O8, so O8 can be zeroed in d(X2,O8) = 3 time steps.

Moreover, the coefficients in the equivalent of (10) depend

on the states of all the crowd members except for that of

O1; hence, control agent X2 needs to sense the state of all

crowd members except that of O1. Note that X1 and X3

are more than 3 steps away from O8, so the coefficients in

the equivalent of (10) do not depend on u1, p̂1, u3, or p̂3;

consequently, X1 and X3 do not have to pass any information

to X2 in order for X2 to compute its control signal.

Algorithm 1, on the next page, provides a systematic way

to test whether all targets in a target set can be zeroed using

control laws of the form (11). The input of the algorithm

consists of: n, m, the neighbor sets of all people, and a

targeting scheme for the control agents. The output of the

algorithm is a set of target pairs, denoted ϒ. Inclusion

of the target pair [X i → T i] in ϒ guarantees the target

T i can be zeroed by X i using a control law of the form

(11), and guarantees that the control law can be calculated

without having to simultaneously solve multiple (nonlinear)

equations of the form (10). If ϒ contains all m target pairings

then the control agents X1, . . . ,Xm are able to zero the entire

target set. In terms of special communication requirements

among control agents, if Case (b) in Step 2 of Algorithm 1

is invoked, then it is necessary that control agent X j pass

information to X i, as discussed after (15). In terms of sensing

load, control agent X i needs to sense the state of any crowd

member, O j, that satisfies (14).

As an illustration, consider again the crowd in Figure 3. In

Step 1 of Algorithm 1, recognize that d(X2,O8) < d(X1,O8)
and d(X2,O8) < d(X3,O8). Hence, we set ϒ = {[X2 →
O8]}. In Step 2, we observe that d(X3,O7) < d(X1,O7)
and d(X3,O7) < d(X2,O7), so we update ϒ to ϒ = {[X2 →
O8], [X3 → O7]}. We now repeat Step 2, focusing on the

remaining target pair, [X1 → O6]. Evidently d(X1,O6) is

not less than d(X2,O6) or d(X3,O6); however, the target

pairs [X2 → O8] and [X3 → O7] already appear in ϒ, so we

augment ϒ to get ϒ = {[X2 → O8], [X3 → O7], [X1 → O6]}.

Algorithm 1 then terminates. Since ϒ contains all three target
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Algorithm 1: Determining if All Members of the Target

Set Can be Zeroed

Step 1: Determine if there exists a target pair, [X i → T i], for

which d(X i,T i) < d(X j,T i) for all j 6= i. If no such target

pair exists, the algorithm terminates with ϒ = /0. Otherwise,

define ϒ := {[X i → T i]} and proceed to Step 2.

Step 2: Determine if there exists a target pair, [X i → T i], not

already in ϒ, for which:

(a) d(X i,T i) < d(X j,T i) for all j 6= i, or

(b) for each j such that d(X j,T i)≤ d(X i,T i) it follows that

[X j → T j] already belongs to ϒ.

If no such target pair exists, the algorithm terminates. Oth-

erwise, add the element [X i → T i] to the set ϒ, and repeat

Step 2.

Algorithm 2: Determining if People Outside the Target

Set Are Zeroed When the Target Set is Zeroed

Step 1: Initialize α = 0 and initialize Ω0 to the set of crowd

members that are known to be zeroed for k ≥ k̃.

Step 2: Determine if there exists a crowd member, say Oi, in

Ωα such that (i) Oi has exactly one neighbor that does not

belong to Ωα, and (ii) that neighbor is not a control agent.

(a) If there is no such crowd member, the algorithm termi-

nates with Ω∞ := Ωα.

(b) Otherwise, we conclude that the neighbor, denoted

Oh, is zeroed for k ≥ k̃. Define Ωα+1 := Ωα ∪ {Oh},

increment α by 1, and repeat Step 2.

Algorithm 3: Stabilizing a 2D Crowd

Step 1: Initialize m = n. Position each control agent so it

is the neighbor of a distinct crowd member, and have each

control agent target its neighbor. Algorithm 1 and the fact

that every crowd member is a target imply the crowd is C (1)-
stabilizable.

Step 2: Subject to Assumptions A1–A3 and A6, determine all

possible arrangements of m−1 control agents, and, for each

of these, identify all possible targeting schemes. The number

of such configurations is finite, but possibly very large.

Step 3: For each configuration from Step 2, use Algorithm 1

to determine if all members of the target set can be zeroed

and, if so, use Algorithm 2 to determine if zeroing the target

set implies all members of the crowd are zeroed.

(a) If both the above conditions hold for at least one

configuration, then such a configuration (with m − 1

control agents) is C (λ)-stabilizing; decrement m by 1

and repeat Step 2.

(b) If, on the other hand, none of the configurations from

Step 2 satisfy the above conditions, then Algorithm 3

terminates with the conclusion that the crowd may be

C (λ)-stabilized using one of the previously-identified

C (λ)-stabilizing m-control-agent configurations.

pairs, the three control agents in Figure 3 can in fact zero

their respective targets. In terms of special communication

requirements, X1 needs to know the values u2[k], p̂2, u3[k],
and p̂3 before it can compute u1[k]. In terms of sensing load,

X1 needs to measure the state of all members of the crowd,

X2 needs to measure the state of all members of the crowd

except for that of O1, and X3 needs to measure the state of

all members of the crowd except for that of O1 and O12.

Generalization of Result R2

We now turn to Result R2. If all members of the target set

can be zeroed, does it follow that other people in a 2D crowd

are necessarily zeroed? The analysis in Section III readily

generalizes. Indeed, consider a subset of the crowd, denoted

Ωα, in which all members of Ωα are zeroed for k ≥ k̃ (for

some integer k̃ ≥ 1). Assume person Oi ∈ Ωα has exactly one

neighbor that does not belong to Ωα, and that the neighbor

is not a control agent. Call the neighbor Oh. In this case, (2)

(written for Oi, with an abuse of our subscript/superscript

notation) simplifies to 0 = 0 + µapa,is
2
i [k]p

h[k]ah[k] for k ≥
k̃; since the µ parameters, prestige, and suggestibility are

positive quantities, it follows that ah[k] = 0 for k ≥ k̃. In other

words, Oh is necessarily zeroed for k≥ k̃. To demonstrate this

idea, consider again the crowd in Figure 3. Assuming that

the target set {O6,O7,O8} is zeroed, one conclusion we can

reach is that O10 is also zeroed since it is the only neighbor

of O8 that is not in the target set; similarly, we can conclude

O5 and O3 are zeroed. Once these conclusions are made it is

then possible to re-apply the above idea repeatedly to deduce

that other crowd members are also zeroed.

We exploit the above thinking in Algorithm 2, shown at

the left. The input to the algorithm is the same as that for

Algorithm 1. Algorithm 2 determines, for a given set of

crowd members that are zeroed for k ≥ k̃, whether there

is a larger set of crowd members, denoted Ω∞, that are

also necessarily zeroed for k ≥ k̃. In typical use, Ω0 in

Algorithm 2 is initialized to the target set, assuming that

Algorithm 1 indicates each member of the target set can

be zeroed. If the output of Algorithm 2, Ω∞, includes all n

crowd members, then C (λ)-stabilization is guaranteed. If Ω∞

does not include all n crowd members, then we can reach

no conclusion about C (λ)-stabilizability.

As an example, in Figure 3 we have already determined

using Algorithm 1 that all members of the target set can

be zeroed. Applying Algorithm 2 with Ω0 = {O6,O7,O8}
results in Ω∞ := {O6,O7,O8,O5,O3,O10,O4,O2,O1}. Since

O9, O11, and O12 are not included in Ω∞, we cannot deduce

whether or not C (λ)-stabilization of the crowd in Figure 3

is possible.

Generalization of Result R3

Suppose that Algorithm 1 indicates all members of the

target set can be zeroed and, moreover, that Algorithm 2

guarantees C (λ)-stabilization. Then the stabilization time is

determined by the longest distance between control agents

and their respective targets: λ = max1≤i≤m d(X i,T i).
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V. STABILIZATION OF 2D CROWDS FOR UNSPECIFIED

CONTROL AGENT POSITIONING AND TARGETING

The question naturally arises if a different placement

of control agents and associated targeting scheme for the

crowd in Figure 3 would be more successful at stabilization

than that indicated in the figure. Here we present a brute-

force approach, Algorithm 3, that results in a placement of

control agents and a targeting scheme that guarantees C (λ)-
stabilizability with control laws of the form (11).

The input to Algorithm 3 is n and the neigbor sets of all

crowd members. The algorithm starts off by introducing n

control agents. Each of the n control agents is positioned

adjacent to a unique crowd member, and each control agent

targets its neighbor. While resource intensive, this control

strategy is guaranteed by Algorithm 1 to provide C (1)-
stabilizability. Algorithm 3 then iteratively removes control

agents and considers new targeting schemes, at each stage

applying Algorithms 1 and 2 to determine if the particular

control agent arrangement and targeting scheme can C (λ)-
stabilize the crowd. For some value of m, it will not be possi-

ble to conclude (via Algorithms 1 and 2) C (λ)-stabilizability,

at which point Algorithm 3 terminates. The output of the

algorithm is a m, a (possibly non-unique) control agent

arrangement, and a targeting scheme that guarantees C (λ)-
stabilizability for λ in the range 1 ≤ λ ≤ n and for m in the

range 1 ≤ m ≤ n.

Algorithm 3 was applied to find an arrangement of control

agents and a targeting scheme to C (λ)-stabilize the 12-

person crowd in Figure 3. We started with twelve control

agents as shown in Figure 4. Following Algorithm 3, we

reduced the number of control agents by removing control

agents, choosing targeting schemes, and using Algorithms 1

and 2 to determine if the resulting crowd is still C (λ)-
stabilizable. As detailed in [8], the algorithm terminates

after eight control agents are removed. Figure 5 shows the

resulting arrangement of the four control agents and their

targets; the stabilization time is λ = 4 time steps, and the

communication and sensing requirements are indicated in the

caption of the figure.

VI. CONCLUSIONS

Having devised an algorithm to C (λ)-stabilize any 2D

crowd, we have identified goals for future work, including:

(a) seek to better understand the class of crowds that can

be stabilized for a given m, 1 ≤ m ≤ n − 1; (b) improve

the efficiency of Algorithm 3, perhaps using results from

graph theory; (c) determine how to deal with the removal

of Assumption A1, which is unrealistic in many social

settings; (d) determine if there is an advantage to removing

Assumptions A2 and A6; (e) incorporate a priori constraints

on sensing load or communication among control agents

(see Assumptions A4 and A5); (f) introduce time variations

in the neighbor sets, allowing for movement among both

crowd members and control agents; (g) study the tradeoff

between m and λ; (h) introduce model uncertainty; (i)

investigate and include “sensor dynamics” to model errors in

human perception processes; (j) include more recent social
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Fig. 4. A control configuration that uses twelve control agents to C (1)-
stabilize the crowd.
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Fig. 5. A control configuration that uses just four control agents to C (4)-
stabilize the crowd. The only communication requirement is that X2 and
X3 must compute their control signals and pass that information to X1. In
terms of sensing loads, X1 must sense the state of all crowd members, X2

must sense the state of all crowd members except that of O1, X3 must sense
the state of all crowd members except that of O1 and O12, and X4 needs to
sense only the state of O8, O9, O10, O11, and O12.

psychological theories (e.g., theories on conformity, social

learning, and decision making [1]); and (k) in the long-term,

collaborate with social psychologists to try to (ethically!)

demonstrate the results of this work experimentally.
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