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Abstract— This paper is concerned with the decentralized
stochastic guaranteed cost control (GCC) for a class of uncer-
tain nonlinear large-scale interconnected systems with control
gain perturbations. First, the definition of the GCC problem
with the deterministic and stochastic uncertainties is given.
Second, a more practical model of actuator failures than
outage is adopted. Based on the linear matrix inequality
(LMI) approach, a method for designing reliable decentralized
state feedback controllers is presented. Using the resulting
control systems, asymptotically mean square stable (EMSS) is
guaranteed and an adequate performance bound against high-
order nonlinearity, plant uncertainty and actuator failures is
attained. Finally, in order to show the effectiveness of the
proposed design method, the simulation result is demonstrated.

I. INTRODUCTION

The analysis of stochastic systems with respect to mean

square stability of their equilibria has attracted many re-

searchers. Such systems arise in a various field in control

mechanical engineering. Often, these systems generally are

governed by Itô stochastic differential equations. In the past

few decades, many stability and control problems have been

discussed for the stochastic systems [2], [3], [11].

A number of essential works on asymptotic stability of

stochastic nonlinear systems have been considered. Partic-

ularly, the adaptive backstepping stabilization scheme for

such systems has been studied (see, for example, [4] and

the references therein for more details). These results are

very elegant in theory, while the LQ control for a class of

nonlinear large-scale interconnected stochastic systems with

norm-bounded time-varying parameter uncertainties has not

been dealt with thus far.

The problem of the decentralized robust control of large-

scale interconnected systems with parameter uncertainties

has been widely studied, and some solution approaches have

been developed (see, for example, [5] and the references

therein). However, in case where the existing approaches are

applied, the deterministic systems have only been consid-

ered. Thus far, the decentralized robust control of nonlinear

large-scale interconnected stochastic systems with parameter

uncertainties has never been studied.

Recent advance in theory of linear matrix inequality (LMI)

has allowed a revisiting of the guaranteed cost control (GCC)

[6] for the large-scale interconnected systems [8], [9], [15].
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Although these results are feasible for the deterministic

uncertainties, the problem of guaranteed cost stabilization for

the uncertain nonlinear large-scale interconnected stochastic

systems has not been tackled.

In order to attain robustness against the plant uncer-

tainty, it is generally known that feedback systems need

very accurate controllers. However, due to A/D conversion,

D/A conversion, finite word length and round-off errors of

the numerical computations, these properties may not be

guaranteed. Therefore, the implemented controller should be

allowed some uncertainty of the actuator. Since controller

fragility results in the performance degradation of a feedback

control system, the non-fragile control problem has been an

important issue. In the area of reliable control system design,

in order to tolerate the failures of controllers, several design

methods have been developed. Particularly, in [14], [15], a

more general failure model have been adopted for actuator

failures, which covers the several operations.

In this paper, the decentralized stochastic GCC problem

for a class of uncertain nonlinear large-scale systems un-

der gain perturbations is investigated. This is an extension

of the work of [5], [8], [9], [15] in the sense that the

nonlinear large-scale interconnected systems are included

in the standard Wiener process as the stochastic systems.

Furthermore, it should be noted that although the existing

results [5], [8], [9], [15] are assumed to have first-order

polynomial, the considered interconnections are bounded by

the general polynomial-type nonlinearity. The contributions

of this paper are as follows. First, the model of the actuator

failures and the high-order nonlinearity are adopted to the

uncertain nonlinear large-scale stochastic systems. Second,

after defining the GCC problem for the nonlinear large-scale

interconnected stochastic systems, a sufficient condition for

the existence of the decentralized robust feedback controllers

is derived by making use of the Lyapunov stability criterion

such that the uncertain nonlinear large-scale interconnected

stochastic systems are exponentially mean square stable

(EMSS). Finally, in order to demonstrate the efficiency of

the design algorithm, the numerical example is included.

Notation: The notations used in this paper are fairly standard.

block diag denotes the block diagonal matrix. In denotes

the n×n identity matrix. || · || denotes its Euclidean norm for

a matrix. E denotes the expectation. λmin and λmax denote

the minimum and the maximum eigenvalues for a matrix,

respectively.
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II. PROBLEM FORMULATION

Consider a class of nonlinear large-scale interconnected

stochastic systems composed of N subsystems described by

the following Itô stochastic differential equations:

dxi(t) =

[

(Ai + ∆Ai(t))xi(t) + (Bi + ∆Bi(t))u
F
i (t)

+

N
∑

j=1, j �=i

(Gij + ∆Gij(t))gij(xi, xj)

]

dt

+Ai1xi(t)dwi(t), xi(0) = x0
i , (1a)

uF
i (t) = Σiui(t) + hi(ui), (1b)

ui(t) = Kixi(t), i = 1, · · · , N, (1c)

where xi(t) ∈ ℜni , ui(t) ∈ ℜmi and uF
i (t) ∈ ℜmi are the

state, the practical control and control input with failure of

the ith subsystems, respectively. w(t) = [w1(t) · · · wN(t)]T

is a standard N -dimensional Wiener process i.e. it satisfies

E[(w(t) − w(s))(w(t) − w(s))T ] = IN |t − s|. Ai, Bi and

Ai1 are constant matrices of appropriate dimensions and

Gij are interconnection matrices between the ith subsystems

and other subsystems. Ki is the fixed control gain matrix.

Σi := diag
(

σi1 · · · σimi

)

is a diagonal positive

definite matrix. The unknown vector functions gij(xi, xj) ∈
ℜlij (to simplify the notation, it will be convenient to write

gij(xi, xj) = gij) represent the high-order interconnections

among the subsystems. On the other hand, hi(ui) denotes

the control failure. It is assumed that the unknown vector

functions gij and hi are continuous and sufficiently smooth

and piecewise continuous in t [5], [8], [9]. The parameter

uncertainties considered here are assumed to be of the

following form:
[

∆Ai(t) ∆Bi(t)
]

= DiFi(t)
[

Ea
i Eb

i

]

, (2a)

∆Gij(t) = DijFij(t)Eij , (2b)

where Di , Ea
i , Eb

i , Dij and Eij are known constant real

matrices of appropriate dimensions. Fi(t) ∈ ℜpi×qi and

Fij(t) ∈ ℜpij×qij are unknown matrix functions with

Lebesgue measurable elements and satisfying

F T
i (t)Fi(t) ≤ Iqi

, F T
ij (t)Fij(t) ≤ Iqij

. (3)

The following conditions concerning the unknown vector

functions gij(xi, xj) and hi(ui) are supposed.

Assumption 1: The control failure hi(ui) satisfies,

for each i, hi(ui) := F̄iΩiui, where Ωi :=
diag

(

ωi1 · · · ωimi

)

with ωij > 0 and

F̄i := diag
(

f̄i1 · · · f̄imi

)

with F̄ T
i F̄i ≤ Imi

.

Assumption 2: There exist known constant matrices Vi

and Wij such that for all i, j, t ≥ 0, xi ∈ ℜni and

xj ∈ ℜnj , ||gij(xi, xj)|| ≤
∑p

k=1[αk||Vixi||||xi||
k−1 +

βk||Wijxj ||||xj||
k−1], where αk and βk are positive scalar

constants.

If Assumption 1 holds, there exists known constant matrix

Ωi such that for all i, t ≥ 0, xi ∈ ℜni, ||hi(ui)|| ≤ ||Ωiui||
[14], [15]. The value of σij , for j = 1, ... , mmi

, represents

the percentage of failure in the actuator j controlling the

subsystem. Using this notation, each subsystem actuator

failure can be represented independently. If σij = 1 and

ωij = 0, it corresponds to the normal case for the jth

actuator of the ith subsystem (uF
ij = uij , where ui :=

[

ui1 · · · uimi

]

, uij ∈ ℜ). When this is true for all j,

Σi = Imi
holds, and it corresponds to the normal case in

the ith channel (uF
i = ui). When σij = ωij , the outage case

(uF
ij = 0) would be covered. It should be noted that other

cases correspond to partial failures or partial degradations of

the actuators [14], [15].

On the other hand, it is known that xi(t) will be bounded

whenever the trajectory xi(t) is confined to a compact set

[13]. Hence, the above Assumption 2 satisfies the inequality

||gij(xi, xj)|| ≤
∑p

k=1[αkγ
k−1
i ||Vixi||+ βkγk−1

j ||Wijxj||] =

||Ṽixi||+||W̃ijxj||, where Ṽi :=
∑p

k=1 αkγk−1
i Vi and W̃ij :=

∑p

k=1 βkγk−1
j Wij for all ||xi(t)|| ≤ γi. It seems that this

constraint assumption ||xi(t)|| ≤ γi is suitable because all

the trajectories have to be stable. It may be noted that if

p = 1, α1 = β1 = 1, Assumption 2 is the same as the

existing one [5], [8], [9].

Assumption 3: For all i, j,

Ui := 2

N
∑

j=1, j �=i

(Ṽ T
i Ṽi + W̃T

jiW̃ji) > 0, Si := ΩT
i Ωi > 0.

Associated with system (1) is the cost function

J =

N
∑

i=1

E

[
∫ ∞

0

[xT
i (t)Qixi(t) + uT

i (t)Riui(t)]dt

]

, (4)

where Qi and Ri are given as the positive definite symmetric

matrices.

The following concept is standard in the stability theory of

stochastic systems (see e.g., [1], [11], [12] and the references

therein for more details).

Definition 1: The stochastic system is said to be EMSS if

it satisfies the following equation.

∃ρ, ψ > 0, E||x(t)||2 ≤ ρe−ψ(t−t0)E||x(t0)||
2.

Lemma 1: [11], [12] The trivial solution of a stochastic

differential equation as follows:

dx(t) = f(t, x)dt + g(t, x)dw(t), (5)

where x(t) =
[

xT
1 (t) · · · xT

N(t)
]T

with f(t, x) and

g(t, x) sufficiently differentiable maps, is EMSS if there

exists a function V (x(t)) which satisfies the following in-

equalities

a1||x(t)||2 ≤ V (x(t)) ≤ a2||x(t)||2, a1, a2 > 0, (6a)

DV (x(t)) :=
∂V (x(t))

∂x
f(t, x)

+
1

2
Tr

[

gT (t, x)
∂2V (x(t))

∂x2
g(t, x)

]

≤ −c||x(t)||2, c > 0 (6b)

for x(t) �= 0.

Based on reference [6], the definition of the GCC for the

nonlinear large-scale interconnected stochastic systems with

the deterministic uncertainties is given below.
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Definition 2: A decentralized fragile controller uF
i (t) =

Σiui(t) + hi(ui) is said to be the GCC for the uncertain

nonlinear large-scale interconnected stochastic systems (1)

and the cost function (4) if the closed-loop systems are

EMSS and the closed-loop value of the cost function (4)

satisfies the bound J ≤ J for all admissible uncertainties.

The objective of this paper is to design a decentral-

ized reliable linear guaranteed cost controller uF
i (t) =

ΣiKixi(t) + hi(ui), i = 1, ... , N for the nonlinear large-

scale interconnected stochastic systems (1) with uncertainties

(2), (3) and the actuator failure.

III. PRELIMINARY RESULT

Now, a sufficient condition for existence of the state

feedback guaranteed cost controller for the uncertain non-

linear large-scale interconnected stochastic systems (1) is

established.

Theorem 1: Consider the nonlinear large-scale intercon-

nected stochastic systems (1) with the uncertainties (2) and

(3) under Assumptions 1 and 2. If there exists symmetric

positive definite matrix Pi ∈ ℜni×ni such that the ma-

trix inequality (7) holds, the fragile controllers uF
i (t) =

Σiui(t) + hi(ui), i = 1, · · · , N are the guaranteed cost

controller,

Λi =















Ξi PiG̃i1 · · · PiG̃iN Ci

G̃T
i1Pi −Ili1 · · · 0 0
...

...
. . .

...
...

G̃T
iNPi 0 · · · −IliN

0
CT

i 0 · · · 0 Ri − Imi















< 0, (7)

where Λi ∈ ℜN̄×N̄ , Ci := PiB̃i +KT
i ΣiRi, N̄ = ni +mi +

∑

j=1, j �=i lij , Ξi := ÃT
i Pi +PiÃi +AT

i1PiAi1 + Ui + R̄i +

KT
i SiKi, Ãi := Āi + DiFi(t)Ēi, B̃i := Bi + DiFi(t)E

b
i ,

G̃ij := Gij + DijFij(t)Eij , Āi := Ai + BiΣiKi, Ēi :=
Ea

i + Eb
i ΣiKi and R̄i := Qi + KT

i ΣiRiΣiKi.

In other words, the closed-loop systems are EMSS for

||xi(0)|| < δi and the corresponding value of the cost function

(4) satisfies the following inequality (8) for all admissible

uncertainties Fi(t) and Fij(t).

J <

N
∑

i=1

E[xT
i (0)Pixi(0)]. (8)

Remark 1: Note that there exists no matrix PiG̃ii, i =
1, · · · , N in the matrix Λi.

Proof: Combining the guaranteed cost controller

uF
i (t) = ΣiKixi(t) + hi(ui), i = 1, · · · , N with (1) gives

a closed-loop uncertain stochastic system of the form

dxi(t) =



Ãixi(t) + B̃ihi +

N
∑

j=1, j �=i

G̃ijgij



 dt

+Ai1xi(t)dwi(t). (9)

Suppose now there exists the symmetric positive definite

matrix Pi > 0, i = 1, · · · , N such that the matrix inequality

(7) holds for all admissible uncertainties. In order to prove

EMSS of the closed-loop uncertain stochastic system (9), let

us define the following Lyapunov function candidate

V (x(t)) = xT (t)Px(t) =
N

∑

i=1

xT
i (t)Pixi(t) > 0, (10)

where P := block diag
(

P1 · · · PN

)

First, using the fact λmin(P)||x(t)||2 ≤ V (x(t)) ≤
λmax(P)||x(t)||2, the condition (6a) holds. Second, in order

to prove the formula (6b), the stochastic differential is given

by

DV (x(t)) =

N
∑

i=1

{

xT
i (t)(ÃT

i Pi + PiÃi)xi(t)

+hT
i B̃T

i Pixi(t) + xT
i (t)PiB̃ihi

+

N
∑

j=1, j �=i

[

gT
ijG̃

T
ijPixi(t) + xT

i (t)PiG̃ijgij

]

+xT
i (t)AT

i1PiAi1xi(t)

}

.

Since
∑N

i=1

∑N

j=1, j �=i(2xT
i Ṽ T

i Ṽixi + 2xT
i W̃T

jiW̃jixi −

gT
ijgij) =

∑N

i=1

∑N

j=1, j �=i(2xT
i Ṽ T

i Ṽixi + 2xT
j W̃T

ij W̃ijxj −

gT
ijgij), it follows that

DV (x(t))

=

N
∑

i=1

{

zT
i (t)Λizi(t) − xT

i (t)Qixi(t)

−(ΣiKixi + hi)
T Ri(ΣiKixi + hi)

−(xT
i KT

i SiKixi − hT
i hi)

−

N
∑

j=1, j �=i

(2xT
i Ṽ T

i Ṽixi + 2xT
j W̃T

ij W̃ijxj − gT
ijgij)

}

,

where zi(t) =
[

xT
i (t) gT

i1 · · · gT
iN hT

i

]T
∈ ℜN̄ and

Ξi and Λi are given in (7).

It is easy to verify that the inequalities 2xT
i Ṽ T

i Ṽixi +
2xT

j W̃T
ij W̃ijxj ≥ gT

ijgij and uT
i Siui = xT

i KT
i SiKixi ≥

hT
i hi hold under Assumptions 1 and 2. By using the above

inequality, it immediately follows that

DV (x(t))

< −

N
∑

i=1

[xT
i (t)Qixi(t) + (ΣiKixi + hi)

T Ri(ΣiKixi + hi)]

< −λmin(R)||x(t)||2 < 0, (11)

where R := block diag
(

R̃1 · · · R̃N

)

, R̃i := Qi +

K̃T
i RiK̃i and K̃i := (Σi + F̄iΩi)Ki.

Hence, V (x(t)) is a Lyapunov function for the closed-

loop uncertain stochastic system (9). Therefore, since the

following inequality holds:

E||x(t)||2 ≤
λmax(P)

λmin(P)
E||x(0)||2 exp

[

−
λmin(R)

λmax(P)
t

]

,
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the closed-loop uncertain stochastic systems (9) are EMSS.

Moreover, applying Itô’s formula results in

dV (x(t))

= DV (x(t))dt + 2

N
∑

i=1

xT
i (t)AT

i1Pixi(t)dwi(t)

< −

N
∑

i=1

xT
i (t)R̃ixi(t)dt+2

N
∑

i=1

xT
i (t)AT

i1Pixi(t)dwi(t).(12)

Furthermore, by integrating both sides of the inequality (12)

from 0 to T and using the initial conditions, the following

inequality holds

E[V (x(T ))] − E[V (x(0))]

< −
N

∑

i=1

E

[

∫ T

0

xT
i (t)R̃ixi(t)dt

]

. (13)

Since the closed-loop uncertain stochastic systems (9) are

EMSS, that is, limT→∞ E||x(T )||2 → 0, V (x(T )) → 0
holds. Thus the following inequality holds.

J =

N
∑

i=1

E

[
∫ ∞

0

xT
i (t)R̃ixi(t)dt

]

< E[V (x(0))]

=

N
∑

i=1

E[xT
i (0)Pixi(0)] = J .

The proof of Theorem 1 is completed.

IV. MAIN RESULT

Theorem 2: Under Assumptions 1 and 2, suppose there

exist the constant positive parameters µi > 0, εi > 0 and

φi > 0 such that for all i = 1, ... , N the LMI (14) have the

symmetric positive definite matrices Xi > 0 ∈ ℜni×ni and

a matrix Yi ∈ ℜmi×ni .

If such conditions are met, the decentralized linear state

feedback controllers

uF
i (t) = Σiui(t) + hi(ui), i = 1, · · · , N, (15)

with ui(t) = Kixi(t) = YiX
−1
i xi(t) are the guaranteed cost

controllers and

J <

N
∑

i=1

E[xT
i (0)X−1

i xi(0)] (16)

is the guaranteed cost.

Proof: Let us introduce the matrices Xi := P−1
i and

Yi := KiP
−1
i . Pre- and post-multiplying both sides of the

inequality (14) by

block diag
[

Pi Ini
Iqi

Ili1 Isi1
· · · IliN

IsiN
Ini

Imi
Ini

Imi
Iqi

Ini

]

and using Schur complement [10], the LMI (14) holds if and

only if the following inequality (17) holds.

Fi

:=



















Γi AT
i1 PiGi1 · · · PiGiN PiBi

Ai1 −P−1
i 0 · · · 0 0

GT
i1Pi 0 Θ1 · · · 0 0
...

...
...

. . .
...

...

GT
iNPi 0 0 · · · ΘN 0

BT
i Pi 0 0 · · · 0 ΘB



















< 0,(17)

where Γi := ĀT
i Pi + PiĀi + Ui + R̄i + KT

i SiKi + (µi +
φi)PiDiD

T
i Pi + PiHiPi + µ−1

i ĒT
i Ēi, Θj := ε−1

i ET
ijEij −

Ilj , ΘB := φ−1
i EbT

i Eb
i + Ri − Imi

.

Using a standard matrix inequality for all admissible

uncertainties (2) and (3), the matrix inequality (18) holds.

0 > Fi

≥



















Φi AT
i1 PiGi1 · · · PiGiN C̄i

Ai1 −P−1
i 0 · · · 0 0

GT
i1Pi 0 −Ili1 · · · 0 0
...

...
...

. . .
...

...

GT
iNPi 0 0 · · · −IliN

0
C̄T

i 0 0 · · · 0 −Imi



















+D̄Fi(t)(Ē + Ẽ)T + (Ē + Ẽ)FT
i (t)D̄T

+DiFi(t)Ei + ET
i FT

i (t)DT
i = Li. (18)

where Φi := ĀT
i Pi + PiĀi + Ui + R̄i + KT

i SiKi, C̄i :=
PiBi + KT

i ΣiRi,

D̄ :=
[

(PiDi)
T 0 0 · · · 0 0

]T
,

Ē :=
[

Ēi 0 0 · · · 0 0
]T

,

Ẽ :=
[

0 0 0 · · · 0 Eb
i

]T
,

Di :=

[

0 0 PiDi1 · · · PiDiN 0
O

]

,

Fi(t) := block diag
(

0 0 Fi1(t) · · · FiN (t) 0
)

,

Ei := block diag
(

0 0 Ei1 · · · EiN 0
)

.

Finally, using Schur complement [10] for Li < 0 results

in Λi < 0. Hence, the closed-loop stochastic systems are

EMSS. On the other hand, since the results of the cost bound

(16) can be proved by using similar arguments for the proof

of Theorem 1, it is omitted.

Since the LMI (14) consists of a solution set of

(µi, εi, φi, Xi, Yi), various efficient convex optimization

algorithms can be applied. Moreover, its solutions represent

the set of guaranteed cost controllers. This parameterized

representation can be exploited to design the guaranteed cost

controllers, which minimizes the value of the guaranteed

cost for the closed-loop uncertain nonlinear large-scale in-

terconnected stochastic systems. Consequently, solving the

following optimization problem allows us to determine the
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







































Ψi XiA
T
i1 LT

i Gi1 0 · · · GiN 0 Xi Y T
i Σi Xi C̃i 0 Y T

i
Ai1Xi −Xi 0 0 0 · · · 0 0 0 0 0 0 0 0

Li 0 −µiIqi 0 0 · · · 0 0 0 0 0 0 0 0
GT

i1 0 0 −Ili1 ET
i1 · · · 0 0 0 0 0 0 0 0

0 0 0 Ei1 −εiIsi1 · · · 0 0 0 0 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

GT
iN

0 0 0 0 · · · −IliN
ET

iN
0 0 0 0 0 0

0 0 0 0 0 · · · EiN −εiIsiN
0 0 0 0 0 0

Xi 0 0 0 0 · · · 0 0 −Q−1

i
0 0 0 0 0

ΣiYi 0 0 0 0 · · · 0 0 0 −R−1

i 0 0 0 0

Xi 0 0 0 0 · · · 0 0 0 0 −U−1

i
0 0 0

C̃T
i 0 0 0 0 · · · 0 0 0 0 0 Ri − Imi EbT

i 0
0 0 0 0 0 · · · 0 0 0 0 0 Eb

i
−φiIqi 0

Yi 0 0 0 0 · · · 0 0 0 0 0 0 0 −S−1

i









































< 0, (14)

where Ψi := AiXi + BiYi + (AiXi + BiYi)
T + (µi + φi)DiD

T
i + Hi , Li := Ea

i Xi + Eb
i Yi , Hi :=

∑N

j=1, j �=i
εiDijDT

ij , C̃i := Bi +

Y T
i

ΣiRi.

optimal bound.

D0 : min
∑

i
Xi

N
∑

i=1

γ2
i E[Zi] = J ,

Xi ∈ (µi, εi, φi, Xi, Yi, Zi) (19)

such that the LMI (14) and
[

−Zi Ini

Ini
−Xi

]

< 0. (20)

Finally, the optimization problem that should be solved is

given.

Theorem 3: If the above optimization problem has the

solution µi, εi, φi, Xi, Yi and Zi, then the controller of

the form (15) are the decentralized linear state feedback

controllers, which ensure the minimization of the guaranteed

cost (16) for the uncertain nonlinear large-scale intercon-

nected stochastic systems.

Proof: By Theorem 2, the controllers (15) constructed

from the feasible solutions µi, εi, φi, Xi, Yi and Zi are the

decentralized reliable linear guaranteed cost controllers of

the uncertain nonlinear large-scale interconnected stochastic

systems (1). It follows that

J <

N
∑

i=1

E[xT
i (0)X−1

i xi(0)] ≤

N
∑

i=1

||xi(0)||2E[X−1
i ]

≤ min
∑

i
Xi

N
∑

i=1

γ2
i E[Zi] = J . (21)

Thus, the minimization of

N
∑

i=1

γ2
i E[Zi] implies the minimum

value J of the guaranteed cost for uncertain nonlinear large-

scale interconnected stochastic systems (1). The optimality

of the solution of the optimization problem follows from

the convexity of the objective function under the LMI

constraints. This is the required result.

It should be noted that the original optimization problem

for the guaranteed cost (21) can be decomposed to the

following reduced optimization problems (22) because each

optimization problem (22) is independent of other LMI.

Hence, the optimization problems (22) for each independent

subsystem can be solved.

J = min
∑

i
Xi

(

N
∑

i=1

γ2
i E[Zi]

)

=

N
∑

i=1

(

min
Xi

γ2
i E[Zi]

)

, (22)

Di : min
Xi

γ2
i E[Zi], i = 1, ... , N.

A design procedure for constructing the guaranteed cost

controller is given below.

Step 1. Starting for any γi, calculate Ṽi and W̃ij .
Step 2. Find Xi such that the LMI’s (14) and (20) is feasible.

If the LMI’s (14) and (20) are not feasible, decrease the
design parameter γi and go to Step 1. If γi is less than
some prescribed computational accuracy, then stop and
declare that the GCC fails. Otherwise, proceed Step 3.

Step 3. Minimize γ2

i E[Zi] over Xi satisfying the LMI’s (14) and
(20).

Step 4. If a solution is available, obtain the gain matrix Ki =
YiX

−1

i for each subsystem and the cost bound.

V. NUMERICAL EXAMPLE

Consider the uncertain nonlinear large-scale intercon-

nected stochastic systems. Each system has two states and

one control input. The system matrices and the unknown

functions with the uncertainties are given as follows.

A1 =

[

0 1
−1 −1.5

]

, A2 =

[

0 1
1 0

]

,

A3 =

[

0.5 0
0 −1.2

]

, A11 =

[

−0.2 0
0.1 0.5

]

,

A21 =

[

0 −0.3
0 0.1

]

, A31 =

[

0.1 −0.1
0 0.2

]

,

B1 =

[

0
1

]

, B2 =

[

1
1.5

]

, B3 =

[

1.2
0

]

,

gij(xi, xj) = ||xi||
2||xj||

2,

D1 =

[

1
0

]

, D2 =

[

1.2
1

]

, D3 =

[

1
0.5

]

,

Ea
i =

[

0.01 0.01
]

, Eb
i =

[

0.01
]

,

G12 =

[

0.1
0.2

]

, G13 =

[

0.1
0.1

]

, G23 =

[

0.5
0.4

]

,
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G21 =

[

0.2
0.1

]

, G31 =

[

0.3
0

]

, G32 =

[

0.2
0

]

,

Vi = Wij = 0.1I2, Dij =

[

0
1

]

,

E12 = E13 =
[

0.015
]

, E23 = E21 =
[

0.01
]

,

E31 = E32 =
[

0.03
]

,

σ11 = 0.8, σ21 = 0.9, σ31 = 0.7, ωi1 = 0.1,

Ri = 0.1, Qi = 0.1I2, i, j = 1, 2, 3, i �= j.

These nonlinear large-scale stochastic systems cannot be

treated using the technique in [5], [8], [9] because the inter-

connection term cannot be bounded by a linear combination

of the state xi(t) and the high-order interconnections are

included. Furthermore, the stochastic uncertainties exist.

First, let us consider usefulness of the proposed reliable

control technique for a failure scenario described by the

following model.

uF
1 (t) = (0.8 + 0.1f̄11)K1x1(t), |f̄11| ≤ 1,

uF
2 (t) = (0.9 + 0.1f̄21)K1x1(t), |f̄21| ≤ 1,

uF
3 (t) = (0.7 + 0.1f̄31)K1x1(t), |f̄31| ≤ 1,

where uF
i (t) = Σiui(t) + hi(ui) = σi1ui(t) + hi(ui) ∈ ℜ,

hi(ui) = F̄iΩiui = f̄i1ωi1ui ∈ ℜ, ui(t) = Kixi(t), i =
1, 2, 3.

This mean that the control designer allows a failure of

the order of 80% in the actuator of subsystem i = 1 with

an error of the order of 10%. The tolerances assumed for

the order actuators are interpreted in the same way. That is,

using the above notation, the control failure can be described

appropriately.

Second, taking the norm of gij(xi, xj) yields

||gij(xi, xj)|| = ||xi||
2||xj||

2 ≤ 0.5(||xi||
4 + ||xj||

4). Hence,

there exists Ṽi = W̃ij = 0.5γ3
i I2, i, j = 1, 2, 3, i �= j.

The design parameter is selected as γi = 2 tentatively.

By applying Theorem 3 and solving the corresponding

optimization problem (22), the decentralized linear optimal

state feedback controllers are given as

K1 =
[

−1.0076e + 01 −7.6097
]

,

K2 =
[

−6.0261 −5.2210
]

,

K3 =
[

−8.9032 −2.8391e − 01
]

.

Consequently, the optimal guaranteed cost of the closed-loop

uncertain stochastic systems is J = 4.76287775e+01, where

min
X1

J1 = 2.8208888e + 01, min
X2

J2 = 1.0721752e + 01 and

min
X3

J3 = 8.6981375.

It should be noted that although the stochastic uncertainty

exists as compared with the existing results [5], [8], [9], the

decentralized robust controller can be constructed. Therefore,

the proposed design method is very useful in the sense

that the resulting decentralized robust controller can be

implemented to more practical large-scale interconnected

stochastic systems.

From Theorem 2 the initial states of (1) must hold in-

equality
√

λmax(P)/λmin(P)||xi(0)|| ≤ γi = 2. Thus the

stability region of (1) is ||xi(t)|| ≤ 4.954702e − 01 because

√

λmax(P)/λmin(P) =
√

6.527155/4.005890e− 01 =
4.036570.

VI. CONCLUSION

In this paper, the stochastic GCC problem for uncertain

nonlinear large-scale interconnected systems under gain per-

turbations has been addressed. Particularly, the high-order

interconnections are considered for a different model in

[8], [9]. A concept for the reliable controllers is based on

the practical case of the model of actuator failures. The

decentralized robust controller which minimizes the value

of the guaranteed cost for the closed-loop uncertain large-

scale interconnected stochastic systems can be computed by

means of a feasible LMI optimization problem. Moreover it

is easy to solve the decentralized guaranteed cost controller

by using software such as MATLAB’s LMI control Toolbox.

Finally, the proposed design synthesis is useful in that the

resulting reliable decentralized linear feedback controller at-

tains EMSS and the optimal cost bound against the uncertain

large-scale interconnected stochastic systems with high-order

nonlinearity and the actuator failure.
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