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Abstract— This paper combines the multi-innovation theory
with the auxiliary model identification idea to present the
auxiliary model based multi-innovation stochastic gradient
algorithm by expanding the scalar innovation to an innovation
vector and introducing the innovation length. Convergence
analysis in the stochastic framework indicates that the parame-
ter estimation error consistently converges to zero under certain
excitation condition. Finally, we illustrate and test the proposed
algorithm with an example.

I. PROBLEM FORMULATION

Consider the output error systems [1], as depicted in

Figure 1,

y(t) =
B(z)

A(z)
u(t)+ v(t), (1)

where u(t) is the system input, x(t) := B(z)
A(z) u(t) is the true

output or noise-free output, v(t) is a white noise with zero

mean, y(t) is the measurement of x(t), z−1 represents a

unit delay operator [z−1y(t) = y(t − 1)], A(z) and B(z) are

polynomials of degrees na and nb, and represented as

A(z) = 1+a1z−1 +a2z−2 + · · ·+anaz−na ,

B(z) = b1z−1 +b2z−2 + · · ·+bnb
z−nb .

- B(z)
A(z)

- i -+
?

v(t)

u(t) x(t) y(t)

Fig. 1. The output error system with white noises

For the output error systems in (1), the parameter es-

timates given by the recursive least squares algorithm is

biased [2]. In order to get consistently unbiased parameter

estimate, many identification methods were published, e.g.,

the biased compensation least squares algorithms [2]–[4],
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auxiliary model based least squares identification methods

[5], auxiliary model based stochastic gradient identification

methods [6], etc. The biased compensation least squares and

auxiliary model least squares identification methods have

fast convergence rates but require computing the covariance

matrices, causing an increased computational complexity.

On the other hand, the stochastic gradient (SG) algorithm

requires less computation but has a slower convergence rate

than the least squares ones. In order to reduce computational

complexity and improve the convergence rate of the SG

algorithm, this paper combines the multi-innovation iden-

tification theory [7] with the auxiliary model identification

idea [5] to study identification problems for output error

systems. Difficulties of identification for the output error

systems are that there exist unmeasurable true outputs or

noise-free outputs in the information vector. This paper, by

means of the auxiliary model identification idea, establishes

an auxiliary model by using the measurable information and

replaces the unknown variables in the information vector

with the outputs of the auxiliary model, and presents an

auxiliary model based multi-innovation stochastic gradient

(AM-MISG) algorithm, thus the identification problems can

be solved. The AM-MISG identification method can enhance

the parameter estimation accuracy and convergence rates by

enlarging the innovation length. The advantage of the AM-

MISG algorithm is that it does not involve the covariance

matrices [7].

The convergence analysis of identification algorithms are

generally based on the stochastic process theory and mar-

tingale theory [8]–[11], Ding and Chen discussed the per-

formances of the auxiliary model based stochastic gradient

algorithm for dual-rate systems [6] and multi-innovation

stochastic gradient algorithm for a linear regression model

[7] using the stochastic martingale theory. This paper studies

the convergence properties of the AM-MISG algorithm also

by using the stochastic martingale theory. While the shows

that through a simulation study, the AM-MISG algorithm

can improve convergence rate, the underlying PE condition

is too strong, and may be even unrealistic in practice [11].

Briefly, the paper is organized as follows. Section II

derives an AM-MISG algorithm for output error systems.

Section III studies the convergence performance of the AM-

MISG algorithm. Section IV provides an illustrative example.

Finally, concluding remarks are given in Section V.
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II. THE ALGORITHM DESCRIPTION

Define the middle variable,

x(t) :=
B(z)

A(z)
u(t). (2)

Referring to Figure 1, x(t) is the unknown noise-free outputs

(i.e., true outputs), y(t) is the measurements of x(t) corrupted

by the additive noise v(t).
Define the parameter vector θ and the information vector

ϕ0(t) as

θ := [a1,a2, · · · ,ana ,b1,b2, · · · ,bnb
]T ∈ R

n,

ϕ0(t) := [−x(t −1),−x(t −2), · · · ,−x(t −na),

u(t −1),−u(t −2), · · · ,u(t −nb)]
T ∈ R

n. (3)

Equations (1)-(2) can be written as

x(t) = ϕT

0(t)θ , (4)

y(t) = x(t)+ v(t)

= ϕT

0(t)θ + v(t). (5)

Equation (5) is the identification model for the output error

systems.

Let E denote an expectation operator, θ̂(t) be the estimate

of θ at time t, and the norm of the matrix X is defined by

‖X‖2 := tr[XX T]. Defining and minimizing a quadratic cost

function like in [10],

J(θ) = E[‖y(t)−ϕT

0(t)θ‖
2],

leads to the following stochastic gradient algorithms of

estimating θ [10],

θ̂(t) = θ̂(t −1)+
ϕ0(t)

r(t)
[y(t)−ϕT

0(t)θ̂(t −1)], (6)

r(t) = r(t −1)+‖ϕ0(t)‖
2, r(0) = 1. (7)

However, the algorithm in (6)-(7) is impossible to realize

because the information vector ϕ0(t) contains the unknown

inner variables x(t − i). The solution here is based on the

auxiliary model identification idea [5], [6]: these unknown

x(t − i) in ϕ0(t) are replaced with the outputs x̂(t − i) of an

auxiliary model in Figure 2, where ϕa(t) and θ a(t) represent

the information vector and parameter vector of the auxiliary

model, respectively. Let

ϕ(t) := [−x̂(t −1),−x̂(t −2), · · · ,−x̂(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T ∈ R

n. (8)

Here, we take ϕ(t) to be the information vector ϕa(t) of the

auxiliary model, and θ̂(t) to be the parameter vector θ a(t)
of the auxiliary model, thus we have

x̂(t) = ϕT(t)θ̂(t). (9)

Replacing the unknown ϕ0(t) in (6)-(7) with ϕ(t) gives

the auxiliary model based stochastic gradient identification

algorithms (the AM-SG algorithm for short):

θ̂(t) = θ̂(t −1)+
ϕ(t)

r(t)
e(t), (10)

e(t) = y(t)−ϕT(t)θ̂(t −1), (11)

r(t) = r(t −1)+‖ϕ(t)‖2, r(0) = 1. (12)
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The original system
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Fig. 2. The output error system with the auxiliary model

Although the above AM-SG algorithm in (8)-(12) can es-

timate the parameter vector θ , its convergence rate is very

poor (see the example later). The following is to derive a

multi-innovation stochastic gradient algorithm by expanding

the innovation length to improve the parameter estimation

accuracy.

Since the scalar quantity e(t) := y(t)−ϕT(t)θ̂(t −1) ∈ R
1

in (10) is called the innovation and a scalar value [1], the

objective of this work is to expand this scalar innovation

e(t)∈R
1 to an innovation vector E(p, t)∈R

p and to present

an auxiliary model based multi-innovation stochastic gradient

algorithm. The details are as follows.

Define an innovation vector consisting of e(t − i), i =
0,1, · · · , p−1, as follows:

E(p, t) =











e(t)
e(t −1)

...

e(t − p+1)











∈ R
p,

i.e., multi-innovation (p represents innovation length) and

e(t − i) = y(t − i)−ϕT(t − i)θ̂(t − i−1).

In general, one thinks that the estimate θ̂(t −1) is closer to

θ than θ̂(t − i) at time t − i (i = 2,3,4, · · · , p−1). Thus, the

innovation vector is taken more reasonably to be

E(p, t) :=











y(t)−ϕT(t)θ̂(t −1)

y(t −1)−ϕT(t −1)θ̂(t −1)
...

y(t − p+1)−ϕT(t − p+1)θ̂(t −1)











∈ R
p.

Define the stacked output vector Y (p, t) and information

matrix Φ(p, t) as

Y (p, t) := [y(t),y(t −1), · · · ,y(t − p+1)]T ∈ R
p,

Φ(p, t) := [ϕ(t),ϕ(t −1), · · · ,ϕ(t − p+1)] ∈ R
n×p.

The innovation vector E(p, t) can be expressed as

E(p, t) = Y (p, t)−ΦT(p, t)θ̂(t −1).

Since E(1, t) = e(t), Φ(1, t) = ϕ(t), Y (1, t) = y(t), the AM-

SG algorithm in (10)-(12) may be equivalently expressed as

θ̂(t) = θ̂(t −1)+
Φ(1, t)

r(t)
E(1, t), (13)

E(1, t) = Y (1, t)−ΦT(1, t)θ̂(t −1), (14)

r(t) = r(t −1)+‖Φ(1, t)‖2, r(0) = 1. (15)
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Here, the multi-innovation length p is equal to 1. Referring to

[7], we replace the 1’s in the above three equations with p to

obtain the following auxiliary model based multi-innovation

stochastic gradient algorithm with the innovation length p

(the AM-MISG algorithm for short):

θ̂(t) = θ̂(t −1)+
Φ(p, t)

r(t)
E(p, t), (16)

E(p, t) = Y (p, t)−ΦT(p, t)θ̂(t −1), (17)

r(t) = r(t −1)+‖Φ(p, t)‖2, r(0) = 1, (18)

Φ(p, t) = [ϕ(t),ϕ(t −1), · · · ,ϕ(t − p+1)], (19)

Y (p, t) = [y(t),y(t −1), · · · ,y(t − p+1)]T, (20)

ϕ(t) = [−x̂(t −1),−x̂(t −2), · · · ,−x̂(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T, (21)

x̂(t) = ϕT(t)θ̂(t). (22)

When the innovation length p = 1, the AM-MISG Algorithm

degrades to the AM-SG algorithm.

III. CONVERGENCE ANALYSIS

Let us introduce some notations first. λmin[X ] represents

the minimum eigenvalue of the X . For g(t) ≥ 0, we write

f (t) = O(g(t)) if there exist positive constants δ1 and t0
such that | f (t)| ≤ δ1g(t) for t ≥ t0 and f (t) = o(g(t)) if

f (t)/g(t) → 0 as t → ∞.

The following lemma is required to establish the main

convergence results.

We assume that {v(t),Ft} is a martingale difference

sequence defined on a probability space {Ω,F ,P}, where

{Ft} is the σ algebra sequence generated by v(t), i.e., Ft =
σ(v(t),v(t − 1),v(t − 2), · · · ,) [10]. The sequence {v(t)}
satisfies

(A1) E[v(t)|Ft−1] = 0, a.s.;

(A2) E[‖v(t)‖2|Ft−1] = σ2
v (t) ≤ σ̄2

v < ∞, a.s.

Theorem 1: For the system in (5) and the AM-MISG

algorithm in (16)-(22), define

R(t) :=
t

∑
i=1

Φ(p, i)ΦT(p, i),

and assume that (A1) and (A2) hold, A(z) is strictly positive

real and

(A3) r(t) = O(λmin[R(t)]), a.s.

Then, the parameter estimation vector θ̂(t) consistently con-

verges to the true parameter vector θ .

The proof is omitted but available from the authors.

IV. EXAMPLE

Consider the following output error model,

y(t) =
B(z)

A(z)
u(t)+ v(t),

A(z) = 1+a1z−1 +a2z−2 = 1−0.60z−1 +0.40z−2,

B(z) = b1z−1 +b2z−2 = −0.20z−1 +0.80z−2,

θ = [a1,a2,b1,b2]
T = [−0.60,0.40,−0.20,0.80]T.

The input {u(t)} is taken as an uncorrelated persistent

excitation signal sequence with zero mean and unit variance

σ2
u = 1.002 and {v(t)} as a white noise sequence with zero

mean and variance σ2 = 0.102, the corresponding noise-

to-signal ratio is δns = 11.24%. Applying the AM-MISG

algorithm with different innovation length p = 1, 2, and 5

to estimate the parameters of this system, the parameter

estimates and their errors are shown in Table I and the

estimation errors δ := ‖θ̂(t)−θ‖/‖θ‖ versus t are shown

in Figure 3.

From Table I and Figure 3, the parameter estimates con-

verge fast to their true values for large p. The parameter es-

timation errors become (generally) smaller and smaller with

the data length t increasing. This shows that the proposed

algorithm is effective.

V. CONCLUSIONS

According to the auxiliary model identification idea and

the multi-innovation theory, an auxiliary model based multi-

innovation stochastic gradient identification algorithm is de-

veloped for output error systems. By using the outputs of

an auxiliary models to replace the unknown variables in the

information vector, the multi-innovation algorithm repeatedly

uses innovations by expanding the scalar innovation to the

innovation vector and introducing the innovation length. The

algorithm proposed requires less computation than existing

RLS algorithms and has high accurate parameter estimation

than AM-SG algorithm. Convergence analysis shows that

the parameter estimation error consistently converges to zero

under certain excitation condition.
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TABLE I

THE PARAMETER ESTIMATES AND ERRORS (σ2 = 0.102 , δns = 11.24%)

Algorithms t a1 a2 b1 b2 δ (%)
AM-SG 100 -0.15168 0.05247 -0.15359 0.50719 58.42788

(AM-MISG, 200 -0.20049 0.07145 -0.16443 0.54845 52.60657
300 -0.22737 0.08445 -0.18157 0.56502 49.49584

p = 1) 500 -0.25693 0.09403 -0.17869 0.59336 46.04954
1000 -0.30184 0.11304 -0.18951 0.62565 41.00311
1500 -0.32361 0.12108 -0.18901 0.64176 38.65996
2000 -0.33849 0.12878 -0.18877 0.65281 36.93897
2500 -0.35229 0.13475 -0.19025 0.66210 35.45282
3000 -0.36042 0.13965 -0.18998 0.66647 34.53358

AM-MISG 100 -0.28918 0.29401 -0.21237 0.64757 33.06925
p = 2 200 -0.36741 0.29036 -0.20461 0.67859 25.96192

300 -0.40500 0.29634 -0.21546 0.68750 22.66928
500 -0.44380 0.29521 -0.20643 0.71378 18.89825

1000 -0.49097 0.30548 -0.20809 0.73697 14.39313
1500 -0.51056 0.31045 -0.20534 0.74743 12.52036
2000 -0.52182 0.31716 -0.20332 0.75474 11.19285
2500 -0.53202 0.32128 -0.20322 0.75985 10.18209
3000 -0.53679 0.32527 -0.20227 0.76223 9.57905

AM-MISG 100 -0.56730 0.36327 -0.20702 0.78656 4.69725
p = 5 200 -0.58706 0.37746 -0.20175 0.78915 2.57627

300 -0.59380 0.38877 -0.20436 0.79454 1.33381
500 -0.59634 0.38717 -0.20087 0.80295 1.24988

1000 -0.59774 0.39190 -0.20045 0.80372 0.84066
1500 -0.59965 0.39242 -0.20089 0.80062 0.70014
2000 -0.59825 0.39697 -0.19945 0.80105 0.33674
2500 -0.59957 0.39518 -0.19935 0.80013 0.44597
3000 -0.59857 0.39725 -0.19941 0.79932 0.29504

True values -0.60000 0.40000 -0.20000 0.80000
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δ
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AM−SG ( AM−MISG,  p = 1 )

Fig. 3. The estimation errors versus data length t (σ2 = 0.102)

5597


