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Abstract— Sliding-mode observer design is considered for
linear systems with unknown inputs when the so-called observer
matching condition is not satisfied. To circumvent the restriction
imposed by the observer matching condition, the method of
utilizing auxiliary outputs generated by high-order sliding-
mode exact differentiators in the sliding-mode observer design
has been proposed in the literature. In this paper, an alternative
approach is proposed to use high-gain approximate differen-
tiators of simpler architecture instead of high-order sliding-
mode exact differentiators. The capability of reconstructing
the unknown inputs using the proposed high-gain approximate
differentiator based sliding-mode observer is also discussed and
then illustrated with a numerical example.

I. INTRODUCTION

Unknown input observer (UIO) has been developed to

estimate the states of the system with inputs that are unknown

or partially known. Linear UIO architectures that have been

developed for linear system are presented in [1]–[5]. UIO ar-

chitectures for non-linear systems with unknown inputs have

been reported in [6], [7]. Motivated by the design of sliding-

mode controllers, first-order sliding mode based UIOs have

been discussed in [5], [8]–[10]. The main advantage of

sliding-mode observers over their linear counterparts is that

while in sliding, they are insensitive to the unknown inputs,

and, moreover, they can be used to reconstruct unknown

inputs which could be a combination of system disturbances,

faults or non-linearities. The reconstruction of unknown

inputs has found impressive applications in fault-detection

and isolation [4], [9], [10].

The necessary and sufficient conditions for the existence

of most of the unknown input observers proposed thus far

are that the observer matching condition is satisfied and the

invariant zeros of the system involving unknown input are

in the open left half complex plane. However, the observer

matching condition seriously restrict the applicability of slid-

ing mode observers. Recently, high-order sliding mode based

unknown input observers [11]–[14] have been developed

to overcome this restrictive condition. In [13], a change

of coordinates is performed using a constructive algorithm

to transform the system into a quasi-block triangular ob-

servable form. Then a step-by-step second order sliding-

mode observer is constructed for the transformed system.

In [14], auxiliary outputs are defined so that the conventional

unknown input sliding-mode observer proposed in [9] can
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be constructed for systems that do not satisfy the observer

matching condition.

In this paper, we design the sliding-mode observer pre-

sented in [8] for systems that do not satisfy the observer

matching condition. We adopt the idea of auxiliary outputs

used in [14], but propose an alternative approach for the

generation of auxiliary outputs. We use high-gain observers

rather than high-order sliding-mode observers to obtain the

estimates of auxiliary outputs. The high-gain observer is

often referred to as approximate differentiator [15]. The

proposed high-gain approximate differentiator based sliding-

mode observer can achieve good state estimation perfor-

mance. The advantage of our developed technique is that

the overall observer architecture is simpler than the high-

order sliding-mode exact differentiator based sliding-mode

observer proposed in [14]. We also discuss the capability

of the proposed high-gain approximate differentiator based

sliding-mode observer in the unknown input reconstruction,

which is then illustrated with a numerical example.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

We consider the following class of linear time-invariant

systems with unknown inputs

ẋ = Ax + B1u1 + B2u2

y = Cx,

}

(1)

where x ∈ R
n, y ∈ R

p, u1 ∈ R
m1 and u2 ∈ R

m2 are

the state, output, known and unknown input vectors, and

B1 ∈ R
n×m1 , B2 ∈ R

n×m2 and C ∈ R
p×n are known

constant matrices. For the above system, we assume that

1) B2 and C are of full rank, that is, rankB2 = m2 and

rankC = p, and m2 ≤ p;

2) there is ρ > 0 such that ‖u2(t)‖ ≤ ρ for all t, where

‖·‖ denotes the standard Euclidean norm;

3) the invariant zeros of the system model given by the

triple (A, B2, C) are in the open left-hand complex

plane, or equivalently,

rank

[

sIn − A B2

C O

]

= n + m2. (2)

for all s such that ℜ(s) ≥ 0.

It follows from [8] that, if the so-called observer matching

condition [13] is also satisfied for the system modeled by (1),

that is,

rankB2 = rank(CB2) = m2, (3)

we can construct the Walcott-Żak sliding-mode observer,

˙̂x = Ax̂ + B1u1 + L (y − ŷ) − B2E(y, ŷ, η) (4)
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with ŷ = Cx̂ and

E(y, ŷ, η) =







η
F (ŷ−y)
‖F (ŷ−y)‖ if F (ŷ − y) 6= 0

0 if F (ŷ − y) = 0,
(5)

where η is a positive design parameter, L ∈ R
n×p and F ∈

R
m2×p are matrices such that

(A − LC)
⊤

P + P (A − LC) = −2Q < 0

and FC = B⊤
2 P for some symmetric positive definite

P ∈ R
n×n and Q ∈ R

n×n. The design procedures for the

matrices Li, F i and P o
i is given in [5].

However, many physical systems that can be modeled

by (1) do not satisfy the observer matching condition (3). The

observer matching condition (3) is sometimes too restrictive

in practical applications.

III. HIGH-GAIN APPROXIMATE DIFFERENTIATOR

In this section, we propose a high-gain approximate dif-

ferentiator based sliding-mode observer for the systems that

do not satisfy the observer matching condition.

A. Auxiliary Output Signals

We first define as in [14] the auxiliary outputs that are then

used to construct the sliding-mode observer. Let ci be the i-
th row of the output matrix C. Recall that the relative degree

of the i-th output yi with respect to the unknown input u2

is defined to be the smallest positive integer ri such that

ciA
kB2 = 0, k = 0, . . . , ri − 2

ciA
ri−1B2 6= 0.

We can choose integers γi (1 ≤ γi ≤ ri) such that

Ca =



























c1

...

c1A
γ1−1

...

cp

...

cpA
γp−1



























is of full rank with rank(CaB2) = rankB2. It is proved

in [14] that the system zeros of the system model given by

the triple (A, B2, Ca) are in the open left-hand complex

plane if the triple (A, B2, C) satisfies (2). Thus, we can

construct the sliding-mode observer of the form (4) for the

following system model

ẋ = Ax + B1u1 + B2u2

ya = Cax,

}

if the output ya = Cax is available. However, some com-

ponents of the vector ya are not measurable and, therefore,

additional observers are needed to estimate them.

B. High-Gain Observer Construction

In [14], high-order sliding-mode observers have been

employed to obtain the auxiliary outputs in ya. We propose

to use high-gain observers to estimate the auxiliary outputs

instead. The reason behind this is because they have simpler

architectures than high-order sliding-mode observers.

To proceed, we let yij = ciA
j−1x, i = 1, . . . , p and

j = 1, . . . , γi. Thus, we have ya = [y⊤
a1 · · ·y⊤

ap]
⊤, where

yai = [yi1 · · · yiγi
]⊤. If γi > 1, the dynamics of yai,

i = 1, . . . , p, are given by

ẏai = Āiyai + b̄i1fi(x, u2) + b̄i2u1

yi1 = c̄iyai,

}

(6)

where the pair (Āi, b̄i1) is in canonical controllable form

representing the chain of γi integrators,

fi(x, u2) = ciA
γix + ciA

γi−1B1u2, (7)

b̄i2 = [ciB1 · · · ciA
γi−1B1]

⊤ and c̄i = [1 0 · · · 0]. We

assume, as in [14], that x and ẋ are bounded and |yij | ≤ dij ,

which implies that u1 is bounded. If γi > 1, we construct

the following high-gain observers,

˙̂yi1 = ŷi2 + αi1

ǫ
(yi1 − ŷi1) + ciB1u1

...
˙̂yi(γi−1) = ŷiγi

+
αi(γi−1)

ǫγi−1 (yi1 − ŷi1) + ciA
γi−2B1u1

˙̂yiγi
=

αiγi

ǫγi
(yi1 − ŷi1) + ciA

γi−1B1u1,



















(8)

where ǫ ∈ (0, 1) is a design parameter and αij , j = 1, . . . , γi,

are selected so that the roots of the equation, sγi +αi1s
γi−1+

· · · + αi(γi−1)s + αiγi
= 0, have negative real parts. Let

yhi = [ŷi1 · · · ŷiγi
]⊤ and li = [αi1/ǫ · · · αiγi

/ǫγi]⊤. We

can rewrite (8) as

ẏhi = Āiyhi + lic̄i (yai − yhi) + b̄i2u1. (9)

If γi = 1, we do not need to construct the above high-gain

observer (9) because of the availability of yi1. In such a case,

we have yhi = yai = yi1. To proceed, let ζi = 0 if γi = 1
and let ζi = [ζi1 · · · ζiγi

]⊤ if γi > 1, where

ζij =
yij − ŷij

ǫγi−j
, j = 1, . . . , γi. (10)

It follows from (6) and (9) that if γi > 1, we have

ǫζ̇i = Āciζi + ǫb̄i1fi(x, u2), (11)

where Āci = ǫD−1
i (Āi − lic̄i)Di is a Hurwitz matrix

independent of ǫ. Applying the method in [16], we can prove

the following proposition.

Proposition: For the high-gain observer (9), there exists a

finite time Ti(ǫ) such that ‖ζi(t)‖ ≤ βiǫ for some positive

constant βi and t ≥ t0 + Ti(ǫ). Moreover, Ti(ǫ) approaches

zero when ǫ approaches to zero, that is, limǫ→0+ Ti(ǫ) = 0.

It follows from (10) that yai − yhi = Diζi, where Di =
diag[ǫγi−1 ǫγi−2 · · · 1]. Let yh = [y⊤

h1 · · · y⊤
hp]

⊤, D =

diag[D1 · · · Dp] and ζ = [ζ⊤
1 · · · ζ⊤

p ]⊤. We have

ya − yh = Dζ. (12)
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Note that the induced Euclidean norm of D is 1, that is,

‖D‖ = 1. Let βi = 0 and Ti(ǫ) = 0 if γi = 1. Thus,

it follows from the proposition that ‖ζ‖ ≤ βǫ, where β =
(
∑p

i=1 β2
i )

1
2 , after a finite time T (ǫ) = max1≤i≤p Ti(ǫ), and

limǫ→0 T (ǫ) = 0.

IV. STATE ESTIMATION PERFORMANCE ANALYSIS

In order to eliminate the peaking phenomena that accom-

panies the operation of the above high-gain observer [17],

we introduce the saturation of the signal yh such that ys
h =

[ys
h1

⊤ · · · ys
hp

⊤]⊤, where ys
hi = yai = yi1 if γi = 1 and

ys
hi =

[

Si1 sat

(

ŷi1

Si1

)

· · · Siγi
sat

(

ŷiγi

Siγi

) ]⊤

with Sij > dij if γi > 1. Then we construct the following

sliding-mode observer,

˙̂x = Ax̂+B1u1+La (ys
h − ŷa)−B2Ea(ys

h, ŷa, η), (13)

where ŷa = Cax̂ and

Ea(ys
h, ŷa, η) =







η
F a(ŷa

−ys
h)

‖F a(ŷa
−ys

h)‖ if F a (ŷa − ys
h) 6= 0

0 if F a (ŷa − ys
h) = 0.

where La ∈ R
n×γ and F a ∈ R

m2×γ are matrices such that

(A − LaCa)
⊤

P a + P a (A − LaCa) = −2Qa < 0

and

F aCa = B⊤
2 P a (14)

for some symmetric positive definite P a ∈ R
n×n and Qa ∈

R
n×n. It follows from (1) and (13) that

ė = Ae+La (ys
h − ŷa)−B2u2−B2Ea(ys

h, ŷa, η). (15)

In the following, we analyze the performance of the proposed

high-gain approximate differentiator based sliding-mode ob-

server given by (13).

Theorem 1: For the dynamical system (1) and the associ-

ated sliding-mode observer (13) with high-gain approximate

differentiators (9), there exists a constant ǫ∗ ∈ (0, 1) such

that if ǫ ∈ (0, ǫ∗) and η ≥ ρ, then the state estimation error

e(t) is uniformly ultimately bounded. Specifically, after a

finite time Tf (ǫ), we have ‖e(t)‖ ≤ κ(ǫ), where

κ(ǫ) =
κ1ǫ +

√

κ2
1ǫ

2 + 4µaκ1ǫ

2µa

√

2

λmin(P a)

for positive constants µa, κ1 and κ2.

Proof: It follows from the proposition that ‖ζ(t)‖ ≤ βǫ
for t ≥ t0 + T (ǫ). Then, it follows from (12) that ‖ya(t) −
yh(t)‖ ≤ βǫ for t ≥ t0+T (ǫ). There exists a constant ǭ such

that if ‖ya(t) − yh(t)‖ ≤ βǭ, then yh(t) is not saturated,

that is, ys
h(t) = yh(t). Thus, we can choose ǫ∗ = min{ǭ, 1}

such that if ǫ ∈ (0, ǫ∗), then ‖ζ(t)‖ ≤ βǫ and ys
h(t) = yh(t)

after a finite time T (ǫ).
For t0 ≤ t ≤ t0 + T (ǫ), it is guaranteed that the observer

state vector x̂(t) in (13) is bounded because u1, ys
h and

Ea(ys
h, ŷa, η) are bounded and A−LaCa is Hurwitz. Thus,

e(t) is bounded for t0 ≤ t ≤ t0 + T (ǫ). For t ≥ t0 + T (ǫ),
because ys

h(t) = yh(t) and yh = ya − Dζ, the dynamics

of the state estimation error (15) become

ė = Ae + La (yh − ŷa) − B2u2 − B2Ea(yh, ŷa, η)

= (A − LaCa)e − LaDζ − B2u2

− B2Ea(yh, ŷa, η). (16)

Consider the Lyapunov function candidate V = 1
2e⊤P ae

for t ≥ t0 + T (ǫ). Evaluating the time derivative of V on

the solutions of (16), we obtain

V̇ = e⊤P (A − LaCa)e − e⊤P aLaDζ

− e⊤P aB2u2 − e⊤P aB2Ea(yh, ŷa, η)

= −e⊤Qae − e⊤P aLaDζ

− (F aCae)⊤u2 − (F aCae)⊤Ea(yh, ŷa, η)

= −e⊤Qae − e⊤P aLaDζ − (F aCae + F aDζ)⊤u2

− (F aCae + F aDζ)⊤Ea(yh, ŷa, η)

+ (F aDζ)⊤u2 + (F aDζ)⊤Ea(yh, ŷa, η).

If F a(Cae + Dζ) = 0, then

−(F aCae + F aDζ)⊤u2

− (F aCae + F aCae)⊤Ea = 0. (17)

On the other hand, if F a(Cae + Dζ) 6= 0, then

−(F aCae + F aDζ)⊤u2 − (F aCae + F aCae)⊤Ea

= −(F aCae + F aDζ)⊤u2

− η(F aCae + F aDζ)⊤
F aCae + F aDζ

‖F aCae + F aDζ‖
≤ −(η − ρ)‖F aCae + F aDζ‖ ≤ 0. (18)

It follows from (17) and (18) that in both cases we have

V̇ ≤ −e⊤Qae − e⊤P aLaDζ

+ (F aDζ)⊤u2 + (F aDζ)⊤Ea(yh, ŷa, η)

≤ −λmin(Qa)‖e‖2 + βǫ‖P aLa‖‖e‖
+ (η + ρ)βǫ‖F a‖

= −2µaV + κ1ǫ
√

V + κ2ǫ, (19)

where κ1 =
√

2β‖P aLa‖/
√

λmax(P a) and κ2 = (η +

ρ)β‖F a‖. It follows from (19) that

V̇ ≤ −µaV − µaV + κ1ǫ
√

V + κ2ǫ

= −µaV −
(√

V − R−

)(√
V − R+

)

, (20)

where

R− =
κ1ǫ −

√

κ2
1ǫ

2 + 4µaκ2ǫ

2µa

< 0

and

R+ =
κ1ǫ +

√

κ2
1ǫ

2 + 4µaκ1ǫ

2µa

> 0.

We conclude from (20) that V̇ < 0 when ‖e‖ > R+. Thus,

the state estimation error e is uniformly ultimately bounded

with respect to any closed ball of radius greater than R+.
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Hence, as long as
√

V > R+, that is, V > R2
+, we

have (
√

V − R−)(
√

V − R+) < 0. Therefore, if V (t0 +
T (ǫ)) = V (e(t0 + T (ǫ))) > R2

+ and V (t) > R2
+ for

t ≥ t0 + Tf(ǫ), then V̇ ≤ −µaV , which implies that

V (t) ≤ exp (−µa (t − t0 − T (ǫ)))V (t0 + T (ǫ)). Thus, we

can find a finite time Tf(ǫ) such that V (t) ≤ R2
+ for

t ≥ t0 + T (ǫ), where Tf(ǫ) is the solution to the equation

V (t0 + T (ǫ)) exp(−µa(Tf (ǫ) − T (ǫ))) = R2
+ as

Tf(ǫ) = T (ǫ) +
1

µa

ln

(

V (t0 + T (ǫ))

R2
+

)

.

On the other hand, if V (t0 + T (ǫ)) ≤ R2
+, then V (t) ≤ R2

+

for t ≥ t0 + T (ǫ). In such a case, we can choose Tf(ǫ) =
T (ǫ). Therefore, there exists a finite time Tf (ǫ) such that

V (t) ≤ R2
+ for t ≥ t0 + Tf(ǫ), which implies that ‖e(t)‖ ≤

κ(ǫ). The proof of the theorem is complete.

Remark: It follows from Theorem 1 that the state esti-

mation error enters the closed ball {e : ‖e‖ ≤ κ(ǫ)} after a

finite time Tf (ǫ). It is easy to verify that

lim
ǫ→0+

Tf (ǫ) =

{

∞ if V (t0) 6= 0
0 if V (t0) = 0,

because limǫ→0+ T (ǫ) = 0 and limǫ→0+ R+ = 0. Moreover,

the radius of the above closed ball can be adjusted by the

design parameter ǫ and because limǫ→0+ κ(ǫ) = 0, the state

estimation error e converges to the origin as ǫ goes to zero.

Theorem 2: For sufficiently large η, the sliding surface,

{(e, ζ) : σ = F a(Cae + Dζ) = 0} is invariant in the

(e, ζ)-space and is reached in finite time.

Proof: Let ζ = [ζ⊤
1 · · · ζ⊤

p ]⊤. Using (11) for γi > 1
and the fact that ζi = 0 if γi = 1, we obtain

ǫζ̇ = Ācζ + ǫB̄1f(x, u2), (21)

where Āc = diag[Āc1 · · · Ācp], B̄1 = diag[b̄11 · · · b̄p1]
with Āci = O and b̄i1 = 0 if γi = 1 and f(x, u2) =
[f1(x, u2) · · · fp(x, u2)]

⊤. Because x and u2 are bounded,

we have ‖f(x, u2)‖ ≤ β1 for some β1 > 0. For t ≥ t0 +
Tf (ǫ), it follows from (16) and (21) that

σ⊤σ̇ = σ⊤
(

F aCaė + F aDζ̇
)

= σ⊤

(

F aCa(A − LaCa)e − F aCaLaDζ

− F aCaB2u2 − F aCaB2Ea

+
1

ǫ
F aDĀcζ + F aDB̄1f(x, u2)

)

≤ κ(ǫ)‖F aCa(A − LaCa)‖‖σ‖
+ βǫ‖F aCaLa‖‖σ‖ + β1‖F a‖‖B̄1‖‖σ‖
+ λmax(B

⊤
2 P aB2)‖u2‖‖σ‖

− ηλmin(B⊤
2 P aB2)‖σ‖ + β‖F a‖‖Āc‖‖σ‖

= −
(

η − κ3 + κ4 + κ5 + κ6 + κ7

κ8

)

κ8‖σ‖, (22)

where

κ3 = κ(ǫ)‖F aCa(A − LaCa)‖, κ4 = βǫ‖F aCaLa‖,
κ5 = ρλmax(B

⊤
2 P aB2), κ6 = β‖F a‖‖Āc‖,

κ7 = ‖F a‖‖B̄1‖‖f(x, u2)‖, κ8 = λmin(B
⊤
2 P aB2).

It follows from (22) that if we choose η such that

η ≥ κ3 + κ4 + κ5 + κ6 + κ7

κ8
+ ε,

where ε is a small positive constant, then

σ⊤σ̇ ≤ −ε‖σ‖, (23)

which implies the above hyperplane is invariant. Let Ts

denote the time the sliding surface is reached. Using the

same arguments as in [9, p. 53], we obtain

Ts ≤ t0 + Tf(R) +
‖σ(t0 + Tf (R))‖

ε
.

Thus, the proof of the theorem is complete.

V. UNKNOWN INPUT RECONSTRUCTION

It follows from Theorem 2 that the manifold {(e, ζ) : σ =
F a(Cae+Dζ) = 0} is invariant and is reached after a finite

time. Therefore, we have

σ̇ = F aCa(A − LaCa)e − F aCaLaDζ − F aCaB2u2

− F aCaB2Ea(ys
h, ŷa, η) + F aDζ̇ = 0. (24)

Substituting (14) into (24) and performing simple manipula-

tions, we obtain

u2 =
(

B⊤
2 P aB2

)−1 (

F aCa(A − LaCa)e + F aDζ̇

F aCaLaDζ
)

− Ea(ys
h, ŷa, η).. (25)

By the proposition, we have ‖ζ(t)‖ ≤ βǫ for t ≥ t0 + T (ǫ).
By Theorem 1, we have ‖e(t)‖ ≤ κ(ǫ) for t ≥ t0 + Tf (ǫ),
where limǫ→0+ κ(ǫ) = 0. Therefore, for sufficiently small ǫ,

‖ζ(t)‖ and ‖e(t)‖ becomes negligible after a finite time. If,

in addition, ‖ζ̇(t)‖ becomes negligible for sufficiently small

ǫ, it follows from (25) that after a finite time,

u2 ≈ −Ea(ys
h, ŷa, η). (26)

That is, we can use the proposed architecture to estimate the

unknown input u2 for sufficiently small ǫ.

Recall that ζ = [ζ⊤
1 · · · ζ⊤

p ]⊤ and ζi = ζ̇i = 0 if γi = 1.

Thus, in order to obtain (26), it remains to show that if γi >
1, then ‖ζ̇i(t)‖ becomes negligible for sufficiently small ǫ.

We first rewrite (11) as

ζ̇i(t) =
1

ǫ
Āciζi(t) + vi(t), (27)

where vi(t) = b̄i1fi(x(t), u2(t)). Because x(t) and u2(t)
are bounded, it follows from (7) that fi(x(t), u2(t)) is

bounded. Thus, vi(t) is bounded. To proceed, we define two

notions regarding the function vi(t).
Definition 1: A function vi(t) is left-continuous if

limǫ→0+ vi(t − ǫ) = vi(t) for all t.
Definition 2: A function vi(t) defined on S ⊂ R is

weakly uniformly continuous if for every ν > 0, there exists

a δ > 0 such that for each interval Ω ⊂ S with length less

than δ, ‖vi(s) − vi(t)‖ < ν for s, t ∈ Ω.

In the following, we use S1 + S2, where S1, S2 ⊂ R, to

denote the set {s1 + s2 : s1 ∈ S1, s2 ∈ S2}. If S1 or S2 is

empty, then S1 + S2 is defined to be empty.
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Let J denote the set of points at which vi(t) is discontin-

uous and let τ > t0 > 0. It can be shown, as in [18], that

if vi(t) is left-continuous, then limǫ→0+ ζ̇i(t) = 0 for each

t > t0 ≥ 0. Moreover, if vi(t) is also weakly uniformly

continuous on [τ, ∞)\J , then the convergence of ζ̇i(t) to

0 as ǫ → 0+ is uniform on [τ, ∞)\(J + (0, ξ)) for each

ξ > 0. In particular, if vi(t) is uniformly continuous, then

the convergence is uniform on [τ, ∞). The detailed proof of

this result can be found in [18], where a more general case

regarding vi(t) is also considered.

VI. NUMERICAL EXAMPLE

In this section, we illustrate the effectiveness of our

proposed high-gain approximate differentiator based sliding-

mode observer with a numerical example. Our simulations

demonstrate that its performance is quite similar to that

of the high-order sliding-mode exact differentiator based

sliding-mode observer. Due to lack of space, we only show

simulations with the high-gain approximate differentiator

based sliding-mode observer.

We consider a linear time invariant system modeled by

A =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−1 −5 −10 −10 −5













,

B2 =













0 0
0 0
0 −1
1 0
0 0













, C =

[

1 0 0 0 0
0 0 0 1 0

]

.

We do not consider B1, because we set u1 = 0 for

simplicity. The initial condition is selected to be x(0) =
[0.5 0.5 0.5 −0.5 −0.5]⊤. The unknown input u2 consists

of a square wave of amplitude 1 and frequency 1Hz, and a

sawtooth signal of amplitude 2 and frequency 1Hz.

It is easy to check that for this system rank(CB2) 6=
rankB2 because c1B2 = 0. Thus, we choose γ1 = r1 = 3
such that

Ca =









c1

c1A

c1A
2

c2









=









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0









is of full rank with rank(CaB2) = rankB2. We employ a

high-gain observer to estimate the auxiliary outputs y12 =
c1Ax and y13 = c1A

2x. The design parameters of the high-

gain observer are selected to be α11 = 3, α12 = 3, α13 = 1
and ǫ = 0.001. The estimated and true values of the auxiliary

outputs are shown in Fig. 1.

Now we use the estimates of the auxiliary outputs to

construct the sliding-mode observer described by (13). Fol-

lowing the algorithm given in [5], we use κ = 2.0659 and
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Fig. 1. True and estimated auxiliary outputs.

η = 50 to obtain

La =













6 1 0 0
0 7 0 0
0 0 2.0659 0
0 0 0 2.0659
0 0 0 0













, F a =









0 0
0 0
0 −1
1 0









⊤

.

We set the initial states of the sliding-mode observer to be

zero, that is, x̂(0) = 0, and select S11 = S12 = S13 = 1.5.

In Fig. 2, we show the state estimation performance. The

unknown inputs reconstruction is illustrated in Fig. 3.

VII. CONCLUSIONS

A novel sliding-mode observer has been proposed for

systems with unknown inputs, where the observer matching

condition is not satisfied. High-gain approximate differentia-

tors were employed to estimate auxiliary outputs that are then

used by the sliding-mode observer to estimate the states and

reconstruct the unknown inputs. The proposed observer has

simple architecture and performs comparably to the high-

order sliding-mode exact differentiator based sliding-mode

observer in [14].
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