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Abstract— A novel decentralized dynamic output feedback
controller is presented to deal with the transient stability of
a class of multimachine power systems. The proposed decen-
tralized control strategy employs local sliding mode observers
to estimate the states of each machine, and the feedback gain
matrix of each local controller is obtained by solving two linear
matrix inequalities. In addition, local sliding mode observers are
capable of reconstructing unknown interconnections between
machines. The effectiveness of the proposed control strategy is
illustrated by simulation of a three-machine power system.

NOMENCLATURE

δi rotor angle of the i-th machine, in degree

ωi relative speed of the i-th machine, in rad/sec

ωo synchronous machine speed, in rad/sec

Bij the i-th row and j-th column element of the nodal

susceptance matrix at internal nodes after removing

physical buses, in per unit (p.u.) system

Di damping coefficient of the i-th machine, in p.u.

E′
qi

internal transient voltage of the i-th machine, in p.u.,

which is assumed to be constant

E′
qj

internal transient voltage of the j-th machine, in p.u.,

which is assumed to be constant

FIPi
fraction of the turbine power generated by the inter-

mediate pressure (IP) section

Hi inertia constant of the i-th machine, in sec

Kei
gain of the i-th machine’s speed governor

Kmi
gain of the i-th machine’s turbine

Pci
power control input of the i-th machine

pij constant indicating if the i-th machine has a connec-

tion with the j-th machine; either 0 or 1

Pmi
mechanical power of the i-th machine, in p.u.

Ri regulation constant of the i-th machine, in p.u.

Tei
time constant of the i-th machine’s speed governor

Tmi
time constant of the i-th machine’s turbine

Xei
steam valve opening of the i-th machine, in p.u.

I. INTRODUCTION

The recently proposed decentralized control strategies

for multimachine power systems can be classified as de-

centralized turbine/governor control strategy [1], [2] and

decentralized excitation control strategy [3], [4]. In [3],

[5], [6], nonlinear control techniques were employed to

improve the transient stability of power systems. However,

these nonlinear controllers are characterized by high design

complexity, which make them harder to implement than their

linear counterparts proposed in [1], [2], [7]–[10]. In [8],
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linear matrix inequalities (LMIs) were employed to develop a

robust decentralized turbine/governor control strategy, while,

in [10], LMIs were used to develop a decentralized excitation

control strategy. In [7], the feedback gain matrix for the

decentralized turbine/governor controller was obtained by

solving an algebraic Ricatti equation based on the bounds

of the machine parameters. The main drawback of all the

above discussed strategies is that they require the availability

of the subsystem’s states for the controller implementation.

However, this cannot be guaranteed for the multimachine

power system. To relax this restriction, Jiang, Wu and

Wen [11] proposed high-gain observer based decentralized

output feedback controller for excitation control. For tur-

bine/governor control, Jain and Khorrami [12] proposed a

decentralized output feedback based nonlinear controller. To

the best of our knowledge, there has been no decentralized

output feedback based linear controller developed for tur-

bine/governor control.

In this paper, we propose a novel decentralized dynamic

output feedback linear controller for turbine/governor control

to stabilize the multimachine power system against faults

and disturbances. We obtain a feedback gain matrix for each

local controller by solving two LMIs. Local sliding mode

observers are used to estimate the subsystems’ states for the

controller implementation. The main advantage of the sliding

mode observer over the Luenberger observer and the high-

gain observer is its capability of reconstructing the unknown

interconnections between the subsystems.

II. MULTIMACHINE POWER SYSTEM MODELING

We consider a class of multimachine power systems con-

sisting of N interconnected machines under turbine/governor

control. The dynamics of various components of this N -

machine power system can be found in [5], [7], [8], [13],

[14]. Let xi = [δi ωi Pmi
Xei

]⊤ denote the state vector

of each machine. Then the dynamics of the i-th machine,

i = 1, . . . , N , can be represented as

ẋi = Aixi + Bi1ui1 + Bi2ui2(x), (1)

yi = Cixi, (2)

where

Ai =











0 1 0 0
0 − Di

2Hi

ωo

2Hi
(1 − FIPi

) ωo

2Hi
FIPi

0 0 − 1
Tmi

Kmi

Tmi

0 −
Kei

Tei
Riωo

0 1
Tei











,
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Bi1 =









0
0
0
1

Tei









, Bi2 =









0
−1

0
0









,

Ci =

[

0 1 0 0
1 0 0 0

]

, ui1 = Pci
,

and

ui2(x) =
N
∑

j=1,j 6=i

pij

ωoE
′
qi
E′

qj
Bij

2Hi

sin (δi − δj) .

It is easy to verify that |ui2(x)| ≤ ρi for some ρi > 0. Con-

sider the following decentralized state feedback controller

ui1 = ki

(

xi − xd
i

)

, (3)

where xd
i = [δd

i ω
d
i P

d
mi

Xd
ei

]⊤ is an operating point and ki

is the feedback gain matrix. Let xe
i = [δe

i ωe
i P e

mi
Xe

ei
]⊤

denote the equilibrium state of (1) corresponding to the

equilibrium input ue
i1. It follows from (3) that the equilibrium

state xe
i satisfies the following algebraic equation,

0 = Axe
i + Bi1u

e
i1 + Bi2ui2(x

e),

where ue
i1 = ki(x

e
i −xd

i ). To study the stability of the power

system (1) and (2) driven by the controller (3), we consider

the perturbed system about the equilibrium state. Let ∆x =
[∆x⊤

1 · · · ∆x⊤
N ]⊤ with ∆xi = [∆xi1 ∆xi2 ∆xi3 ∆xi4]

⊤

denoting the deviations of δi, ωi, Pmi
and Xei

, respectively,

from their equilibrium values, that is,

∆xi =
[

δi − δe
i ωi Pmi

− P e
mi

Xei
−Xe

ei

]⊤
,

where ωe
i = 0. Then the dynamics of the i-th perturbed

system can be represented as

∆ẋi = Ai∆xi + Bi1∆ui1 + zi(∆x), (4)

∆yi = Ci∆xi, (5)

where ∆ui1 = ui1 − ue
i1 = ki∆xi and zi(∆x) =

Bi2(ui2(x) − ui2(x
e)). In the following, we show that

zi(∆x) satisfies the following quadratic constraint

z⊤
i (∆x)zi(∆x) ≤ υ2

i ∆x⊤Z⊤
i Zi∆x, (6)

where υi is a known positive constant and Zi is a known

interconnection matrix. In our derivation of (6), we use some

ideas from [8]. Let αij = ωoE
′
qi
E′

qj
Bij/2Hi and pij = 1 for

interconnected machines. Applying standard trigonometric

identities, we can represent zi(∆x) as

zi(∆x) = Bi2

N
∑

j=1,j 6=i

αijγij sinwij , (7)

where γij = 2 cos((δi − δj + δe
i − δe

j )/2) and

wij =
1

2

[

(δi − δe
i ) − (δj − δe

j )
]

. (8)

Recall that ∆xi1 = δi − δe
i and ∆xj1 = δj − δe

j . We can

therefore represent (8) as

wij =
1

2
(∆xi1 − ∆xj1), j 6= i.

To proceed, let γi = [γi1 · · · γi(i−1) γi(i+1) · · · γiN ]⊤,

U i = diag[αi1 · · · αi(i−1) αi(i+1) · · · αiN ] and hi =
[sinwi1 · · · sinwi(i−1) sinwi(i+1) · · · sinwiN ]⊤. Then we

rewrite (7) as zi(∆x) = Bi2γ
⊤
i U ihi. Thus, we obtain

z⊤
i (∆x)zi(∆x) = h⊤

i Ψihi, (9)

where Ψi = U iγiγ
⊤
i U i. It follows from [5] that E′

qi
E′

qj
Bij

is bounded. Thus, we have |αij | ≤ αijmax for some αijmax >
0. Then it can be easily verified that each element of Ψi, ψkj ,

satisfies that |ψkj | ≤ 4αikmaxαijmax . Applying the inequality

| sinwij || sinwik| ≤
w2

ij + w2
ik

2
,

we rewrite (9) as

z⊤
i (∆x)zi(∆x) ≤ w⊤

i Diwi, (10)

where wi = [wi1 · · · wi(i−1) wi(i+1) · · · wiN ]⊤ and Di =
diag

[

di1 · · · di(i−1) di(i+1) · · · diN

]

with

dik = 4αikmax

N
∑

j=1,j 6=i

αijmax > 0. (11)

Let Θi1 ∈ R
(N−1)×(N−1) and Θi2 ∈ R

N×N be defined as

Θi1 =















0 · · · 0 0 1
1 0 · · · 0 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0















and

Θi2 =















0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 0 · · · 0 1
1 0 0 · · · 0















.

Then we can express wi as wi = 1
2T (i)∆x(1), where

∆x(1) = [∆x11 · · · ∆xN1]
⊤ and T (i) ∈ R

(N−1)×N is

determined by T (i) = Θi1T (i−1)Θi2 for i = 2, · · · , N with

T (1) =















1 | −1 0 0 · · · 0
1 | 0 −1 0 · · · 0
... |

...
. . .

. . .
. . .

...

1 | 0 · · · 0 −1 0
1 | 0 · · · 0 0 −1















. (12)

Therefore, we can represent (10) as

z⊤
i (∆x)zi(∆x) ≤

1

4
∆x⊤

(1)T
⊤
(i)DiT (i)∆x(1). (13)

Let Z(i) = 1
2D

1
2

i T (i), where

Z(i) =







Zi11 · · · Zi1N

...
. . .

...

Zi(N−1)1
· · · Zi(N−1)N






, (14)
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and let

Zi =







Zi11 0
⊤
3 · · · Zi1N

0
⊤
3

...
...

. . .
...

...

Zi(N−1)1
0
⊤
3 · · · Zi(N−1)N

0
⊤
3






. (15)

Thus, we have z⊤
i (∆x)zi(∆x) ≤ ∆x⊤Z⊤

i Zi∆x following

from (13)–(15), which satisfies (6) with υi = 1.

In this paper, the control objective is to develop a decen-

tralized dynamic output feedback controller of the form

ui1 = ki

(

x̂i − xd
i

)

instead of the decentralized state feedback controller (3) to

stabilize the multimachine power system against faults and

disturbances, where x̂i is the estimate of the state vector xi.

III. LOCAL SLIDING MODE OBSERVER DESIGN

In this section, we consider the design of local observers

for the following generalized versions of the systems mod-

eled by (1) and (2),

ẋi = Aixi + Bi1ui1 + Bi2ui2(x), (16)

yi = Cixi. (17)

where xi ∈ R
ni , yi ∈ R

pi , ui1 ∈ R
mi1 and ui1 = Ki(x̂i−

xd
i ). The unknown input ui2 ∈ R

mi2 satisfies ‖ui2(x)‖ ≤ ρi

for some ρi > 0, where ‖·‖ is the standard Euclidean norm.

It follows from [15] that local sliding mode observers can

be constructed for the system described by (16) and (17), if

rankBi2 = rank(CiBi2) = ri, (18)

where ri ≤ mi2 ≤ pi, and the system zeros of the system

model given by the triple (Ai,Bi2,Ci) are located in the

open left-hand complex plane, that is,

rank

[

sIni
− Ai Bi2

Ci O

]

= ni + ri (19)

for all s such that ℜ(s) ≥ 0. It is easy to verify that the

multimachine power system modeled by (1) and (2) satisfies

the above two conditions.

The constructed local sliding mode observer for the i-th
subsystem has the form,

˙̂xi = (Ai −LiCi)x̂i +Liyi +Bi1ui1 −Bi2Ei(yi, ŷi, ηi),
(20)

with

Ei(yi, ŷi, ηi) =







ηi
F i(ŷi

−y
i)

‖F i(ŷi
−y

i)‖
if F i (ŷi − yi) 6= 0

0 if F i (ŷi − yi) = 0,

where ηi is a positive design parameter, and Li ∈ R
ni×pi

and F i ∈ R
mi2×pi are matrices satisfying

(Ai − LiCi)
⊤

P o
i + P o

i (Ai − LiCi) = −Qo
i (21)

and

F iCi = B⊤
i2P

o
i (22)

for some symmetric positive definite P o
i ∈ R

ni×ni and

Qo
i ∈ R

ni×ni . It follows from [16] that the x̂i converges

asymptotically to xi for ηi ≥ ρi. Moreover, it is shown

in [15] that if Bi2 is of full rank, then we can obtain

ui2(x) = −E
eq
i (yi, ŷi, ηi) as t→ ∞, where E

eq
i (yi, ŷi, ηi)

is the so-called “equivalent injection term” [17]. Thus, we

can reconstruct the unknown interconnections using local

sliding mode observers.

The design procedures for the matrices Li, F i and P o
i ,

which satisfy (21) and (22), is given in [15]. For the

subsequent stability analysis of the closed-loop system, we

need the following lemma, whose proof is given in [15].

Lemma: Let Qi = (Bi1Ki)
⊤(Bi1Ki). Then we have

λmin(Qo
i ) > λmax(Qi).

IV. DECENTRALIZED DYNAMIC OUTPUT FEEDBACK

CONTROLLER CONSTRUCTION

In this section, we design a decentralized dynamic output

feedback controller in the form of ui1 = Ki(x̂i−xd
i ) for the

generalized system (16) and (17). The feedback gain matrix

Ki is derived by solving Linear Matrix Inequalities (LMIs).

The stability of the closed-loop system driven by the decen-

tralized dynamic output feedback controller is then analyzed.

To proceed, consider the following generalized version of the

perturbed system modeled by (4) and (5),

∆ẋi = Ai∆xi + Bi1∆ui1 + zi(∆x), (23)

∆yi = Ci∆xi. (24)

Then we can represent the overall system consisting of (23)

and (24), for i = 1, . . . , N , in the compact form

∆ẋ = AD∆x + B1D∆u1 + z(∆x), (25)

∆y = CD∆x, (26)

where AD , B1D, and CD are block-diagonal matrices,

∆u1 = [∆u⊤
11 · · · ∆u⊤

N1]
⊤, ∆y = [∆y⊤

1 · · · ∆y⊤
N ]⊤ and

z(∆x) = [z⊤
1 (∆x) · · · z⊤

N (∆x)]⊤ satisfies the following

quadratic constraint

z⊤(∆x)z(∆x) ≤ ∆x⊤

(

N
∑

i=1

υ2
i Z⊤

i Zi

)

∆x. (27)

Let x̂ = [x̂⊤
1 · · · x̂

⊤
N ]⊤ and KD = diag[K1 · · · KN ]. The

controller ∆u1 has the form

∆u1 = KD(x̂ − xe). (28)

Let P c
D = diag[P c

1 · · · P c
N ] and P o

D = diag[P o
1 · · · P o

N ],
where P c

i is symmetric positive definite and P o
i is defined

in Section III. Consider the Lyapunov function candidate

V = ∆x⊤P c
D∆x + e⊤P o

De,

where e = [e⊤
1 · · · e⊤

N ]⊤ with ei = x̂i −xi. Evaluating the

time derivative of V on the solutions to (25), we obtain

V̇ = 2∆x⊤P c
D∆ẋ + 2e⊤P o

Dė

= 2∆x⊤P c
D (AD + B1DKD) ∆x + 2e⊤P o

Dė

+ 2∆x⊤P c
D (B1DKD) e + 2∆x⊤P c

Dz(∆x).
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Using the inequality, 2a⊤b ≤ a⊤a + b⊤b, where a and b

are arbitrary vectors, we obtain

2∆x⊤P c
D (B1DKD)e ≤ ∆x⊤P c

DP c
D∆x + e⊤QDe,

where QD = (B1DKD)⊤ (B1DKD). It follows that

V̇ ≤ V̇c + V̇o, (29)

where

V̇c = 2∆x⊤P c
D (AD + B1DKD)∆x

+ ∆x⊤P c
DP c

D∆x + 2∆x⊤P c
Dz(∆x), (30)

and V̇o = 2e⊤P o
Dė + e⊤QDe. If V̇c and V̇o are both nega-

tive, we have V̇ < 0, which implies the asymptotic stability

of the closed-loop system. In the following subsections, we

first derive the matrices P c
D and KD using LMIs similar

to [8], [18] such that V̇c < 0. Then we analyze the stability

of the closed-loop system.

A. Feedback Gain Matrix Selection

It follows from (30) that V̇c < 0 implies the existence of

P c
D and KD such that P c

D > 0 and

2∆x⊤P c
D (AD + B1DKD)∆x

+ ∆x⊤P c
DP c

D∆x + 2∆x⊤P c
Dz(∆x) < 0. (31)

On the other hand, it follows from (27) that

∆x⊤

(

N
∑

i=1

υ2
i Z⊤

i Zi

)

∆x − z⊤(∆x)z(∆x) ≥ 0.

Thus, we can guarantee that (31) holds if there exists some

τ > 0 so that

∆x⊤

(

(AD + B1DKD)
⊤

P c
D + P c

D (AD + B1DKD)

+ P c
DP c

D + τ

(

N
∑

i=1

υ2
i Z⊤

i Zi

))

∆x

+ 2∆x⊤P c
Dz(∆x) − τz⊤(∆x)z(∆x) < 0. (32)

Let Ac
D = AD + B1DKD. It follows from (32) that, in

order to have V̇c < 0, it is equivalent to find P c
D and KD

such that








Ac⊤
D P c

D + P c
DAc

D + P c
DP c

D

+τ
∑N

i=1 υ
2
i Z⊤

i Zi

P c
D

P c
D −τI









< 0

P c
D > 0

for some τ > 0. Pre- and post-multiplying the above matrix

by diag[τP c
D

−1
I] and defining Y D = τP c

D
−1

, we obtain










Y DAc⊤
D + Ac

DY D + τI

+Y D

(

∑N

i=1 υ
2
i Z⊤

i Zi

)

Y D

I

I −I











< 0

Y D > 0.

Applying the Schur complement to the above, we obtain

Y DAc⊤
D + Ac

DY D

+Y D

(

N
∑

i=1

υ2
i Z⊤

i Zi

)

Y D + τI + I < 0

Y D > 0,

which is equivalent to














W D I Y Z⊤
1 · · · Y Z⊤

N

I −I O · · · O

Z1Y D O −γ1I · · · O
...

...
...

. . .
...

ZNY D O O · · · −γNI















< 0 (33)

Y D > 0

with γi = 1/υ2
i and W D = Y DA⊤

D + ADY D +
B1DKDY D + (B1DKDY D)⊤ + τI . Note that (33) is

a bilinear matrix inequality. To proceed, we introduce the

transformation, KDY D = MD, as in [8], [18]. Applying

the above transformation in (33), we obtain














W̃ D I Y Z⊤
1 · · · Y Z⊤

N

I −I O · · · O

Z1Y D O −γ1I · · · O
...

...
...

. . .
...

ZNY D O O · · · −γNI















< 0 (34)

Y D > 0 (35)

where

W̃ D = Y DA⊤
D +ADY D +B1DMD +(B1DMD)⊤+τI.

Therefore, if the LMIs given by (34) and (35) are feasible for

some τ > 0, we can obtain P c
D and KD as P c

D = 1
τ
Y −1

D

and KD = MDY −1
D .

B. Stability Analysis

We now proceed with the stability analysis of the closed-

loop system.

Theorem: If the LMIs given by (34) and (35) are feasible

for some τ > 0, then the closed-loop system (25) and (26)

driven by the dynamic output feedback controller (28)

with (20) is asymptotically stable.

Proof: Recall from (29) that V̇ ≤ V̇c + V̇o. It is clear

from the above that if the LMIs given by (34) and (35) are

feasible for some τ > 0, then V̇c < 0. Thus, it remains to

show that V̇o < 0. It follows from (16) and (20) that

ėi = (Ai − LiCi)ei − Bi2ui2(x) − Bi2Ei(yi, ŷi, ηi).
(36)

Then it follows from (36) that

V̇o = 2e⊤P o
Dė + e⊤QDe

=

N
∑

i=1

(

2e⊤
i P o

i (Ai − LiCi)ei − 2e⊤
i P o

i (Bi2ui2)

− 2e⊤
i P o

i Bi2Ei(yi, ŷi, ηi) + e⊤
i Qiei

)

, (37)
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Fig. 1. Three-machine power system

where Qi = (Bi1Ki)
⊤(Bi1Ki). If F i(ŷi − yi) = 0, it

follows from (22) that B⊤
i2P

o
i ei = 0 and therefore

−2e⊤
i P o

i Bi2Ei(yi, ŷi, ηi) − 2e⊤
i P o

i (Bi2ui2) = 0. (38)

If, on the other hand, F i(ŷi −yi) 6= 0, it follows from (22)

and ηi ≥ ρi that

−2e⊤
i P o

i Bi2Ei(yi, ŷi, ηi) − 2e⊤
i P o

i (Bi2ui2)

= −
2ηi

‖F iCiei‖

(

e⊤
i P o

i Bi2

)

(F iCiei) − 2e⊤
i P o

i (Bi2ui2)

≤ −2(ηi − ρi)
∥

∥e⊤
i P o

i Bi2

∥

∥ ≤ 0. (39)

It follows from (37)–(39) that

V̇o ≤

N
∑

i=1

(

2e⊤
i P o

i (Ai − LiCi)ei + e⊤
i Qiei

)

≤

N
∑

i=1

− (λmin(Qo
i ) − λmax(Qi)) ‖ei‖

2. (40)

It follows from the lemma and (40) that λmin(Q
o
i ) >

λmax(Qi) and then V̇o < 0. Thus, we have

V̇ ≤ V̇c + V̇o < 0,

which implies that the closed-loop system is asymptotically

stable. The proof of the theorem is complete.

Remark: When solving the LMIs (34) and (35), we could

obtain the feedback gain matrix KD of big size, which

may not be practical in real applications. Effective methods

of restricting the size of the feedback gain matrix KD

deserves further investigation, which definitely increases the

applicability of the proposed decentralized output feedback

controller. This problem is left open for future research.

V. CASE STUDY

In this section, we apply the proposed decentralized

dynamic output feedback controller to stabilize a three-

machine power system shown in Fig. 1, where Generator 3

is assumed to be an infinite bus with the same dynamics as

Generator 2 [9]. The parameter values for each machine are

the same as given in [7] and are listed in Table I.

TABLE I

MACHINE PARAMETERS

Parameter Machine 1 Machine 2

H 4 5.1
D 5 3
kc 1 1
FIP 0.3 0.3
Tm 0.35 0.35
Te 0.1 0.1
R 0.05 0.05
Km 1 1
Ke 1 1
ωo 314.159 314.159

The complete set of plant dynamics used for simulations

are give in [5]. It is given in [7] that α12max = α13max =
27.49 and α21max = α23max = 23.10. However, with these

conservative bounds, the corresponding feedback gain matrix

KD turns out to be of very big size. Therefore, in order to

better illustrate the performance of our decentralized output

feedback controller, we use α12max = α13max = 1.6494
and α21max = α23max = 1.3860 in our simulations. We

choose the operating points, xd
1 = [49 0 0.57 0.57]⊤

and xd
2 = [53 0 0.56 0.56]⊤. Applying the definitions

given in (11) and (12), we calculate T (1), D1, T (2) and

D2. Then we use (14) and (15) to calculate Z1 and Z2.

Solving the LMIs given by (34) and (35) with τ = 1, we

obtain k1 = [−65.0516 −6.1643 −7.6241 −3.2470] and

k2 = [−63.0106 −6.6794 −6.9836 −2.9745]. The initial

conditions for the first and second sliding-mode observers are

chosen to be zero. We also choose η1 = 114 and η2 = 136.

Using the design procedures given in Section III, we obtain

L1 =









0 2.5
434284 0

0 0
0 0









, L2 =









0 2.5
407531 0

0 0
0 0









,

and F 1 = F 2 = [−1 0].

We consider a symmetrical three phase short circuit fault

as in [5], [7], which is assumed to be on the transmission

line between the first and the second machine. Let λ denote

the fraction of the transmission line to the left of the fault.

The fault sequence is as follows:

1) The system is in the pre-fault steady state;

2) At t = 3.1 sec, the fault occurs;

3) At t = 3.25 sec, the fault is removed by opening the

breakers of the line at which the fault occurs;

4) At t = 4.0 sec, the transmission line is restored;

5) The system is in the post-fault steady state.

Simulation results for the first and second subsystems with

λ = 0.5 are shown in Fig. 2, where we only show the plots

of δi due to lack of space. The unknown interconnection

reconstruction for each subsystem is shown in Fig. 3. It

can be seen that the dynamic output feedback controller

performs as expected and the unknown interconnections are

reconstructed perfectly.
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Fig. 2. Controller performance for Generator 1.
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Fig. 3. Unknown interconnection reconstruction.

VI. SUMMARY

In this paper, we have proposed a novel decentralized

dynamic output feedback controller to stabilize a class of

multimachine power systems against faults and disturbances.

The developed control strategy incorporates local sliding

mode observers to estimate the subsystem’s states for the

controller implementation, where a feedback gain matrix

is obtained by solving two LMIs. The local sliding mode

observers are also able to effectively reconstruct unknown

interconnections between machines. This, in fact, can be

used to detect faults in multi-machine power systems. The

transient stability of the closed-loop system driven by the

decentralized observer-based controller is guaranteed.
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