
  

  

Abstract—A decoupled Kalman Filter for GPS-INS sensor 
fusion is developed for a high-speed multi-robot system with 
computational resource constraints.  An eighth-order filter 
describing system and bias dynamics is decoupled into four 
second-order filters. Process and measurement noise 
statistics and first-order bias dynamics are derived from 
experimental data. The decoupled filter reduces computation 
time by a factor of seven over the coupled filter, enabling 
real-time implementation on an inexpensive processor at the 
required control update rate of 20 Hz.  The decoupled filter 
is evaluated through simulation and experiments and 
provides sub-meter position error for over a minute, an order 
of magnitude improvement over GPS alone. 

I. INTRODUCTION 

Due to the advantages they provide over single robots, 
multi-robot teams have been studied for a number of 
applications that require precise relative positioning, 
including mapping, search and rescue, and object 
manipulation [1-3].  Before a robot team can address such 
high-level goals, agents must identify collision-free paths 
between targets in real-time and attain locations with a given 
accuracy. This requires each agent to access its state 
information as well as the state of other agents. Minimizing 
computation in state estimation is critical for high-speed 
coordination, since a high control update rate is needed and 
processing bandwidth is limited.  To be successful, 
algorithms explicitly consider of hardware constraints, 
which can be severe for high-speed maneuvers in close 
quarters. 

In this paper, a real-time state estimation architecture is 
developed for a multi-robot system with limited processing 
bandwidth and estimation requirements for motion control in 
close quarters. The methodology is validated on the 
Dynabots, a fleet of nonholonomic, differential-steered, 
four-wheel drive robots that operate at speeds up to 10 m/s 
[4].  Each Dynabot uses a Garmin-18 5Hz GPS receiver and 
a Memsense nIMU to track its location.  Additionally, wheel 
speeds and motor currents are measured.  Each robot 
communicates state information to neighboring robots.   

While GPS measures position, heading and speed, GPS 
alone does not provide sub-meter position accuracy.  
Position measurements are corrupted by time-varying 
process noise that depends on the quality of the receiver and 
GPS signal characteristics [5].  Moreover, the 5 Hz GPS 
data rate is slow compared to the dynamics; a Dynabot 
moving at 10m/s travels 2m between samples and could 

 
This research is supported by NIST under Grant No. 60NANB4D1144 

and by the Army Research Office under contract No. W911NF- 06-1-0153. 
Luke M. Wachter was with the Thayer School of Engineering, 

Dartmouth College.  
Laura E. Ray. is with the Thayer School of Engineering, Dartmouth 

College  603-646-1243 (email: lray@dartmouth,edu) 
 

crash without estimation and control between samples. 
Simulation of Dynabots whose motion is coordinated based 
on shared position shows that GPS position uncertainty and 
latency can result in collision [6]. Although higher quality 
receivers provide better accuracy at 20 Hz, such systems are 
costly.   

The IMU provides complimentary information at up to 
100 Hz. The most widely used method for fusing IMU and 
GPS data is the Extended Kalman Filter (EKF). Numerous 
EKF implementations for vehicle state estimation have been 
proposed [7-13]. [7] distinguishes between loose and tight 
coupling of IMU and GPS data. Loose coupling uses GPS 
position to update the state, while tight coupling uses raw 
GPS pseudorange measurements, bypassing the receiver’s 
post-processing. A tightly coupled filter extracts information 
from pseudorange even with single satellite visibility.  
Under such low visibility, the receiver cannot triangulate 
position and thus a loosely coupled filter has no new 
information. A tightly coupled filter, however, requires state 
variables for each visible satellite. Therefore, under normal 
visibility, a tightly coupled filter would be computationally 
cumbersome.   

[8] demonstrates that incorporating the vehicle 
dynamics into state estimation improves performance over 
standard kinematic filters. However this requires knowledge 
of dynamic parameters, which depend on the terrain.  
Unscented Kalman Filters improve accuracy by propagating 
the state covariance through the nonlinear system dynamics 
[9]. Unscented Kalman Filters, however, are more 
computationally intensive than their EKF counterparts.  

It was shown in [6] that a system like the Dynabots, 
where processing bandwidth is saturated, achieves better 
performance by sacrificing state estimation accuracy for 
faster control update. With this tradeoff in mind, a real-time, 
computationally efficient EKF with adequate accuracy for 
maneuvering in close-quarters is developed for the Dynabot. 
Specifically, we require one meter accuracy for at least a 
minute and a control period of at most 50 ms. The remaining 
sections introduce the structure of the filter and provide the 
rationale for its design, characterize the sensors, and report 
simulation and experimental results.  

II.  FILTER TOPOLOGY 

The filter design is based on the state estimator in [12], 
wherein a set of two-state linear Kalman filters combines 

inertial and GPS measurements to estimate velocity and 
bearing. We augment the filter to provide position estimates 
as well. Although in doing so the linear dynamics become 
nonlinear and coupled, the filter still lends itself well to 
decoupling as a means of reducing computation.  

The state consists of four primary elements plus four 
associated biases. The primary state variables are global N-S 
position X , global W-E position  Y , longitudinal velocity in 
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the body-fixed reference frame v
x
 and bearing φ  measured 

from the X-axis of the inertial system. The bias elements are 
colored noise in each measurement: the N-S and E-W GPS 
positions, 

 
b

x
 and 

 
b

y
, the accelerometer 

 
b

a
, and the yaw rate 

gyroscope b
φ�

. The IMU bias state elements track drifting 
offsets, e.g., due to temperature compensation.  The GPS 
bias states are white-noise driven Gauss-Markov processes 
due to underlying physical processes associated with 
transmission of GPS signals and are almost universally 
included in filters described in the literature [7-13].  

We distinguish between bearing φ  and direction of 
motion θ measured by GPS. In general, φ ≠ θ  due to side-
slip β , which can be large during dynamic maneuvers on 
low adhesion surfaces. Due to β , bearing φ  is 
unobservable using an IMU and a single GPS receiver 
[12,13]. Thus, we assume that Dynabots drive on high 
adhesion surfaces. A steering controller is explicitly 
designed to avoid control effort that leads to lateral sliding 
[14]. Thus, v

y
≈ 0  and φ ≈ θ . Although the Dynabot’s IMU 

has magnetic flux sensors to measure bearing, time-varying 
electro-magnetic fields from the motors render the sensor 
unusable; there is little consistency in measured bearing over 
trials with comparable motor torque sequence [14].  We also 
assume that all motion is in a horizontal plane. Future 
implementations could relax this assumption to allow robots 
to track their state while moving on rugged terrain.  

It is instructive to consider the filter dynamics in terms 
of the natural pairing between primary and bias states, as in 
Table 1. The “IMU” subscript denotes an IMU 
measurement, and “GPS” denotes a GPS measurement. ν

v
 

and ν
φ

 are zero-mean, white noise acting on GPS velocity 
and bearing measurements, respectively. ω  variables are 
white zero-mean, Gaussian random variables corresponding 
to process noise driving bias states.  

 
w

a
 and 

� 
w
�φ
 are white 

process noise acting on velocity and yaw rate dynamic 
equations, respectively.  IMU data are inputs to the filter 
dynamics, while GPS data are treated as measurements. The 
only coupling is that � �X  and � �Y  depend on 

 
v

x
 and φ . Biases 

are modeled as first-order Gauss-Markov processes and are 
discussed in section III. The logical grouping between 
primary state variable and associated bias will reappear in 
section IV when decoupling is discussed.  

By its standard definition, process noise describes 
unmodeled inputs, e.g., bumps and vibrations affecting the 
robot’s acceleration in addition to known control inputs. 
Since the inputs to the filter are IMU measurements a

IMU
 

and 
� IMU
�φ , which, in theory, record all such bumps and 

vibrations, it is as if there are no random inputs. That is, 
these sensors explicitly record instantaneous disturbances 
and additionally include measurement noise. However, an 
important exception exists for the accelerometer: bumps and 
vibrations that shift the IMU’s body-fixed coordinate system 
out of the plane via pitching or rolling cause the longitudinal 
accelerometer to record a component of vertical acceleration 
g = 9.8 m/s2. Since the filter dynamics assume that the 
vehicle is moving in a plane, components of g in a

IMU
 can 

cause the state estimate to deviate from the actual state. The 
magnitude of this effect depends strongly on the terrain and 
velocity. In principle, it is possible to track the component of 
g that enters 

 
a

IMU
, but doing so would require measurement 

of instantaneous pitch and roll angles, introducing additional 
sensors and computation. Instead, this disturbance is 

modeled as a rapidly drifting bias with a time constant 
dependent on the frequency of the vehicle’s vibrations. If 
the frequency is on the order of the sampling frequency, the 
bias will appear as white noise. The bias may also contain 
slowly drifting components associated with gradual changes 
in topography. In section III, noise on the accelerometer is 
characterized for both a stationary and constant-velocity 
vehicle to bound the process noise statistics.  

The full-state dynamics  in state space form are  

�x = A
c
x + B

c
u

IMU
+ L

c
w  (1) 

y
GPS

= Cx + v  (2) 

where [ ]T

x y x aX b Y b v b b
φ

φ= , , , , , , ,x � ,            
T

bx by a ba b
w w

φ φ
ω ω ω ωª º= ¬ ¼w � � , 

  
T

IMU IMU IMUa φª º= ¬ ¼u � , [ ]     
T

GPS GPS GPS GPS GPSX Y v φ=y , 0  0   
T

v φν νª º= ¬ ¼v , 

and {Ac, Bc, Lc, C} are derived from Table 1.  
A process noise vector  w  is described by its spectral 

density matrix Q
c

, where 
   
E[w(t)w(τ )T ] = Q

c
δ (t − τ ) . It is 

assumed that process noise is independent such that Q
c

 is a 
diagonal matrix. The elements of 

 
Q

c
, denoted Φ , are 

approximated from sampled statistics in section III. 
Typically, Φ  is approximated by assuming noise is band-
limited above frequency f , then [15,16]  

2[ ]/E w fΦ =  (3) 

where E[w2 ]  is the variance of the white random variable in 
question. [17] chooses f  as   1 / ∆t , where ∆t  is the filter 
update interval. We adopt this convention here such that  

Q
c

= ∆tE[ww
T ]  (4) 

The filter dynamics in eq. 1 are discretized with sampling 

interval ∆t  using a zero-order hold approximation: 

x(k +1) = Ax(k) + Bu
IMU

(k) + Lw(k)  (5) 
y

GPS
(k) = Cx(k) + v(k)  (6) 

The update rate is chosen to be fast enough such that error in 
assuming constant acceleration and yaw rate during the 
sample period is minimized [12,15]. L  is computed in the 
same manner as B .  

The variance of a function of random variables with 

known covariance can be approximated as  

E[ f ( X )2 ] ≈ ∇f ( X )T E[XX T ]∇f ( X )  (7) 

Using the approximation L ≈ ∆tL
c

and
 
w

d
= L

c
∆tw , where Lc  is 

the continuous-time process noise input matrix, the discrete 
process noise covariance matrix Q

d
 is  

Q
d

= E[w
d
w

d

T ] = L
c
∆tE[wwT ]L

c

T ∆t T

c c cL Q L t= ∆  (8) 

Eq. 8 is the standard approximation of the discrete-time 

covariance matrix [17].  
With the discretized system, the standard recursive 

Kalman filter can be used. At each sampling interval, the 
state estimate x̂  and covariance  P  are propagated in time as 

 

Table 1  Dynamics of the estimator state. 

X -position dynamics Y -position dynamics 

cos( )xX v φ=�  
( ) /x bx rx

bb ω τ= − +�  

GPS xX X b= +  

sin( )xY v φ=�  
( ) /y by ry bb ω τ= − +�  

GPS yY Y b= +  
Velocity dynamics Yaw dynamics 

x IMU a aa b wv = − +�  
( ) /a ba aa

bb ω τ= − +�  

GPS x vv v ν= +  

IMU
b w

φ φ
φ φ= − +� �

� �  

( ) / gb
bbφ φ φ

ω τ= − +� � �
�  

GPS φφ φ ν= +  
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ˆ ˆ( 1 ) ( ) ( )IMUk l A k l B k+ | = | +x x u  

   
P(k +1 | l) = AP(k | l)A+ Q

d
 (9) 

where the notation 
  
(i | j)  denotes the quantity at the i th 

time step given  j  GPS measurements. When a new GPS 
measurement is available, the Kalman filter update of x̂  and 

 P  is performed immediately following the time update:  

[ ]ˆ ˆ ˆ( 1) ( ) ( ) ( )GPSk l k l K l C k n l| + = | + − − |x x y x  (10) 

   
P(k | l +1) = I − KCª¬ º¼P(k | l)  (11) 

where the Kalman gain  K  is given by  

   
K = P(k | l)CT CP(k | l)CT + Rª

¬
º
¼  (12) 

R is the covariance of the four measurements derived from  
GPS. The offset n in eq. 10 accounts for delay between the 
GPS signal time and the time the measurement is 
incorporated into the state estimate [10,12]. The GPS 
receiver provides a precision pulse signal (PPS), the rising 
edge of which indicates the time of a GPS fix. Figure 1 
shows an oscilloscope trace of this signal compared to the 
output at the receiver’s serial data transmission port.  Serial 
communication is indicated by the large signal fluctuations, 
which begin ~50ms after the rising edge of the pulse and 
complete ~100ms after the pulse.  The timing of serial 
transmission varies significantly. When GPS data are finally 
incorporated into the state estimate, the filter uses the 
measure of delay to determine the value of n to use in eq. 
10. Since GPS and IMU data are synchronized, GPS data are 
always aged by an integer number of sample times 

  ∆t = 50 ms. [14] discusses synchronization between the GPS 
and the sampling loop in more detail.  

III. SENSOR CHARACTERIZATION 

In order to design an effective Kalman filter, the noise 
statistics of all sensors must be known. We characterize the 
noise and bias dynamics of each measurement in this 
section.  

The IMU’s longitudinal accelerometer and yaw rate 
gyro are corrupted by non-stationary biases in addition to 
zero-mean white noise. The bias is due primarily to 
fluctuations in temperature. When integrated, even small 
bias causes divergence; therefore, bias must be estimated. 
As discussed in section II, the acceleration measurement 
also incurs error as the robot pitches; therefore, the 
accelerometer is characterized for both a stationary robot 
and for a robot driving at constant velocity, as noise levels 
when driving are several orders of magnitude greater than 
for a stationary robot [14]. The true level of the disturbance 
on acceleration likely lies somewhere between the two.  

The bias on inertial sensors is typically modeled as a 
Gauss-Markov process [12,13,16]. In continuous time,  
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Figure  1. Oscilloscope trace showing the precision pulse signal and the 
serial transmit port of the Garmin-18 GPS receiver.  

�b(t) = −
1

τ
b(t) +

1

τ
ω (t)  (13) 

where τ  is the time constant, and in discrete time, 

b(k +1) = Ab(k) + Bω (k) . (14) 

where A ≈ 1− ∆t

τ
 and B ≈ ∆t

τ
 for small sampling interval ∆t . 

The sequence of sensor outputs  m  are expressed as  

m(k) = b(k) + w(k)  (15) 

where w  is the white noise on the output. The challenge is 
to identify τ  and the variance of the white noise sequences 
w and ω  for both the accelerometer and the rate gyro.  

Several methods for extracting noise statistics from 
inertial data are discussed in the literature. Allan Variance 
identifies frequencies corresponding to white noise and bias 
processes [18]. Another frequency domain technique is used 
in [19] in which a second order lowpass filter is best-fit to 
the Bode plot of the power spectral density of a noisy 
measurement. Observer-Kalman filter Identification (OKID) 
with residual whitening [20] can identify the dynamics and 
noise statistics simultaneously in a least-squares manner. 
However, this approach requires identification of a higher 
order Gauss-Markov process, which would increase the 
complexity of the Kalman filter. Instead, we use a simpler 
approach that assumes a first-order Gauss-Markov process. 
First, the bias sequence is extracted from a measurement 
history. The Gauss-Markov time constant is identified from 
the extracted bias sequence. Finally, the variance of the 
white noise driving the Gauss-Markov model is estimated.  

The bias is extracted from measurement data by taking 
advantage of the fact that the sampling interval ∆t  is much 
smaller than the bias time constant τ  to be estimated. Since 
∆t � τ , the white noise w acting on the output is much 
higher frequency than the bias dynamics. Therefore, the bias 
sequence is found by filtering measurements m through a 
low-pass filter with time constant 

 
τ

LP
. Let the output of this 

filter be y and the true bias sequence be b. Then y → b  as 
the residual r = m − y  becomes white. In practice, the 
residual will never be perfectly white, so we find τ

LP
 that 

maximizes the whiteness of r using the auto-covariance of 
the discrete sequence  r to measure whiteness 

ψ
k
(r) =

1

N n=1

N −k

¦ r(n)r(n + k)  (16) 

where N  is the length of the sequence.  For white noise, 
ψ

k
= 0∀k . To measure whiteness of r, the root-mean-square 

of ψ
k
(r) , k = 1...5  is computed and normalized with respect 

to the variance of r. To extract the bias from the 
measurement sequence m, we iterate over τ

LP
 until a value is 

found that minimizes the normalized RMS auto-covariance 
of r. Then b is taken to be the output of the low pass filter y.  

Figure 2 shows representative results of the first step of 
the identification process for a yaw rate measurement 
sequence; τ

LP
= 186.7 sec is found to give the whitest 

residual. As τ
LP

 increases, the normalized RMS auto-
covariance of r approaches that of the raw measurement 
sequence. This procedure is performed on accelerometer 
measurement sequences for the stationary robot, with 
τ

LP
= 3.5  sec and for the robot moving at constant velocity, 

with τ
LP

= 36.2  sec. For all measurement sets, τ
LP

 that gives 

563



  

the whitest residual is at least two orders of magnitude 
greater than  ∆t .  

The variance of the residual provides an estimate of the 
variance of w, the white noise acting on the output of the 
bias dynamics in eq. 15. Figure 3 show the variance of r as a 
function of 

 
τ

LP
 for the yaw rate measurement. Above τ

LP
=1 

sec, the variance is relatively constant. For small values of 

 
τ

LP
, the variance plunges; as LP tτ → ∆ , the low-pass filter is 

fast enough to track not only the bias but also the white 
noise  on the output. The variance of the output noise w

φ�
 is 

found to be 
�  
E(w

�φ
2 ) = 1.47 ×10−4 (rad / s)2 . Following this 

procedure for the accelerometer, the variance of the output 
noise aw  is found for the stationary robot and for the robot 
in motion, as reported in Table 2. 

Next, we identify the Gauss-Markov time constant τ  
from the estimated bias. We do so by recognizing that τ  is a 
function of the auto-covariance of  b . Multiplying eq. 14 by 

  
b(k)  and taking the expectation gives  

  
E[b(k +1)b(k)] = E[Ab(k)2 ]+ E[Bω(k)b(k)]  (17) 

Since  b  and ω  are uncorrelated, 
  
E[Bω (k)b(k)] = 0 . 

  
E[b(k +1)b(k)] = ψ

1
(b(k))  is the single-shift auto-covariance 

of  b ; in stochastic steady state, E[b(k)2 ]  and ψ
1
(b(k))  are 

simply the variance and auto-covariance of  b , respectively, 
or  E[b2 ]  and 

  
ψ

1
(b) . Then eq. 17 becomes 

  
ψ

1
(b) = AE[b2 ] . 

Using the approximation A ≈ 1− ∆t

τ
, ( )2

1/ 1 ( ) / [ ]t b E bτ ψ≈ ∆ − . 
This process can be generalized to larger shifts by 
multiplying eq. 14 by 

  
b(k − l +1)  and taking the expectation, 

resulting in [15]  

2( ) [ ( 1) ].l

l b A E b k lψ = − +  (18) 

In stochastic steady state, 
  
E[b(k − l +1)2 ] = E[b2 ] . 

Substituting in the expression for A , τ  becomes  

( )2

1/
( )

[ ]
/ 1 l

l
b

E b
t

ψτ § ·≈ ∆ −¨ ¸
© ¹

. (19) 

Eq. 19 is used to identify τ from the bias estimate for each 
sensor for shift values ranging from   l = 1  to l = 50 . τ  is 
plotted as a function of  l  in Fig. 4 for the yaw rate 
measurement. τ  is taken as the mean over the fifty time 
constant estimates and is reported in Table 2 for each sensor.  

The final step in the noise model identification process 
is to determine the variance of the process noise ω  driving 
each bias. Consider the variance of the bias at an arbitrary 
time step   k +1 :  

2 2 2 2 2[ ( 1) ] [ ( ) ] [ ( ) ]E b k A E b k B E kω+ = +           (20) 

In the stochastic steady state 
  
E[b(k +1)] = E[b(k)] = E[b]  and 

  
E[ω (k)] = E[ω ]  so eq. 20 becomes 

  
E[b2 ](1− A2 ) = B2 E[ω 2 ] . 

Inserting the approximations for  A  and  B  gives  

  

E[b2 ] 1−1+ 2
∆t

τ
−

∆t2

τ 2

§

©
¨

·

¹
¸ =

∆t2

τ 2
E[ω 2 ]  (21) 

Since
� ∆t � τ , eq. 21 is approximated as 

2
2 2

2
2 [ ] [ ]

t t
E b E ω

τ τ

∆ ∆
= . 

Solving for   E[ω 2 ]  yields  

Table 2. Summary of noise statistics for the longitudinal accelerometer and 

yaw rate sensor. All data used for characterization was collected at 20Hz. 

Sensor  τ   2[ ]E ω   2[ ]E w    

yaw rate gyro  292s  3 25 10 ( )rad s−× /   4 21 47 10 ( )rad s−. × /   

accelerometer (stationary)  49s 3 2 27 10 ( )m s−× /   5 2 22 65 10 ( )m s−. × /   

accelerometer (moving)  4.05s 2 20 01( )m s. /  2 20 11( )m s. /  

  
Figure 2. Normalized RMS auto-covariance of the residual as a function of 
low-pass filter time constant for yaw rate measurement.  
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Figure 3. Variance of the residual noise as a function of low-pass filter time 
constant τ

LP
 for the yaw rate measurement.  

 

 
Figure 4. Representative results of estimating the Gauss-Markov time 
constant for bias shift values from l = 1  to  50 for yaw rate sensor. 

E[ω 2 ] = 2
τ

∆t
E[b2 ]  (22) 

Eq. 22 is used to find the variance of the process noise from 
the value of τ  derived above. The resulting variance of ω  is 
listed in Table 2 along with the other noise statistics for both 
the accelerometer and the yaw rate sensor. 

The state estimation algorithm uses four measurements 
from the GPS receiver: X

GPS
 and 

 
Y

GPS
, GPSv  and θ

GPS
. The 

velocity and heading measurements are derived from the 
phase shift of the GPS carrier wave and are not obtained by 
differencing position measurements. Therefore, GPS 
position and velocity can be treated as independent 
measurements. In this section, we characterize each GPS 
measurement.  

GPS velocity can be treated as an unbiased signal 
corrupted by zero-mean white noise [12]. A 600-second 
V

GPS
 measurement history from a stationary Dynabot was 

used to estimate variance E[ν
v

2 ] = 0.0014(m / s)2 , which is 
consistent with the accuracy quoted by the manufacturer.  
Heading measurement θ

GPS
 is derived from GPS velocity 

measurements in the North-South and East-West directions, 
denoted V

EW
 and V

NS
, respectively. Specifically,  

( )1tanGPS EW NSV Vθ −=  (23) 

Therefore, the variance of θ
GPS

 depends on V
GPS

 and its 
variance. The variance of a function of random variables 
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with known covariance can be approximated as in eq. 7. 
Assuming V

EW
 and V

NS
 are uncorrelated, the variance of the 

GPS bearing measurement is approximated as  

[ ] 0
[ ]

0 [ ]

T

EWGPS GPS GPS GPS
GPS

NSEW NS EW NS

var V
var

var VV V V V

θ θ θ θ
θ

ª º ª ºª º∂ ∂ ∂ ∂
≈ « » « »« »∂ ∂ ∂ ∂¬ ¼¬ ¼ ¬ ¼

             

2 2 2 2

[ ] 0

0 [ ]

T

EWNS EW NS EW

NSGPS GPS GPS GPS

var VV V V V

var VV V V V

ª º ª ºª º− −
≈ « » « »« »

¬ ¼¬ ¼ ¬ ¼
 (24) 

where V
GPS

2 = V
NS

2 +V
EW

2
. Assuming [ ] [ ] [ ]EW NS GPSvar V var V var V≈ ≈ , 

this reduces to  

2 2

4 4
[ ] [ ] NS EW

GPS GPS

GPS GPS

V V
var var V

V V
θ

§ ·
≈ +¨ ¸

© ¹
2

[ ]GPS

GPS

var V

V
≈  (25) 

which is similar to the result obtained in [12].  

Errors in GPS position measurements arise from 

pseudorange errors. Pseudorange is corrupted by clock 

offsets between receiver and satellites, atmospheric 

attenuation, and multipath error. GPS position error is 

typically modeled as a colored noise bias using a Gauss-

Markov process [5] uncorrupted by white measurement 

noise. The GPS position bias changes slowly. [5] estimates 

the time constants associated with error mechanisms that 

affect GPS position and cites values ranging from 600 sec. 

for multipath error to 3600 sec. for tropospheric effects.  
The time constant and noise statistics of the error model 

for GPS position are computed by the same technique used 
to characterize the bias dynamics of IMU measurements. 
Figure 5 shows the estimated bias time constants. Position 
data used to characterize the bias were collected from a 
stationary robot for 600 seconds. All deviation from the 
initial position is attributed to bias since, when initialized, 
the filter assumes its initial position relative to other robots 
or a target is known; absolute position is less important for 
multi-robot coordination than relative distances between 
robots. The bias time constant estimate is similar for both x  
and  y  and  τ = 125  sec. is chosen for each.  

The variance of the white noise driving the Gauss-
Markov process is related to the variance of the bias by the 
time constant, as discussed above. The estimated variance 
for  x  and  y  measurements, from the same 600-sec sample 
are found to be 5150 m2 and 10074 m2, respectively. The 
variance of the white noise driving the position bias states is 
taken as the average of the variance measured for the X and 
Y positions or 

  
E[ω

bx

2 ] = E[ω
by

2 ] = 7611 m2. The noise 
statistics for GPS measurements are summarized in Table 3.  
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Figure 5. Estimates of the Gauss-Markov process time constants for (left) x  

and (right) 
 
y  position measurements from the GPS.  

Table 3. Summary of the GPS measurement statistics, sample rate 5Hz. 

Measurement  τ   2[ ]E w   2[ ]E v    

Position  125s  7611 (m/s)2  0    

Velocity  N/A  N/A  1.4 x 10-3 (m/s)2   

Bearing  N/A  N/A  
3 2 21.4 10 (m/s) xv−×   

IV. FILTER PERFORMANCE 

State estimation using the proposed EKF is computationally 
intensive. The timing for the coupled filter running on the 
Dynabot’s microcontroller, a Z-World 29.4 MHz RCM3100 
is shown in Table 4. In the standard form, each filter 
iteration takes more than twice the target sample interval 
∆t = 50 ms, and thus the target update rate cannot be 
achieved using the coupled filter. A decoupled filter is 
developed to reduce processing time by breaking the eighth-
order filter into four second-order systems tracked by 
individual Kalman filters. Grouping of state variables is 
guided by the magnitude of the off-diagonal elements in the 
steady-state covariance matrix of the coupled filter: if an 
element is large relative to other values in its row or column, 
the pair of state variables associated with it are grouped 
together [21,22]. In the decoupled filter, the state 
propagation step is identical to that of the coupled filter.  
 Degree of coupling between state variables is measured 
by examining the correlation between each pair. The 
correlation ρ

i, j
 between the  i th and  j th state variables is 

found directly from the state covariance matrix of the 
coupled filter since  

ρ
i, j

=
E[(x

i
− x

i
)(x

j
− x

j
)]

E[(x
i
− x

i
)2 ]E[(x

j
− x

j
)2 ]

=
P

i, j

P
i,i

P
j, j

 (26) 

Figure 6 shows the steady state correlation between states of 
the coupled filter using measured data from a Dynabot to 
compute the correlation. X  and 

 
b

x
 depend significantly on 

one another since the largest correlation for X  is associated 
with b

x
 and the largest correlation for 

 
b

x
 is associated with 

X . Thus, X  and b
x

 should be coupled in the same sub-
filter. The same relationship holds for  Y  and b

y
, v

x
 and ab , 

and φ  and b
φ�

. Groupings are identical to state pairs 
identified in Table 1. The only coupling between state pairs 
is due to the position’s dependence on velocity and bearing. 
By decoupling, these dynamics are excluded from the 
dynamics Jacobian, so uncertainty in ˆ

xv  and φ̂  no longer 
affects the variance of x̂  and ŷ  directly. Instead, we treat 
these uncertainties as continuous-time process noise xw  and 

yw  with ˆˆ cos( )x xx v wφ= +� and ˆˆ sin( )x yy v wφ= +� .  By eq. 7,  

2 2 2 2ˆ ˆ ˆˆ ˆ[ ] cos( ) ( ) sin( ) ( )x x xE w var v v varφ φ φ= +  (27) 
2 2 2 2ˆ ˆ ˆˆ ˆ[ ] sin( ) ( ) cos( ) ( )y x xE w var v v varφ φ φ= +  (28) 
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Figure 6. Graphical depiction of the correlation between state variables in 
the coupled filter, computed from the steady state covariance matrix. Each 
symbol represents a state variable. Values smaller than  10−6  are not shown. 
  

Table 4. Processing time of the coupled and decoupled filters by task. 

 Propagate 
dynamics 

Propagate 
covariance   

Compute 
gain 

State 
update 

Covariance 
update 

Coupled  2ms  35ms   32 ms 2 ms 30 ms 
Decoupled 2ms  4ms   3 ms 1 ms 4 ms 
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Figure 7. Comparison of true (red) and estimated vehicle trajectory using 
simulated data: coupled filter (black), decoupled filter (magenta), raw GPS 
position (green).  An idealized, undisturbed trajectory is shown in blue. 
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Figure 8. Comparison of error in estimated position for the coupled filter, 
decoupled filter, and raw GPS, for simulated data. Both the actual position 
error and the standard deviation based on filter covariance are shown. 
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Figure 9. Error in estimated position measured by driving a Dynabot along a 
repeatable straight line trajectory due North several times. The filter’s 
estimate of position accuracy is also shown. 
 

The time-varying variances of eq. 27 and 28 are obtained 
from the state covariance matrix P . These continuous-time 
noise processes are then discretized as in eq. 9. The discrete-
time process noise variance for  X  and Y is found to be 

  
Q

dx
= ∆t2 E[w

x

2 ]  and 
  
Q

dy
= ∆t2 E[w

y

2 ] .  
The computational complexity of a Kalman filter is 

O(2n2m) + O(2nm2 ) + O(n3 ) + O(m3 )  where  n  is the size of the 
state and  m  is the number of measurements [23]. For the 
coupled filter,   n = 8  and   m = 4 . The decoupled filter 
consists of four   n = 2  filters each with   m = 1 ; therefore, the 
coupled and decoupled filters require 

  
O(1344)  and 

  
O(84) floating point operations, respectively, an order of 
magnitude difference. The timing of the decoupled filter 
running on the RCM3100 processor given in Table 4 shows 
that it is indeed nearly an order of magnitude faster than the 
coupled filter.  

To compare accuracy of the two filters, both filters are 
run using simulation data corrupted by noise processes 
identified in section III, with accelerometer noise 

corresponding to noise levels of the robot in motion. Figure 
7 shows the simulated trajectory with process noise (red), 
without process noise (blue), GPS position (green), and the 
estimated trajectory for the coupled (black) and decoupled 
(magenta) filters. At t = 0 , the state covariance is set to 0.  
Comparing the ideal, disturbance free trajectory with the 
true, process-noise corrupted trajectory shows the impact of 
process noise is non-negligible. Both filters reject a drifting 
bias on GPS position.  The loss in accuracy between the 
filters is small compared to the significant improvement over 
GPS. An explicit comparison of the position accuracy is 
shown in Fig. 8. Actual position error for the two filters is 
shown along with the standard deviation in position derived 
from state covariance matrices. At 30-sec, position estimates 
are nearly an order of magnitude more accurate than GPS 
position. The coupled filter estimates (at t = 30 sec)  are ~0.1 
m more accurate than the decoupled filter for the sample 
interval ∆t = 50 ms. Keep in mind, however, that as Table 4 
shows, it is not possible to run the coupled filter in real-time 
at ∆t = 50 ms. The coupled filter could be run no faster than 
∆t = 125 ms due to overhead from other processes. At this 

t∆ , performance of the coupled filter degrades in 
comparison with the faster decoupled filter. Even without 
such degradation, it is beneficial to sacrifice accuracy in 
favor of higher sampling rate as results from [6] suggest.  

The decoupled filter was implemented on the Dynabot 
processor to verify its functionality. First, a robot was driven 
at a constant velocity along a straight line due North. The 
trajectory was repeated several times. The robot’s East-West 
position estimate is taken to be representative of the 
magnitude of the estimation error. Figure 9 shows the 
results. The position estimate deviates from the true course 
by at most ~0.7m. Some error is likely the result of the robot 
not driving along a perfectly straight trajectory, i.e., the 
trajectory is not repeatable to infinite precision. However, 
overall, the errors measured are on the same order of 
magnitude as those predicted by simulation. Figure 9 also 
shows the filter’s estimated accuracy based on the filter 
covariance matrix from experimental data. Clearly, for the 
decoupled filter, the estimated accuracy is not representative 
of the filter’s true accuracy, as discussed above.  

Figure 8 indicates that while the accuracy of position 
estimates from coupled filter are in line with the accuracy 
indicated by the state covariance estimate, the same is not 
true for the decoupled filter. The actual accuracy of the 
estimate from the decoupled filter is significantly worse than 
its estimated standard deviation. This is a direct result of 
decoupling the filter states. Since the state transition matrix 
no longer describes the true dynamics of the system, the 
state covariance is not accurately propagated in time.  

In a second test, the robot was driven under manual 
control through four waypoints arranged in a square 6m on a 
side on bumpy grass, which represents a worst case 
condition for state estimation. A video camera recorded the 
run and was synchronized with the robot’s motion after the 
run. Figure 10 shows superimposed snapshots of the robot’s 
trajectory at various points in time during the run, indicated 
by the white text. The red dots indicate waypoint s. The 
robot was driven along a non-trivial path with several multi-
point turns, starting and stopping at the same position.  
Figure 10 also shows a bird’s eye view of the robot’s 
position estimate and heading throughout the run. 
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Depictions of the robot are shown at the same points in time 
as the snapshots. Also shown is the GPS position 
measurement. The estimated trajectory matches well with 
video snapshots. Moreover, the filter rejects large deviations 
in GPS position. In particular, at 100 sec, the GPS position 
swings several meters away from the true location of the 
robot. Yet the robot’s estimated position remains reasonably 
close to its location in the video snapshot at 100 sec. This 
experiment confirms that the decoupled filter is schedulable 
at 20Hz on the Dynabot’s processor and it improves upon 
the accuracy of raw GPS significantly.  

In experiments with multi-robot formation control, the 
decoupled filter shows a marked improvement over GPS 
alone.  Figure 11 shows the initial and final frames of a 
video for formation control of a group of four robots using a 
potential function control algorithm described in [14].  At 
t=0, the robots face a target and must arrange themselves in 
a circle around the target.  The controller requires each robot 
to know the position of each other robot.  The control update 
frequency is 20 Hz, and position from each robot’s state 
estimator is shared through an ad-hoc 802.11b wireless 
network as described in [6].  Robots achieve speeds 
exceeding 5 m/s.  The final frame shows good performance 
in reaching a formation with approximately 1-m position 
accuracy.  No collisions due to position error were observed 
in nine runs involving four robots.  In contrast, earlier runs 
at comparable speeds, with raw GPS position communicated 
to locate each robot show one collision and numerous near 
collisions with only three robots. 

V. CONCLUSION 

An efficient state estimation algorithm has been 
developed  for  use  on a  multi-robot  platform  with  limited 
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Figure 10. Comparison of estimated state computed in real-time on board a 
Dynabot (blue) to video recording and to reported GPS position (green). 
Numbers in indicate the time in seconds for each frame shown.  

  
Figure 11.  Initial and final frames of a video in which decoupled EKF state 
estimation is used for potential function formation control of four Dynabots. 

computational resources. The algorithm fuses GPS and IMU 
measurements using a decoupled Kalman filter. In addition 
to estimating the robot’s state, it tracks biases on the sensor 
measurements. Statistics and dynamic characteristics of the 
noise and bias processes acting on sensors are extracted 
from experimental data. By grouping pairs of related state 
variables into two-state sub-filters, the computational 
complexity of the filter is reduced by an order of magnitude 
over the coupled filter without a significant loss of accuracy. 
The decoupled filter runs at a significantly faster rate on the 
Dynabot’s processor than would the coupled filter. The 
increase in update rate afforded by decoupling is expected to 
more than compensate for any loss in accuracy.  
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