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On the residual based stochastic gradient algorithm for dual-rate
sampled-data systems using the polynomial transform technique

Yuwu Liao, Dongqing Wang, Xiaoming Chen, Feng Ding

Abstract— This paper uses the polynomial transformation
technique to transform an ARX model into a special model that
can be identified with dual-rate input-output data, and presents
the residual based stochastic gradient algorithm for dual-rate
sampled-data systems, and studies convergence properties of the
algorithm involved. The analysis indicates that the parameter
estimation error consistently converges to zero under some
proper conditions. Finally, we test the algorithms proposed in
paper by a simulation example and show their effectiveness.

I. PROBLEM FORMULATION

Consider an ARX model (auto-regression model with
exogenous input) described by

A()y(1) = B(z)u(r) +v(1), (1)

where {u(r)} and {y(¢)} are the system input and output
sequences, {v(¢#)} is a random noise sequence with zero
mean and unknown time-varying variance o2, z ' is a
unit backward shift operator, i.e., z is a unit forward shift
operator [z 'u(t) = u(t—1), z7'y(t) =yt —1), 7 'y(qt) =
y(gt —1), and z~%y(qt) = y((t — 1)q)], and A(z) and B(z) are
polynomials in z~! with

AR) =14az ' +az 2+ +az ",
B(z) =biz '+ bz 2 by

Define the information vector ¢(z) and the parameter vector
0 as

@) =[—y(t—=1),--, =yt —n)ult = 1), ult —n)|",
0= [alaa27'"aanab17b2a"'7bn]Ta

where the superscript T denotes the matrix transpose. Equa-
tion (1) may be written as

y(t) = @' (1)0 +v(1), (2)

Without loss of generality, assume that u(¢) =0, y(¢#) =0 and
v(t) =0 for t <0, and the system order n is known.

For dual-rate sampled-data systems [S]—[7], all the inputs
{u(t): t =0,1,2,---} are available, but only scarce outputs
{y(gt): t =0,1,2,---} are available (g > 2 is a positive
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integer). In such systems, the input-output data available are
{u(t),y(qt): t =0,1,2,---}. Thus, the intersample outputs
(or missing outputs), y(gt +1i), i = 1,2,---,g— 1, are not
available. In a word, the model in (1) is not appropriate
for dual-rate system identification. Therefore, (1) needs to
be transformed into a form that can be used directly on the
dual-rate data. A polynomial transformation technique [3],
[4] can be adopted to do this. The details are as follows.
Let the roots of A(z) be z; (i=1,2,---,n) to get

AR) =1 —ziz N1 =2z ) (1 =227 ).

Define a polynomial,
n
0,(2) = [J(1 +zz '+ 2272+ 4200t
q i

i=1

= 14+diz " +doz 2+ +duz "
Multiplying both sides of (1) by ¢,(z) and using the formula:
1—x9=(1—x)(14+x+x>+---4x771).

transform the model (1) into the desired form:

a(2)y(t) = B(2)u(t) + ¢4 (2)v(t) 3)
with
a(z) = ¢4(2)A(z)
= 1+az 9+ oz 2+ + o,z 7", )
B(2) = 9,(2)B(2)
:Zﬁ1171—|—ﬁ2Z*2+...+ﬁqn27qn' 5)

The objective of this paper is to present an algorithm to
estimate the parameters of the model in (3) using available
dual-rate input-output data {u(t),y(qt):t=0,1,2,---} (g =2
being an integer), and to study the convergence of the algo-
rithm involved, and to give an illustrative example to show
the effectiveness of the algorithms proposed in this paper.
Finally, we offer some concluding remarks in Conclusions.

II. THE BASIC ALGORITHMS

To proceed further, let us introduce some notation. The
symbol [ stands for an identity matrix of appropriate di-
mensions; the norm of a column vector x is defined as
[[ %] = x"x; Amax[X] and Amin[X] represent the maximum and
minimum eigenvalues of X, respectively; 1, represents an n-
dimensional vector whose elements are all 1; f(¢) = 0(g(¢))
represents f(t)/g(t) — 0 as t — oo; for g(t) > 0, we write
f(t) =0(g(t)) if there exists a positive constant ; such that
[f()] < Gig(t).
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Substituting the polynomials o(z) in z7¢ in (4) and B(z) in
z~!in (5) into (3) leads to the following regression equation:

() = 9p(t) 3 +v(1), (6)

where the parameter vector ¥ and information vector ¢(r)
are defined by

V= [0, 00, 00, B1, B2y, Bynydi, day di] " € R™,
Oo(t) :=[—y(t —q),—y(t —2q), -, —y(t —qn),
u(t —1),u(t=2),-,u(t —gn),
v(t—1),v(t—=2),---,v(t —m)]" € R™. (7

Replacing ¢ with gt in equation (6) gives

y(qt) = ¢(qt) v +v(qt), (8)
do(qt) = [—y(qt —q),—y(qt —2q), -, —y(qt — qn),
u(gt —1),u(gt —2),---,u(gt —qn),
v(gt —1),v(qt =2),---,v(gt —m)]". 9)

Let O (qf) be the estimate of © at time gr. Since v(r) is
assumed to be a zero-mean random white noise sequence,
minimizing the cost function [2],

J(9) = [ly(qr) — 95 (a1) 01>

The unknowns v(gr —i), i =1,2,---,gn, in @,(qt) are re-
placed with their estimates (gt —i), ¢ (gt) with ¢(gz), then
applying the negative gradient search principle to (10), one
can get the following recursive stochastic gradient algorithm
of estimating ¢ in (6) based on the noise estimation (The
DR-RESG algorithm for short):

(10)

<><m>+ﬁgx
Ly( 1) —¢"(q1)d(qt —q)], (1)
B(gt+i)=DB(qt), i=0,1,---,g—1, (12)
r(qt) =r(qt )+\|<1>(61t)||2 r(0) = (13)
¢(qt) = [—y(qt —q), —y(qt —2q),"- —y(qt qn),
gt = 1)lat —2). - gt — ),
P(gt —1),9(qt =2),---,9(qt —m)]", ~ (14)
(gt —i) = $(gr —i) — 9" (g1 — ) D(q), (15)

However, when i is not an integer multiple of ¢, y(gr —i) and
9" (gt —1i) in (15) involve missing outputs, it is not feasible to
compute the residuals by (15). The solution is to the missing
outputs y(gt + i) are replaced with their estimates (gt +i).
The following is to give a way to compute $(gz + ).

Using the obtained & (gt) to form the polynomials,

&gt z) =140y (qt)z 9+ dp(gt)z 2+ - + &, (qt)z 9",
B(qt,z) = Pi(qt)z" + Balgt)z >+ + Bgu(gt)z ™"
Dividing both sides of (5) by both sides of (4) gives
B(z) _B()
Alz)  a(z)

Assume that the estimates of A(z) and B(z) at time gt are

A(gt,z) =1+ai(q)z ' +ax(qt)z >+ +anlqt)z ",

Blgt,2) =bi(gt)z™" +ba(g)z ™+ + bgn(qt)z .
According to the model equivalence principle in [8], [9], let
B(g1,2) _ Plar.2)

Algt,z)  alqt,2)’
or

a(qt,2)B(qt,z) = Blar,2)A(qt,2).

One can compute A(qt,z) and B(qt,z) by comparing the
coefficients of z7' in both sides. Then the missing outputs
are computed by

( - ) y(qt)v 1:07
1) =
g zzg:ziu(qt—ﬂ) =1,2,---,g—1.
Or
. N [ y(a), i=0,
yw*”{ww+nmmJ:Lzmﬂ—u (16)
where
(/P(qt+l) = [*)’I\(ql‘+l’71),7}’1\(ql‘+l.*2),~“,
(gt +i—n),u(gt+i—1),
u(gt+i—2),--,u(gt+i—n)", 17
b(qt) :=[ai(qt), - an(qt),b1(qt), - ,bu(qt)]". (18)

To initialize the DR-RESG algorithm in (11)-(18), we still
take ©(0) = 1071, with 1,, being an no-dimensional vector
whose elements are all 1.

III. CONVERGENCE OF THE DR-RESG ALGORITHM

We assume that {v(r),.%} is a martingale difference
sequence defined on a probability space {Q,.%,P}, where
{%#} is the o algebra sequence generated by {v(z)}, i.e.,
Fr=o(t),v(Et —1),v(E—2),---,) or F = o(y(),y(t—
1),y(t=2),---,) for the deterministic input sequence {u(z)}.
The noise sequence {v(¢)} satisfies the following assump-
tions [1]:

(A1) E[p(1)|-F1-1] =0, ass.,
(42) Ep2(1)|.F-1] <

Theorem 1: For the system in (8) and the DR-RESG
algorithm in (11)-(18), define

G<°° a.s.

-

R(qt) := ) ¢(iq)9"(iq),

i=1

and assume that (A1) and (A2) hold, ¢,(z) is strictly positive
real, and r(qt) = O(Amin[R(gt)). Then the parameter esti-
mation vector consistently converges to the true parameter
vector ¥, i.e., @(qt) — U as t — oo,

The proof is omitted but available from the authors.

The DR-RESG algorithm has low computational effort,
but its convergence is relatively slow. In order to improve
the tracking performance of the DR-RESG algorithm,
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TABLE 1
THE DR-RESG ESTIMATES AND ERRORS OF 8 (62 = 0.10%, 8y = 14.69%)

Algorithms t o [0%) Bi B B3 Ba o (%)
DR-RESG 100 -0.49904 0.19824 0.37408 0.44907 0.55901 0.25481 47.99108
(DR-REFG, 200 -0.52961 0.22990 0.37345 0.46261 0.57443 0.25936 45.40041
300 -0.55341 0.25034 0.37748 0.47276 0.58302 0.26687 43.58943
A=1) 500 -0.56938 0.26039 0.37903 0.47941 0.59099 0.27037 42.45893
800 -0.58395 0.27254 0.38109 0.48687 0.59825 0.27168 41.29148
1000 -0.59230 0.28303 0.38229 0.49185 0.60226 0.27261 40.50002
1500 -0.60586 0.29765 0.38311 0.49972 0.60803 0.27584 39.31489
2000 -0.61450 0.30761 0.38342 0.50569 0.61179 0.27836 38.51016
2500 -0.62196 0.31531 0.38427 0.50997 0.61530 0.27977 37.86735
3000 -0.62646 0.32139 0.38419 0.51332 0.61732 0.28049 37.41425
DR-REFG 100 -0.52383 0.22263 0.37416 0.46502 0.56999 0.26343 45.78888
A =0.99 200 -0.57301 0.27605 0.37363 0.48849 0.59512 0.26939 41.51881
300 -0.62066 0.32031 0.38283 0.51154 0.61315 0.28363 37.75897
500 -0.67123 0.34931 0.38793 0.53840 0.64005 0.29087 34.11091
800 -0.72882 0.41140 0.39662 0.58468 0.67443 0.28648 28.51938
1000 -0.75980 0.46710 0.40122 0.61830 0.69551 0.28299 24.61997
1500 -0.82117 0.52608 0.40562 0.68186 0.72838 0.28507 18.58141
2000 -0.85632 0.56332 0.40429 0.73316 0.75228 0.28500 14.40285
2500 -0.88665 0.57999 0.40515 0.77219 0.77212 0.27949 11.33927
3000 -0.89417 0.60153 0.40422 0.80785 0.78281 0.26981 8.92581
DR-REFG 100 -0.56924 0.24993 0.42555 0.54992 0.64804 0.18925 39.66257
A =0.98 200 -0.64603 0.34228 0.41958 0.57771 0.67719 0.20702 33.02145
300 -0.71239 0.39426 0.42287 0.61048 0.69488 0.23046 28.06217
500 -0.78220 0.45988 0.42804 0.65139 0.72597 0.24729 22.36451
800 -0.84361 0.53107 0.42723 0.72047 0.75094 0.24032 15.80564
1000 -0.88165 0.57533 0.42270 0.75911 0.76597 0.24463 12.06676
1500 -0.92000 0.61053 0.42148 0.82001 0.78618 0.25060 7.57510
2000 -0.93767 0.62726 0.41222 0.86042 0.79484 0.24559 4.84145
2500 -0.94339 0.63274 0.41012 0.89314 0.79678 0.24026 2.92962
3000 -0.94600 0.62855 0.40698 0.90659 0.79894 0.23806 2.20742
True values -0.96000 0.64000 0.40000 0.94000 0.80000 0.24000

0-6 - T T T T T -

0.5 .

0.4 DR-RESG ( DR-REFG, A =1.00) i

2=]
03 i
ool DR-REFG, 1 = 0.99 _
DR-REFG, A = 0.98
01}
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Fig. 1. The estimation errors § v.s. (62 = 0.10%, &y = 14.69%)
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TABLE II
THE ESTIMATES OF a; AND b; (62 = 0.10%, 8, = 14.69%)

Algorithms t ay ap by by
DR-RESG 100 -1.07982 0.34227 0.19917 0.12402
(DR-REFG, 200 -1.10629 0.37042 0.18747 0.13500
300 -1.12457 0.38753 0.18228 0.13727
500 -1.13334 0.39556 0.17788 0.14162
800 -1.14244 0.40416 0.17517 0.14625
1000 -1.15019 0.41198 0.17390 0.14867
1500 -1.16585 0.42727 0.17184 0.15192
2000 -1.17855 0.43966 0.17113 0.15409
2500 -1.18541 0.44624 0.17017 0.15604
3000 -1.19248 0.45325 0.17000 0.15760
DR-REFG 100 -1.11897 0.38126 0.19350 0.12987
A=099 200 -1.16110 0.42514 0.17807 0.14870
300 -1.19729 0.45856 0.17121 0.15381
500 -1.22912 0.48555 0.16517 0.17059
800 -1.28371 0.53527 0.17325 0.19567
1000 -1.32904 0.57961 0.18550 0.20981
1500 -1.41685 0.65737 0.21592 0.23116
2000 -1.48131 0.71466 0.24759 0.24897
2500 -1.51419 0.73922 0.27199 0.26441
3000 -1.54258 0.76569 0.30165 0.27482
DR-REFG 100 -1.04000 0.30437 0.22257 0.21809
A =0.98 200 -1.12364 0.38507 0.19988 0.22656
300 -1.21106 0.46240 0.19957 0.22527
500 -1.28348 0.52698 0.20165 0.23519
800 -1.39087 0.62372 0.24352 0.25337
1000 -1.45793 0.68472 0.26776 0.26079
1500 -1.53330 0.75086 0.31074 0.27066
2000 -1.57013 0.78133 0.34292 0.28297
2500 -1.58628 0.79382 0.36979 0.28821
3000 -1.58740 0.79184 0.37897 0.29453
True values -1.60000 0.80000 0.40000 0.30000

5 (%)
39.97844
38.09528
36.91137
36.34654
35.72194
35.17724
34.10955
33.23784
32.77407
32.27972
37.23482
34.27505
31.96333
29.89469
25.95538
22.59519
16.37515
11.69733
9.12259
6.54527
41.61397
35.89552
30.02458
25.15288
17.14992
12.33582
6.74400
3.72561
1.92467
1.42210

A=1)

we introduce a forgetting factor A in the DR-RESG algorithm
in (11)-(15) to get

lan) = dlar—a)+ 250
y(gt) — 9" () D (gt —q)), (19)
B(qt+i)=B(qr), i=0,1,---,g—1, (20)
r(gt) = Ar(gt—q)+ 19 (gn) >, 0<A <1, r(0) =1,(21)
¢(qt) = [~y(qt —q),—y(qt —2q),---, —y(qt — qn),
u(qt —1),u(qt —2),---,u(gqt — qn),
D(gr —1),9(qt =2),---,%(gt —m)]", (22)
(gt —i) = $(qt —i) — ¢" (g1 — i) D(q1), (23)

Equation (19)-(23) form the DR-RESG algorithm with a
forgetting factor (refer to as the DR-REFG algorithm). When
A =1, the DR-REFG algorithm reduces to the DR-RESG
algorithm; when A = 0, the DR-REFG algorithm is the dual-
rate projection algorithm.

IV. EXAMPLE

Example consider a second-order discrete-time system with

AR)=14a1z " +az ?=1-1.60z"" +0.80z 2,
B(z) =biz ' +byz * =040z +0.30z 7.

Here, we take g = 2. The corresponding dual-rate model can
be expressed as

a(2)y(t) = B(2)u(t) + ¢4(2)v (1),
a(z) = ¢q(2)a(z), B(z) = 04(2)B(z),
0y(z) =1—diz ' +drz7? =1+ 1.60z7 1 +0.80z 2.

Here {u(t)} is taken as a persistent excitation signal sequence
with zero mean and unit variance, and {v(¢)} as a white noise
sequence with zero mean and variance o?. Applying the
DR-REFG algorithm with the forgetting factors to estimate
the parameters (o, 3;) of this system, and and using the
approach given in [8] to compute the estimates of a; and
b,-; the parameter estimates and their estimation errors 8 :=
19() = BII/I8 or & := [|6() - 6]/||6]| are shown in
Table I and Table II, and the estimation errors § versus ¢ are
shown in Figure 1 with A =1.00, A =0.99 and A = 0.98,
where the noise variance ¢ = 0.10%> and corresponding
noise-to-signal ratio 8,s = 14.69%.

From Table I and Figure 1, we can see that the forgetting
factor A is increased, the rate of change of the parameter
estimates becomes more stationary, but the estimation error
gets larger; the error § is becoming smaller (in general) as
t increases.

V. CONCLUSIONS

The performance of DR-RESG algorithms is studied for
dual-rate sampled-data systems based on ARX models; the
analysis indicates that the algorithms proposed can achieve
good performance properties and require less computational
efforts than the exiting algorithm. Although the analysis
method used in the paper is done for dual-rate models with a
colored noise, the methods developed can be easily extended
to dual-rate stochastic systems with additive white noises.
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