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Abstract— This paper develops a hierarchical extended
stochastic gradient identification algorithms for MIMO
ARMAX-like systems to deal with colored noises based on the
hierarchical identification principle. The convergence perfor-
mance of such algorithms is studied in detail; in particular,
conditions for parameter estimation errors to converge to
zero are established, which include persistent excitation of the
extended information vectors and strict positive realness of the
noise models. Finally, the proposed algorithms are tested on an
example to show their advantages and effectiveness.

Index terms: Recursive identification, estimation, stochastic
gradient, convergence properties, hierarchical identification
principle,multivariable systems, ARMAX models

I. INTRODUCTION

Consider MIMO ARMAX-like systems of the form

α(z)y(t) = Q(z)u(t)+D(z)v(t), (1)

where u(t) ∈ R
r is the system input vector, y(t) ∈ R

m the

system output vector, v(t) ∈ R
m an uncorrelated random

noise vector with zero mean, G(z) := Q(z)
α(z) ∈R

m×r the transfer

matrix (TM) of the system, with z−1 representing the unit

delay operator: z−1y(t) = y(t −1); α(z) is the characteristic

polynomial in z−1 of the system (of degree n) defined as the

monic least common denominator of G(z), Q(z) and D(z) are

polynomials (matrices) in z−1, and they can be represented

as

α(z) = 1+α1z−1 +α2z−2 + · · ·+αnz−n
, αi ∈ R

1
,

Q(z) = Q0 +Q1z−1 +Q2z−2 + · · ·+Qnz−n ∈ R
m×r

,

Qi ∈ R
m×r

,

D(z) = 1+d1z−1 +d2z−2 + · · ·+dnz−n
, di ∈ R

1
.

Notice that the case with interactive noises in the outputs,

namely, the case with D(z) being a polynomial matrix, will

be treated in a similar way. Assume that u(t) = 0, y(t) = 0

and v(t) = 0 as t ≤ 0. The disturbance into the systems in

(1), w(t) := D(z)v(t), is colored (correlated) even if v(t) is

a white noise vector. The model in (1) forms an extension

from the ARMAX model for scalar systems [1] to the multi-

input, multi-output (MIMO) case; and is thus referred to as

an ARMAX-like model.
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The hierarchical identification (HI) principle [2], [3] is

a very useful tool for studying parameter estimation of

MIMO ARMAX-like models, in which there exist both a

parameter vector α and a parameter matrix θ [see Equation

(2) later] to be identified. The HI algorithms have advantages

in computational efficiency over existing algorithms. Based

on the HI principle, several identification algorithms, e.g., the

hierarchical gradient algorithms [2] and the hierarchical least

squares algorithms [3], were proposed recently for MIMO

systems described by transfer matrices; however, a serious

limitation is the white noise assumption with D(z) = 1.

The main purpose of this paper is to propose more general

identification algorithms, based on the HI principle, which

are suitable for MIMO ARMAX-like models with colored

noises [D(z) being general polynomials instead of D(z) = 1],

and to study the related performance issues. We consider

this to be a significant step in making the new algorithms

practical.

The identification problem for the ARMAX-like model in

(1) with D(z) 6= 1 is much more difficult and challenging in

that the information vector/matrix in the identification model

contains unmeasurable noise vectors v(t − 1), v(t − 2), · · ·,
v(t − n) – see ψ0(t) in (2). Thus, the reported hierarchical

algorithms in [2], [3] are not suitable in this case – this is

main motivation for our work here.

The main contributions of this paper lie in the following:

• The hierarchical stochastic algorithm in [2] is extended

to give a hierarchical extended stochastic gradient

(HESG) algorithm for MIMO ARMAX-like systems by

using the HI principle. The basic idea is to replace un-

measurable noise terms in the information vector/matrix

by the estimation residuals like in the scalar ARMAX

case [4].

• The convergence properties of the HESG algorithm us-

ing the stochastic martingale theory are studied in detail;

in particular, conditions for the parameter estimation

error to converge to zero are given, which include that

the extended information vector is persistently exciting

(i.e., the data product moment matrices have bounded

condition numbers) and that the process noises {v(t)}
are zero mean and uncorrelated.

• The convergence conditions obtained in this paper are

the weakest conditions for stochastic gradient algo-

rithms known. The main convergence results in the

paper do not assume that the noise variances and high-

order moments exist and are finite. These results remove

the strict assumptions, made in existing references, that

the noise variances and high-order moments exist [5]–
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[10] and that processes are stationary and ergodic [4],

[11].

The convergence analysis of the hierarchical algorithms

in [2], [3] was based on the assumptions that both the noise

variances are time-varying but bounded and that the strong

persistent excitation conditions hold. This paper relaxes

these conditions, and assumes only that the weak persistent

excitation conditions hold, and does not require that the noise

variances are bounded.

The paper is organized as follows. Sections II develops a

hierarchical extended stochastic gradient (HESG) algorithm.

Section III is the main results in this paper and studies

the convergence properties in detail by using the martingale

convergence theorem. Section IV presents an illustrative

example for the results in this paper. Finally, in Section V,

we offer some concluding remarks.

II. THE HIERARCHICAL EXTENDED STOCHASTIC

GRADIENT ALGORITHM

In this section, we derive the HESG parameter estimation

algorithm for the ARMAX-like model.

Let us introduce some notation first. The symbol I (Im)

stands for an identity matrix of appropriate sizes (m×m);

the superscript T denotes the matrix transpose; the norm of

a matrix X is defined by ‖X‖2 = tr[XX T]; 1m×n represents

an m× n matrix whose elements are all 1, and 1n := 1n×1;

λmax[X ] and λmin[X ] represent the maximum and minimum

eigenvalues of the symmetric matrix X , respectively; for

g(t) ≥ 0, we write f (t) = O(g(t)) if there exists positive

constants δ1 and t0 such that | f (t)| ≤ δ1g(t) for t ≥ t0.

Define the parameter matrix θ , parameter vector α , input

information vector ϕ(t) and information matrix ψ(t) as

follows:

θ T := [Q0, Q1, · · · , Qn] ∈ R
m×n0 , n0 := (n+1)r,

α := [α1, α2, · · · , αn, d1, d2, · · · , dn]
T ∈ R

2n
,

ϕ(t) := [uT(t), uT(t −1), · · · , uT(t −n)]T ∈ R
n0 ,

ψ0(t) := [y(t −1), y(t −2), · · · , y(t −n),

−v(t −1), −v(t −2), · · · , −v(t −n)] ∈ R
m×(2n)

.

In vector forms, Equation (1) can be written as

y(t)+ψ0(t)α = θ Tϕ(t)+ v(t). (2)

Equation (2) is called the (hierarchical) identification model

for MIMO ARMAX-like systems in (1).

The objective of this paper is, by means of the hierarchical

identification principle, to present identification algorithms

to estimate the unknown parameters (α,θ) in (2) from

the given input-output measurement data {u(t), y(t) : t =
1, 2, · · ·}, and to study convergence performance issues of

the algorithms proposed in the stochastic framework.

Here, a difficulty arises because the information matrix

ψ0(t) in (2) contains the unmeasurable noise terms v(t −1),
v(t −2), · · ·, v(t −n); so the hierarchical stochastic gradient

algorithm in [2] cannot be applied directly to (2). The ap-

proach here is to use the estimation residuals v̂(t) to replace

these noise terms v(t). After doing such a replacement, ψ0(t)
is denoted by ψ(t). Let α̂(t) and θ̂(t) be the estimates of α
and θ at time t, respectively; then the estimation residuals

v̂(t) may be computed by

v̂(t) = y(t)+ψ(t)α̂(t)− θ̂
T

(t)ϕ(t)

with

ψ(t) = [y(t −1), y(t −2), · · · , y(t −n),

−v̂(t −1), −v̂(t −2), · · · , −v̂(t −n)].

As in [2], by introducing two intermediate vectors and

defining and minimizing two error criteria, it is easy to get

the HESG algorithm of estimating α and θ as follows:

α̂(t) = α̂(t −1)−
ψT(t)

r(t)
[y(t)+ψ(t)α̂(t −1)

−θ̂
T

(t −1)ϕ(t)], (3)

θ̂(t) = θ̂(t −1)+
ϕ(t)

r(t)
[y(t)+ψ(t)α̂(t −1)−

θ̂
T

(t −1)ϕ(t)]T
, (4)

r(t) = r(t −1)+‖ψ(t)‖2 +‖ϕ(t)‖2
, r(0) = 1, (5)

ϕ(t) = [uT(t), uT(t −1), · · · , uT(t −n)]T
, (6)

ψ(t) = [y(t −1), y(t −2), · · · , y(t −n),

−v̂(t −1), −v̂(t −2), · · · , −v̂(t −n)], (7)

v̂(t) = y(t)+ψ(t)α̂(t)− θ̂
T

(t)ϕ(t). (8)

The initial values may be chosen to be some small real

vector/matrix as in [2], e.g., α̂(0) = 10−612n and θ̂(0) =
10−61m×n0

.

Because the algorithm in (3)-(8) is obtained by expanding

the parameter vector α by adding the noise model parameters

di, it is called the hierarchical extended stochastic gradient

algorithm.

Although the HESG algorithm is simple, its convergence

analysis is very challenging under the weak assumptions

on the statistical properties of the noises. Next, without

assuming that the noise variances and high-order moments

exist and are finite, we establish the convergence properties

of the HESG algorithm.

III. MAIN CONVERGENCE RESULTS

We assume that {v(t),Ft} is a martingale difference vec-

tor sequence defined on a probability space {Ω,F ,P}, where

{Ft} is the σ algebra sequence generated by the observation

data up to and including time t [12]. The sequence {v(t)}
satisfies:

(A1) E[v(t)|Ft−1] = 0, a.s.;

(A2) E[‖v(t)‖2|Ft−1] = σ2
v rε(t), σ2

v < ∞, ε < 1, a.s.

Here, we do not assume that the noise vector {v(t)} has finite

variances and high-order moments.

Lemma 1: For the HESG algorithm in (3)-(8), define the

innovation vector,

e(t) := y(t)+ψ(t)α̂(t −1)− θ̂
T

(t −1)ϕ(t). (9)
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Then the residual v̂(t) and innovation e(t) are related by

v̂(t) = W (t)e(t),

where

W (t) := Im −
ψ(t)ψT(t)+‖ϕ(t)‖2Im

r(t)
.

Proof Substituting (3) and (4) into (8) yields

v̂(t) = y(t)+ψ(t)

[

α̂(t −1)−
ψT(t)

r(t)
e(t)

]

−

[

θ̂(t −1)+
ϕ(t)

r(t)
eT(t)

]

T

ϕ(t)

= e(t)−
ψ(t)ψT(t)

r(t)
e(t)−

‖ϕ(t)‖2

r(t)
e(t)

=

[

Im −
ψ(t)ψT(t)+‖ϕ(t)‖2Im

r(t)

]

e(t) = W (t)e(t).

This proves Lemma 1.

Lemma 2: For the HESG algorithm in (3)-(8), the follow-

ing inequality holds:

t

∑
i=1

‖ψ(i)‖2 +‖ϕ(i)‖2

r(i)
≤ lnr(t), a.s.

Lemma 3: For the HESG algorithm in (3)-(8), the follow-

ing inequality holds:

Sm :=
∞

∑
t=1

tr

{

ψ(t)ψT(t)+‖ϕ(t)‖2Im

r2(t)
W−1(t)

}

σ2
v rε(t)

< ∞, a.s., ε < 1. (10)

Define the parameter estimation error vector α̃(t) and

estimation error matrix θ̃(t) as

α̃(t) := α̂(t)−α,

θ̃(t) := θ̂(t)−θ ,

and the incremental changes of α̃(t) and θ̃(t):

∆α̃(t) := α̂(t)− α̂(t −1),

∆θ̃(t) := θ̂(t)− θ̂(t −1).

Using (3)-(4) and (9), it follows that

∆α̃(t) = [α̂(t)−α]− [α̂(t −1)−α]

= α̃(t)− α̃(t −1) = −
ψT(t)

r(t)
e(t), (11)

∆θ̃(t) = [θ̂(t)−θ ]− [θ̂(t −1)−θ ]

= θ̃(t)− θ̃(t −1) =
ϕ(t)

r(t)
eT(t). (12)

Or

α̃(t) = α̃(t −1)−∆α̃(t), (13)

θ̃(t) = θ̃(t −1)+∆θ̃(t). (14)

We state the main convergence results and show the proof

by formulating a martingale process [13], [15], [16] and by

using the martingale convergence theorem (Lemma D.5.3 in

[12]).

Theorem 1: For the system in (2) and the HESG algorithm

in (3)-(8), if Assumptions (A1) and (A2) hold, and

(A3) D(z) is a strictly positive real function,

then the parameter estimation errors of the HESG algorithm

are bounded, i.e.,

‖α̂(t)−α‖2 +‖θ̂(t)−θ‖2 ≤V0 < ∞, a.s.,

and further the parameter estimation differences converge,

i.e.,

∞

∑
t=i

‖α̂(t)− α̂(t − i)‖2 +‖θ̂(t)− θ̂(t − i)‖2
< ∞, a.s., i > 0.

Proof Let

ξ (t) := ψ(t)α̃(t), (15)

η(t) := θ̃
T

(t)ϕ(t). (16)

Taking the norms of both sides of (13) and (14), respectively,

gives

‖α̃(t)‖2 = ‖α̃(t −1)‖2 −
2

r(t)
ξ T(t)e(t)

−eT(t)
ψ(t)ψT(t)

r2(t)
e(t), (17)

‖θ̃(t)‖2 = ‖θ̃(t −1)‖2 +
2

r(t)
ηT(t)e(t)

−
‖ϕ(t)‖2

r2(t)
‖e(t)‖2

. (18)

Define a stochastic Lyapunov function:

V (t) = ‖α̃(t)‖2 +‖θ̃(t)‖2
.

Using (17), (18), (13) and (14) gives

V (t) = V (t −1)

−
2

r(t)
[ξ (t)−η(t)]TW−1(t)[v̂(t)− v(t)]

−
2

r(t)
[ψ(t)α̃(t −1)− θ̃

T

(t −1)ϕ(t)]TW−1(t)v(t)

+2[e(t)− v(t)]T
ψ(t)ψT(t)+‖ϕ(t)‖2Im

r2(t)
W−1(t)v(t)

+2tr

{

ψ(t)ψT(t)+‖ϕ(t)‖2Im

r2(t)
W−1(t)v(t)vT(t)

}

−eT(t)
ψ(t)ψT(t)+‖ϕ(t)‖2Im

r2(t)
e(t). (19)

According to the definition of v̂(t), we have

D(z)[v̂(t)− v(t)] = ξ (t)−η(t). (20)

Hence

ξ (t)−η(t) = [D(z)−ρ][v̂(t)− v(t)]+ρ[v̂(t)− v(t)]

=: ỹ1(t)+ρ[v̂(t)− v(t)],

where

ỹ1(t) := D1(z)[v̂(t)− v(t)], D1(z) := D(z)−ρ.
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Since D(z) is strictly positive real, there exists a small
constant ρ > 0 such that D1(z) is also strictly positive real.
Referring to Appendix C in [12], the following inequalities
hold:

S0(t) :=
t

∑
i=1

2ỹT

1(i)W
−1(i)[v̂(t)− v(t)]

r(i)
≥ 0, a.s.,

S(t) := S0(t)+ρ
t

∑
i=1

2[v̂(i)− v(i)]TW−1(i)[v̂(i)− v(i)]

r(i)

=
t

∑
i=1

2

r(i)
[ξ (i)−η(i)]TW−1(i)[v̂(i)− v(i)] ≥ 0, a.s.

Since V (t−1), r(t), ξ (t)−η(t), W (t), ψ(t), ϕ(t) and e(t)−
v(t) are uncorrelated with v(t), and are Ft−1 measurable,

adding (19) by S(t) and taking the conditional expectation

with respect to Ft−1 and using Assumptions (A1)-(A2) give

E[V (t)+S(t)|Ft−1] = V (t −1)+S(t −1)

+2tr

{

ψ(t)ψT(t)+‖ϕ(t)‖2Im

r2(t)
W−1(t)

}

σ2
v rε(t)

−E

[

eT(t)
ψ(t)ψT(t)+‖ϕ(t)‖2Im

r2(t)
e(t)|Ft−1

]

. (21)

Since the sum of the third term on the right-hand side from

t = 1 to t = ∞ is finite according to Lemma 3, applying

the martingale convergence theorem to (21) shows that V (t)
converges a.s. to a finite random variable, say V0, i.e.,

V (t)+S(t) = ‖α̃(t)‖2 +‖θ̃(t)‖2 +S(t)→V0 < ∞, a.s., (22)

and also

∞

∑
t=1

eT(t)
ψ(t)ψT(t)+‖ϕ(t)‖2Im

r2(t)
e(t) < ∞, a.s.

This means

∞

∑
t=1

‖ψT(t)e(t)‖2 +‖ϕ(t)‖2‖e(t)‖2

r2(t)

=
∞

∑
t=1

‖∆α̃(t)‖2 +‖∆θ̃(t)‖2
< ∞, a.s. (23)

From (13) and (14), we have

α̃(t) = α̃(t − i)−
i−1

∑
j=0

ψT(t − j)

r(t − j)
e(t − j)

= α̃(t − i)−
i−1

∑
j=0

∆α̃(t − j), (24)

θ̃(t) = θ̃(t − i)+
i−1

∑
j=0

ϕ(t − j)

r(t − j)
eT(t − j)

= θ̃(t − i)+
i−1

∑
j=0

∆θ̃(t − j), i ≥ 1. (25)

Using (11)-(12) and (23), it is easy to get

‖α̃(t)− α̃(t − i)‖2 = ‖α̂(t)− α̂(t − i)‖2

=

∥

∥

∥

∥

∥

i−1

∑
j=0

∆α̃(t − j)

∥

∥

∥

∥

∥

2

≤ i
i−1

∑
j=0

‖∆α̃(t − j)‖2
< ∞, a.s.,

‖θ̃(t)− θ̃(t − i)‖2 = ‖θ̂(t)− θ̂(t − i)‖2

=

∥

∥

∥

∥

∥

i−1

∑
j=0

∆θ̃(t − j)

∥

∥

∥

∥

∥

2

≤ i
i−1

∑
j=0

‖∆θ̃(t − j)‖2
< ∞, a.s.

Summing from t = i to t = ∞ and using (23) give

∞

∑
t=i

‖α̃(t)− α̃(t − i)‖2 ≤ i
i−1

∑
j=0

∞

∑
t=i

‖∆α̃(t − j)‖2
< ∞,

∞

∑
t=i

‖θ̃(t)− θ̃(t − i)‖2 ≤ i
i−1

∑
j=0

∞

∑
t=i

‖∆θ̃(t − j)‖2
< ∞.

This indicates that the estimation differences are convergent

and the relation in (22) shows that the estimation errors are

bounded. This proves Theorem 1. ¤

Further, according to the definitions of W (t) and S(t), from
(22), we have

t

∑
i=1

‖v̂(i)− v(i)‖2

r(i)

≤
t

∑
i=1

[v̂(i)− v(i)]TW−1(i)[v̂(i)− v(i)]

r(i)
< ∞, a.s. (26)

Hence, using the Kronecker Lemma (Lemma D.5.5 in [12])

gives

lim
t→∞

1

r(t)

t

∑
i=1

‖v̂(i)− v(i)‖2 = 0, a.s.,

or
t

∑
i=1

‖v̂(i)− v(i)‖2 = o(r(t)), a.s. (27)

Since D(z) is strictly stable, applying Lemma B.3.3 in [12]

to (20) and using the above inequality give

t

∑
i=1

‖ξ (i)−η(i)‖2

r(i)
< ∞, a.s.,

or

lim
t→∞

1

r(t)

t

∑
i=1

‖ξ (i)−η(i)‖2 = 0, a.s. (28)

Let ψ0k(t) and ψk(t) be the kth row of ψ0(t) and ψ(t),
respectively. Define the extended information vectors,

φ 0k(t) :=

[

ψT

0k(t)
ϕ(t)

]

, φ k(t) :=

[

ψT

k(t)
ϕ(t)

]

, k = 1,2, · · · ,m,

and the data product moment matrices,

Rk(t) :=
t

∑
i=1

φ k(i)φ
T

k(i), R0k(t) :=
t

∑
i=1

φ 0k(i)φ
T

0k(i).

Further, let θ k and θ̃ k(t) be the kth column of θ and θ̃(t),
respectively, and

r0(t) := 1+
t

∑
i=1

‖ψ0(i)‖
2 +

t

∑
i=1

‖ϕ(i)‖2
.
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The following is to establish the consistent convergence

of the parameter estimation.

Theorem 2: For the system in (2) and the HESG algorithm

in (3)-(8), suppose that the conditions of Theorem 1 hold,

r(t) → ∞, and

(A4) limsup
t→∞

r0(t)

λmin[R0k(t)]
< ∞, a.s.

Then the parameter estimation error given by the HESG

algorithm consistently converges to zero, i.e.,

‖α̂(t)−α‖2 +‖θ̂ k(t)−θ k‖
2

= o

(

r0(t)

λmin[R0k(t)]

)

→ 0, a.s., k = 1,2, · · · ,m.

This means

lim
t→∞

α̂(t) = α, a.s., and lim
t→∞

θ̂(t) = θ , a.s.

The proof is omitted due to the limited space but available

from the authors.

Condition (A4) shows that the data product moment matri-

ces R0k(t), k = 1,2, · · · ,m, have bounded condition numbers,

i.e., the information vectors φ 0k(t), consisting of the input-

output and noise data, are persistently exciting. If the input

vector u(t) is taken as a pseudo-random binary sequence or

uncorrelated random signal vector sequence, and v(t) as a

white noise vector sequence with zero mean and constant

variances [σ2
v (1),σ2

v (2), · · · ,σ2
v (m)] (i.e., ε = 0), then the

weak persistent excitation condition (A4) is automatically

satisfied because u(t) is a persistent excitation signal vector

and the white noises are best persistent excitation signals [1].

Earlier convergence analysis of identification algorithms

assume that the noises are independent and identically dis-

tributed random sequences with finite 4th-order moments

and the input and output signals have finite nonzero power

[11], or that the noises are stationary and ergodic and have

constant variances [4], or that the noise variances and high-

order moments exist and are finite [5]–[10]. We think that

studying consistent convergence of second-order moments

of parameter estimation errors, it is neither necessary nor

reasonable to assume existence of higher-order moments [2],

[3], [13], [14]. The assumptions in (A1) and (A2) imply that

v(t) is a non-stationary uncorrelated noise vector with zero

mean. Theorems 1 and 2 do not require such assumptions

as stationarity and ergodicity, or existence of higher-order

moments. Thus, the process in (1) can be possibly non-

stationary and non-ergodic. The convergence analysis in

this paper again does not assume that the noise variances

are finite. Therefore, assumptions (A1)-(A4) represent the

weakest conditions, to our best knowledge, which guarantee

the consistent convergence of the parameter estimation errors

for stochastic gradient algorithms.

When ε = 0 in (A2), i.e., the stationary noise case, if there

exist positive constants c1, c2 and t0 such that, for t ≥ t0,

the following weak persistent excitation condition (bounded

condition number) holds:

(A4′) c1I ≤
1

t

t

∑
i=1

φ k(i)φ
T

k(i) ≤ c2I, a.s.,

k = 1,2, · · · ,m.

Then ‖α̂(t)−α‖2 +‖θ̂(t)−θ‖2 → 0, a.s.

The HESG algorithm has low computational effort, but

its convergence is slow, just like the stochastic gradient

algorithm of scalar systems in [12]. In order to improve

the convergence rate and tracking performance of the HESG

algorithm, we introduce a forgetting factor λ and obtain the

HESG algorithm with a forgetting factor (FFHESG algorithm

for short) as follows:

α̂(t) = α̂(t −1)−
ψT(t)

r(t)
[y(t)+ψ(t)α̂(t −1)

−θ̂
T

(t −1)ϕ(t)], (29)

θ̂(t) = θ̂(t −1)+
ϕ(t)

r(t)
[y(t)+ψ(t)α̂(t −1)

−θ̂
T

(t −1)ϕ(t)]T
, (30)

r(t) = λ r(t −1)+‖ψ(t)‖2 +‖ϕ(t)‖2
, (31)

r(0) = 1, 0 ≤ λ ≤ 1,

ϕ(t) = [uT(t), uT(t −1), · · · , uT(t −n)], (32)

ψ(t) = [y(t −1), y(t −2), · · · , y(t −n),

−v̂(t −1), v̂(t −2), · · · , −v̂(t −n)], (33)

v̂(t) = y(t)+ψ(t)α̂(t)− θ̂
T

(t)ϕ(t). (34)

When λ = 1, the FFHESG algorithm reduces to the HESG

algorithm; when λ = 0, the FFHESG algorithm is the hier-

archical projection algorithm.

IV. EXAMPLE

In this section, we present an example to illustrate the per-

formance of the proposed algorithms. Consider the following

2-input and 2-output system:
[

y1(t)
y2(t)

]

−0.85

[

y1(t −1)
y2(t −1)

]

=

[

2.00 1.00

1.00 2.00

][

u1(t −1)
u2(t −1)

]

+

[

v1(t)
v2(t)

]

+0.60

[

v1(t −1)
v2(t −1)

]

.

α =

[

α1

d1

]

=

[

−0.85

0.60

]

,

θ T = Q1 =

[

β11(1) β12(1)
β21(1) β22(1)

]

=

[

2.00 1.00

1.00 2.00

]

.

In simulation, the inputs u1(t) and u2(t) both are taken as

two independent persistent excitation sequences with zero

mean and unit variances, and v1(t) and v2(t) as two white

noise sequences with zero mean and variances σ2
v (1) and

σ2
v (2), respectively. Applying the HESG algorithm with a

forgetting factor to estimate the parameters of this system,

the estimation errors δ with different forgetting factors (λ =
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1.00,0.95,0.90) versus t are shown in Figs. 1 and 2, where

the relative parameter estimation error δ is defined as

δ =

√

‖α̂(t)−α‖2 +‖θ̂(t)−θ‖2

‖α‖2 +‖θ‖2
×100%,

Changing the noise variances σ2
v (1) and σ2

v (2) results in

adjusting the noise-to-signal ratios δns(1) and δns(2) of the

two output channels. When σ2
v (1) = 0.502 and σ2

v (2) =
0.502, the noise-to-signal ratios are δns(1) = 34.50% and

δns(2) = 34.50%; when σ2
v (1) = 1.502 and σ2

v (2) = 1.502,

the noise-to-signal ratios are δns(1) = 103.49% and δns(2) =
103.49%.

From Figs. 1 and 2, we can draw the following conclu-

sions:

• It is clear that the estimation errors δ are becoming

smaller (in general) as t increases. In other words,

increasing data length generally results in smaller pa-

rameter estimation errors.

• A high noise level results in a slow rate of convergence

for the parameter estimation.

• As long as we choose appropriate forgetting factors, the

estimation errors δ are becoming smaller (in general) as

t increases.

• From Figs. 1 and 2, we can see that as the forgetting

factor λ is increased, the estimation error becomes

larger. However, if we decrease the forgetting factor

λ , the convergence rate of the parameter estimation is

faster initially, but the variance of the estimation error

becomes larger. Thus, a better strategy is to choose

a smaller forgetting factor at the initial period of the

operation, and then let the forgetting factor gradually

increase with t, and finally approach 1 so that more

accurate parameter estimates can be obtained.

• The simulation results confirm the stated theoretical

results in Section 3.

V. CONCLUSIONS

According to the hierarchical identification principle, hi-

erarchical extended stochastic gradient algorithms are pre-

sented for MIMO ARMAX-like systems. The analysis indi-

cates that the algorithms proposed have good convergence

properties under weaker conditions. Finally, the simulation

results verify the theoretical findings.
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