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Abstract— This paper considers the problems of parameter
identification and output estimation with possibly irregularly
missing output data, using output error models. By means of
an auxiliary (reference) model approach, we present a recursive
least squares algorithm to estimate the parameters of missing
data systems, and establish convergence properties for the
parameter and missing output estimation in the stochastic
framework. The basic idea is to replace the unmeasurable inner
variables with the output of an auxiliary model.

I. INTRODUCTION

MANY least squares (LS) based identification methods

can be used to estimate system parameters, see, e.g.,

[19], [20], [27]; but most of them assume that input-output

measurement data are available at every sampling instant.

There are many practical reasons for missing sampled data

to arise in system identification, e.g., infrequent/scarce output

measurement due to sensory limitation [17], irregularly sam-

pled systems [26], and unexpected interruption in regularly

sampled data. In all these cases, standard identification algo-

rithms cannot be applied directly. In this paper, we focus on

the problems of parameter identification and output predic-

tion/estimation with missing output data; such problems are

important because the results can be used not only to monitor

the missing output variables, but also to design inferential

control schemes with infrequent/scarce output measurements

– see the work in [16], [17] for an application in petroleum

production.

Another potentially important application of identification

with missing data is in network based control systems, in

which sensory information from plants is communicated

to controllers through network media, and so is the con-

trol information to the actuators. Because of the nature of

communication networks, packet dropout or data loss is

inevitable, yielding systems with missing data.

Due to its practical significance, system identification

with missing data has received much attention since 1990s.

Isaksson studied identification of ARX models with missing

data based on the Kalman filtering (fixed-interval smooth-

ing) technique and off-line maximum likelihood methods

[12], whose recursive version was given in [13], but no

convergence analysis was carried out. The EM algorithm

is a standard tool to develop estimation algorithms in the

presence of missing data [9]. Adam et al. discussed a
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parameter estimation problem for ARX models with missing

data based on a pseudo-linear regression method [1], but the

stability of the predictor used to estimate the missing outputs

was not taken into account. Also, Mirsaidi et al studied AR

modeling with missing observations [21]. Albertos and co-

workers studied output prediction/estimation of a process

from scarcely sampled measurements, assuming that the

process model was known [3]; however, the convergence

analysis of the predictor is based on the assumption of regular

output availability – one output measurement for every q
input values, namely, a dual-rate sampling pattern. Also,

Wallin and Isaksson analyzed stability of the output predictor

in [3] based on a state-space formulation, again for regular

output availability or a dual-rate sampled case [29]. Finally,

Sanchis and Albertos studied the convergence of pseudo-

linear recursive algorithms, making the assumption of regular

scarce data availability [25].

Missing-data systems with a regular pattern can be viewed

as dual-rate or multirate sampled-data systems, for which

there exists extensive work on control and identification,

see, e.g., [2], [4]–[7], [15]–[17], [22], [23], [26]. As dual-

rate or multirate systems, such missing-data systems can

be treated by the popular lifting technique and converted

to time-invariant lifted models to which state-space based

identification methods can be extended and from which fast-

rate models can be extracted [15]; in addition, a frequency-

domain based polynomial transformation technique can be

employed to obtain models suitable for identification with

slow output sampling (regularly missing output samples) [6],

[7]; performance issues related to such estimation problems

have been studied in [6] in the stochastic case. However,

both the lifting technique and the polynomial transformation

technique, as mentioned above, rely on periodicity inherent

in regular sampling patterns, and are not suitable for general

missing-data systems in which a periodic pattern does not

exist. Recently, the authors presented an auxiliary model

based least squares algorithm to directly identify the pa-

rameters of the underlying single-rate models of dual-rate

systems, namely regular missing output data cases [8], but

the algorithm there cannot be directly applied to irregularly

missing data cases. The objective of this paper is to extend

the auxiliary model approach to study system identification

and output estimation problems with irregular missing data

patterns, and further to analyze convergence properties of the

algorithm proposed.

The rest of this paper is organized as follows. In Section II,

we introduce the models and describe the estimation prob-

lems with missing data; no particular patterns are assumed. In

Section III, we propose a parameter and output estimation
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algorithm. In Section IV, we first introduce some prelimi-

naries, and then present the main results – convergence of

both the parameter and output estimation by the proposed

algorithm in the stochastic framework. Finally, we offer some

concluding remarks in Section VI.

II. MODELS AND DATA MISSING PATTERNS

Let us begin by considering a discrete-time deterministic

system with the following input-output relation:

y(t) = P1(z)u(t), P1(z) =
B(z)

A(z)
. (1)

Here u(t) and y(t) are the system input and output, P1(z) is

the transfer function, z represents the forward shift operator

[z−1u(t) = u(t − 1)], and A(z) and B(z) are polynomials

in z−1 defined as:

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + ana
z−na ,

B(z) = b1z
−1 + b2z

−2 + b3z
−3 + · · · + bnb

z−nb .

Assume that the orders na and nb are known and define the

parameter vector θ and information vector ϕ(t) as

θ = [a1, a2, · · · , ana
, b1, b2, · · · , bnb

]T ∈ R
n,

ϕ(t) = [−y(t − 1),−y(t − 2), · · · ,−y(t − na),

u(t − 1), u(t − 2), · · · , u(t − nb)]
T,

where n := na + nb, the superscript T denotes the matrix

transpose. Equation (1) may be written in a vector form:

y(t) = ϕT(t)θ. (2)

Conventional system identification assumes that the input-

output data,

U = {u(0), u(1), u(2), · · ·}, Y = {y(0), y(1), y(2), · · ·},

are fully available at every sampling instant. In a missing-

data system, not the full sets of U and Y are available, due

to various practical reasons. We can classify missing-data

systems into three cases:

1) The output missing case: U is fully available, but only

a subset of Y is available.

2) The input missing case: Y is fully available, but only

a subset of U is available.

3) The input and output missing case: Only subsets of U
and Y are available.

The most common and interesting situation is case 1,

because inputs are usually generated by digital computers

and are normally available; this case also includes the prac-

tically important systems with infrequent and scarce output

sampling [17]. If case 2 does arise, it can be converted into

a problem in case 1 by inverting the system under some

standard assumptions such as stability and minimum phase.

Case 3 is considerably different, and is left for the future.

In this paper, we will therefore concentrate on case 1, the

output missing case.

As in [1], [3], [25], [29], after defining

µ(t) =

{

1, if y(t) and ϕ(t) are both available,
0, otherwise,

the following modified least squares (MLS) algorithm was

used to obtain the estimate θ̂(t) of the unknown parameter

vector θ in (2):

θ̂(t) = θ̂(t − 1) + µ(t)P (t)ϕ(t)[y(t) − ϕT(t)θ̂(t − 1)],

P (t) = P (t − 1) − µ(t)
P (t − 1)ϕ(t)ϕT(t)P (t − 1)

1 + ϕT(t)P (t − 1)ϕ(t)
,

where P (t) is the covariance matrix. This MLS algorithm

seems to work in that whenever y(t) or ϕ(t) is unavailable,

µ(t) = 0, and hence θ̂(t) and P (t) are not updated. But it

has a major drawback: Even if y(t) is available, ϕ(t) may not

be, since ϕ(t) is very likely to contain past missing outputs;

this would lead to µ(t) = 0 when y(t) is available. Hence

this MLS algorithm does not fully use all available outputs.

Here we argue that the MLS algorithm is not suitable

for missing-data systems. Consider a special missing-data

system – a dual-rate sampled-data system [2], [6], [7], [16],

[17]:

y(t) + a1y(t − 1) + a2y(t − 2) = b1u(t − 1) + b2u(t − 2).

Here, all inputs u(t) are available, only outputs y(0), y(q),
y(2q), y(3q), · · ·, are available (q ≥ 2 being an integer). We

cannot satisfy µ(t) = 1 for any t, because when t = kq
(k being an integer), y(t) is available, but the information

vector

ϕ(t) = [−y(t − 1),−y(t − 2), u(t − 1), u(t − 2)]T

always contains missing data. In other words, we cannot

formulate any known ϕ(t) using available y(t).

For the output missing case, we define an integer sequence

{ts : s = 0, 1, 2, · · ·} satisfying

0 = t0 < t1 < t2 < t3 < · · · < ts−1 < ts < · · · ,

with t∗s := ts − ts−1 ≥ 1, and assume that y(t) is available

only when t = ts (s = 0, 1, 2, · · ·), or equivalently, the set

{y(ts) : s = 0, 1, 2, · · ·} contains all available outputs. For

instance, if the available output data are

y(0), y(1), y(2), y(5), y(8), y(9), y(10), y(15), · · · ,

then we have

t0 = 0, t1 = 1, t2 = 2, t3 = 5, t4 = 8, t5 = 9,
t6 = 10, t7 = 15, · · · .

This is a general framework in which we assume no patterns

in the output availability; of course, it includes patterned

output availability as special cases, e.g., if t∗s is constant,

say, t∗s = q (a positive integer), we obtain a dual-rate system

with input-output sampling ratio equal to q.

III. THE ALGORITHM DESCRIPTION

Consider the stochastic system as shown in Figure 1, with

output missing data, described by an output-error model:

x(t) =
B(z)

A(z)
u(t), y(t) = x(t) + v(t), (3)

where the inner variable x(t) is the true output (noise-
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Fig. 1. The output-error system

free output) of the system but unmeasurable; y(t) is the

measurable output but is corrupted by the additive noise v(t);
the definitions of A(z) and B(z) are as before.

Replacing t in (3) by ts, it is not difficult to get

x(ts) = ϕT

0(ts)θ, y(ts) = ϕT

0(ts)θ + v(ts) (4)

with

ϕ0(ts) = [−x(ts − 1),−x(ts − 2), · · · ,−x(ts − na),
u(ts − 1), u(ts − 2), · · · , u(ts − nb)]

T.

Because x(ts − i) in ϕ0(ts) are unknown, the standard least

squares algorithm cannot be applied to (4) directly. However,

if we replace these unknown x(ts − i) by their estimates

x̂(ts − i), and ϕ0(ts) by ϕ(ts), then the identification prob-

lem of θ can be solved by using u(ts−i), y(ts) and x̂(ts−i)
instead of x(ts− i). According to the least squares principle,

from (4), we propose the following recursive algorithm:

θ̂(ts) = θ̂(ts−1) + P (ts)ϕ(ts)e(ts), (5)

e(ts) = y(ts) − ϕT(ts)θ̂(ts−1), (6)

θ̂(t) = θ̂(ts−1), t ∈ {ts−1, ts−1 + 1, · · · , ts − 1},

P−1(ts) = P−1(ts−1) + ϕ(ts)ϕ
T(ts), P (0) = p0I, (7)

x̂(ts − j) = ϕT(ts − j)θ̂(ts−1), j = 1, 2, · · · , t∗s, (8)

ϕ(ts − j) = [−x̂(ts − 1 − j), · · · ,−x̂(ts − na − j),

u(ts − 1 − j), · · · , u(ts − nb − j)]T, (9)

where θ̂(t) represents the estimate of θ, and p0 is a large

positive real number. As in many references [1], [3], [25],

[29], we simply hold θ̂(t) unchanged on the interval [ts−1 +
1, ts − 1] for which outputs are unavailable.

This identification algorithm is based on output error

models instead of ARX models as in [1], [12] for the

missing data systems, and differs from those mentioned in

the introduction in that it directly estimate the true output

(noise-free output) x(t) instead of unavailable y(t) as in [1],

[3], [6], [25], [29] using the available data.

IV. MAIN RESULTS

In this section, we present and prove the main convergence

results on the parameter and output estimation with the

algorithm proposed earlier.

Let us begin by defining some notation. The symbols

λmax[X] and λmin[X] represent the maximum and minimum

eigenvalues of the symmetric matix X , respectively; |X|
denotes the matrix determinant, and ‖X‖2 = tr[XXT], the

trace of XXT. For g(t) ≥ 0, we write f(t) = O(g(t)) if there

exists finite positive constants δ1 and t0 such that |f(t)| ≤

δ1g(t) for t ≥ t0, and f(t) = o(g(t)) if f(t)/g(t) → 0 as

t → ∞.

Define

P−1
0 (ts) := P−1

0 (ts−1) + ϕ0(ts)ϕ
T

0(ts), P0(0) = p0I;

r(ts) := tr[P−1(ts)]; r0(ts) := tr[P−1
0 (ts)].

Hence, we easily get

|P−1(ts)| ≤ rn(ts); r(ts) ≤ nλmax[P
−1(ts)]; (10)

Define the parameter estimation error vector θ̃(ts) and a

nonnegative definite function V (ts) as

θ̃(ts) = θ̂(ts) − θ, (11)

V (ts) = θ̃
T

(ts)P
−1(ts)θ̃(ts). (12)

Theorem 1: For the missing-data system in (4) and the

algorithm in (5)-(9), assume that {v(t)} is statistically inde-

pendent of the input u(t) and satisfies

(A1) E[v(t)|Ft−1] = 0, a.s.,

(A2) E[v2(t)|Ft−1] ≤ σ2
v [ln |P−1(t)|]ε1 , a.s.,

where σ2
v < ∞, 0 ≤ ε1 < ∞, {Ft} is the σ-algebra sequence

generated by the observations up to and including time t [10].

Suppose that A(z) is stable (all roots of A(z) are inside the

unit circle), and that there exist positive constants c, α, β and

k such that for s ≥ k, the following generalized persistent

excitation condition (unbounded condition number) holds:

(C1) αI ≤
1

s

s
∑

i=1

ϕ0(ti)ϕ
T

0(ti) ≤ βscI, a.s.

Then for any ε with 0 ≤ ε1 < ε < ∞, the parameter

estimation error associated with the algorithm in (5)-(9)

satisfies:

‖θ̂(ts) − θ‖2 = O

(

[ln s]1+ε

s

)

→ 0, a.s., as s → ∞.

Theorem 1 shows that the parameter estimation error

‖θ̂(ts) − θ‖2 converges to zero at the rate of O
(

[ln s]1+ε

s

)

(0 ≤ ε1 < ε < ∞): A high noise level results in a slow

rate of convergence; in other words, the convergence rate

becomes slower for large ε1.

Theorem 2: For the missing-data system in (4) and the

algorithm in (5)-(9), assume that {v(t)} is a random noise

sequence with zero mean, and is statistically independent of

u(t) [hence (A1) holds], and furthermore

(A3) E[v2(t)|Ft−1] ≤ σ2
vrǫ1(t), a.s., 0 ≤ σ2

v < ∞,

0 ≤ ǫ1 < 1.

Suppose A(z) is stable, and that the weak persistent exci-

tation (WPE) condition (bounded condition number) holds,

i.e., take c = 0 in (C1) to get

(C2) αI ≤
1

s

s
∑

i=1

ϕ0(ti)ϕ
T

0(ti) ≤ βI, a.s.,

0 < α ≤ β < ∞ and large s.
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Then for any ǫ with 0 ≤ ǫ1 < ǫ < 1, the estimation error

satisfies

‖θ̂(ts) − θ‖2 = O

(

1

s1−ǫ

)

→ 0, a.s., as s → ∞.

The proofs of Theorems 1 to 4 are omitted in order to

save space but available from the authors.

Theorem 2 indicates that the parameter estimation error

‖θ̂(ts)−θ‖2 converges to zero at the rate of O
(

1
s1−ǫ

)

(0 ≤
ǫ1 < ǫ < 1); a smaller ǫ1 (a lower noise level) will lead to

a faster rate for the parameter estimates to converge to the

true parameters.

In the area of identification algorithms, Ljung’s and Solo’s

consistency analysis was based on the condition that the input

and output signals have finite nonzero power, and assumed

that the noise is independent and identically distributed

random sequence with finite 4th-order moments [18], or

the process noise and input are stationary and ergodic [28].

Also, Lai and Wei [14], Guo and Chen [11], and Ren and

Kumar [24] assumed that the high-order moments of the

noise {v(t)} exist, i.e., E[vγ(t)|Ft−1] < ∞, a.s. for some

γ > 2. Notice that such assumptions have not been made in

our results.

Most identification algorithms of missing data systems

assume that the models considered are ARX models, but

few consider the output error models with missing data. For

the output error models with missing data, a difficulty arises

in that the information vector contains unknown noise-free

(true) outputs x(·). To this point, we replace these unknown

x(·) by using the estimates x̂(·) computed by an auxiliary

model in (8).

Theorem 3: For the system in (4), assume the conditions

stated in Theorem 1 are satisfied; furthermore, let ∆s :=
max[t∗1, t

∗

2, · · · , t
∗

s] and assume that there exist constants 0 <
δ1 < ∞ and 0 ≤ µ < 1 such that the following conditions

hold:

(A4) ts+1 ≤ δ1ts, or ts+1 = O(ts),

(A5) ∆s ≤ δ1t
µ
s , or ∆s = O(tµs ).

Then the bounded input assumption implies that there exists

a positive integer k such that the output estimation error,

x̂(t) − x(t), satisfies:

1 .

ts
∑

i=tk

[x̂(i) − x(i)]2 = O(tµs [ln ts]
2+ε), a.s.;

2 .
1

t

t
∑

i=1

[x̂(i) − x(i)]2 = O

(

[ln t]2+ε

t1−µ

)

→ 0, a.s.

Note the following:

• Conditions (A4) and (A5) are reasonable and common

assumptions and include the cases in which the missing

data length between two successive available measure-

ments is finite, i.e., µ = 0.

• Theorem 3 indicates that the output estimation error

[x̂(t)−x(t)]2 converges to zero in the average sense; a

smaller µ and ε (i.e., a lower noise level) will lead to

a faster convergence rate.

Furthermore, the following result on output estimation can

be established.

Theorem 4: For the system in (4), if the conditions of

Theorem 2 and (A4)-(A5) hold, and µ + ǫ < 1, then the

bounded input assumption implies that there exists a positive

integer k such that the output estimation error satisfies:

1 .

ts
∑

i=tk

[x̂(i) − x(i)]2 = O(tµ+ǫ
s ), a.s.;

2 .
1

t

t
∑

i=1

[x̂(i) − x(i)]2 = O

(

1

t1−µ−ǫ

)

→ 0, a.s.

From Theorems 3 and 4, we can arrive at the following

conclusions: Once the parameter estimates converge to the

true parameters, x̂(t) is the best estimator for x(t). If v(t) is

assumed to be white, then x̂(t) can be viewed as the optimal

estimate for y(t).

V. EXAMPLE

Example Consider the system:

y(t) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
u(t) + v(t)

=
0.40z−1 + 0.30z−2

1 − 1.60z−1 + 0.80z−2
u(t) + v(t).

{u(t)} is taken as a persistent excitation signal sequence

with zero mean and unit variance σ2
u = 1.002, and {v(t)}

as a white noise sequence with zero mean and variance σ2
v .

We assume that {u(t), y(ts)} are measured for t∗s = 1 (no

missing data) and t∗s = 3 (2 missing samples for every

3 output samples), and apply the proposed algorithm to

estimate the parameters (ai, bi) of this system. The parameter

estimates and their errors are shown in Tables I and II,

and the parameter estimation errors versus s are shown in

Figure 2, where δns is the noise-to-signal ratio defined by

the square root of the ratio of the variances of v(t) and x(t),
i.e.,

δns =

√

var[v(t)]

var[x(t)]
× 100% =

σv

σx

× 100%,

δ = ‖θ̂(t) − θ‖/‖θ‖ is the relative parameter estimation

error, σ2
v = 1.002, and δns = 40.38%.

From Tables I and II, as well as Figure 2, it is clear that

the δ’s are becoming smaller (in general) as s increases. This

validates the proved results in the earlier sections.

VI. CONCLUSIONS

A recursive least squares algorithm is presented for

missing-data systems with no regular patterns; the algo-

rithm estimates simultaneously the system parameters and

unknown outputs. Convergence performance of the proposed

estimation algorithm is analyzed in detail in the stochastic

framework. The algorithm is also evaluated by simulated ex-

amples. The methods developed can be extended to identify

missing-data systems with colored noises. Since the estimate

x̂(t) consistently converges to the true (noise-free) output
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TABLE I

THE PARAMETER ESTIMATES (t∗
s

= 1, σ2
v

= 1.002 , δns = 40.38%)

s a1 a2 b1 b2 δ (%)
100 -1.19129 0.43371 0.61319 0.82247 42.37987
200 -1.20280 0.41630 0.48995 0.61344 34.52910
300 -1.26393 0.45255 0.49033 0.54822 29.65696
500 -1.41130 0.59023 0.44051 0.35467 15.62599

1000 -1.64057 0.80729 0.37221 0.20757 5.65048
1500 -1.62765 0.82301 0.37947 0.23680 4.06808
2000 -1.63625 0.83488 0.38370 0.25339 3.79510
2500 -1.62835 0.83332 0.40147 0.25448 3.39980
3000 -1.60902 0.81172 0.40500 0.27014 1.81378
3500 -1.60898 0.80891 0.40675 0.27637 1.48840
4000 -1.60501 0.80607 0.40665 0.28114 1.15739

True values -1.60000 0.80000 0.40000 0.30000

TABLE II

THE PARAMETER ESTIMATES (t∗
s

= 3, σ2
v

= 1.002 , δns = 40.38%)

s a1 a2 b1 b2 δ (%)
100 -0.33104 -0.23949 -0.04825 0.66703 93.66076
200 -0.73688 -0.16743 0.14208 0.73214 74.87500
300 -0.77237 -0.07714 0.24124 0.61706 67.67520
500 -0.96692 0.17496 0.44221 0.57158 50.13012

1000 -1.20677 0.38942 0.38922 0.54031 33.23465
1500 -1.45052 0.62712 0.40057 0.41019 13.66000
2000 -1.54027 0.72650 0.38557 0.37842 6.66546
2500 -1.58090 0.78081 0.37351 0.35319 3.51563
3000 -1.58869 0.79202 0.36809 0.35545 3.52395
3500 -1.58490 0.78656 0.38151 0.35116 3.12444
4000 -1.58491 0.78960 0.38737 0.34701 2.80019

True values -1.60000 0.80000 0.40000 0.30000

0 500 1000 1500 2000 2500 3000 3500 4000
0
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0.3
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0.5

0.6

0.7

0.8

t
*

s
 = 1

t
*

s
 = 3

            s

δ

Fig. 2. The parameter estimation errors vs. s (t∗
s

= 1, 3)

x(t), it is also potentially useful as a basis for inferential

control of missing-data systems by using x̂(t) in feedback

loops [16].
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[11] L. Guo and H.F. Chen, “The Åström-Wittenmark self-tuning regulator

revisited and ELS-based adaptive trackers,” IEEE Trans. Automat.

Contr., vol. 36, no. 7, pp. 802-812, 1991.
[12] A.J. Isaksson, “Identification of ARX-models subject to missing data,”

IEEE Trans. Automat. Contr., vol. 38, no. 5, pp. 813-819, 1993.
[13] A.J. Isaksson, “A recursive EM algorithm for identification subject

to missing data,” Proc. IFAC Symposium on System Identification

(SYSID’94), July 4-6, 1994, Copenhagen, Denmark, pp. 953-958.
[14] T.L. Lai and C.Z. Wei, “Extended least squares and their applications

to adaptive control and prediction in linear systems,” IEEE Trans.

Automat. Contr., vol. 31, no. 10, pp. 898-906, 1986.
[15] D. Li, S.L. Shah and T. Chen, “Identification of fast-rate models from

multirate data,” International Journal of Control, vol. 74, no. 7, pp.
680-689, 2001.

[16] D. Li, S.L. Shah, and T. Chen, “Analysis of dual-rate inferential control
systems,” Automatica, vol. 38, no. 6, pp. 1053-1059, 2002.

[17] D. Li, S.L. Shah, T. Chen, and K.Z. Qi, “Application of dual-rate
modeling to CCR octane quality inferential control,” IEEE Trans.

Contr. Syst. Technol., vol. 11, no. 1, pp. 43-51, 2003.
[18] L. Ljung, “Consistency of the least-squares identification method,”

IEEE Trans. Automat. Contr., vol. 21, no. 5, pp. 779-781, 1976.
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